首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Similar to the Igh-V multigene family, the human or mouse Igk-V repertoirer is a distorted continuum of homologous genes that may be grouped into families displaying >80% nucleic acid sequence similarity among their members. systematic interspecies sequence comparisons reveal that most human Igk-V gene families exhibit clear homology to mouse Ogk-V families (sequence similarity >74%). A hypothetical phylogenetic tree of Igk-V genes predicts that a minimum of seven Igk-V genes/families predate mammalian radiation. In two cases, several interrelated mouse Igk-V families exhibit phylogenetic equidistance with just one human Igk-V family, implying a more pronounced divergence for the elevated number of Igk-V gene families in the mouse. Mouse-human Igk-V comaprisons, moreover, illustrate how expansion, contraction, and perhaps deletion of Igk-V gene families shape the Igk-V repertoire during mammalian evolution.  相似文献   

2.
We have mapped and annotated the variable region of the immunoglobulin heavy (IGH) gene locus of the Brown Norway (BN) rat (assembly V3.4; Rat Genomic Sequence Consortium). In addition to known variable region genes, we found 12 novel previously unidentified functional IGHV genes and 1 novel functional IGHD gene. In total, the variable region of the rat IGH locus is composed of at least 353 unique IGHV genes, 21 IGHD genes, and 5 IGHJ genes, of which 131, 14, and 4 are potentially functional genes, respectively. Of all species studied so far, the rat seems to have the highest number of functional IGHV genes in the genome. Rat IGHV genes can be classified into 13 IGHV families based on nucleotide sequence identity. The variable region of the BN rat spans a total length of approximately 4.9 Mb and is organized in a typical translocon organization. Like the mouse, members of the various IGHV gene families are more or less grouped together on the genome, albeit some members of IGHV gene families are found intermingled with each other. In the rat, the largest IGHV gene families are IGHV1, IGHV2, and IGHV5. The overall conclusion is that the genomic organization of the variable region of the rat IGH locus is strikingly similar to that of the mouse, illustrating the close evolutionary relationship between these two species.  相似文献   

3.
4.
Class I genes of the Peromyscus leucopus major histocompatibility complex (MhcPele) were examined by Southern blot hybridization, genomic cloning, and DNA sequencing. At least three distinct subtypes of Pele class I genes were discerned, which we have designated Pele-A, B, and C. The nucleotide sequences of exon 5-containing regions (encoding the transmembrane domain) suggested that Pele-A genes are homologs of mouse H-2K, D, L, and Q genes and that Pele-B genes correspond to mouse Tla genes. The Pele-C genes appeared similar to mouse M1 genes. The number of unique genes in each subtype cloned from an individual P. leucopus were 20 for Pele-A, 13 for Pele-B, and 2 for Pele-C. Three genomic clones showed cross-hybridization to both Pele-A and Pele-B gene-specific probes. Six genomic clones remained unclassified as they did not cross-hybridize to exon 5-containing probes from Pele-A, B, or C genes. The homology between the transmembrane domains of Pele class I gene subtypes was found to be similar to that observed between the transmembrane domains of H-2 subtypes (or groups). Interspecific similarity of exon 5 was found to be 81%–88% between Pele class I genes and their H-2 counterparts.The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers M33983-5.  相似文献   

5.
NKG2D is a major activating receptor of natural killer cells. Its ligands are major histocompatibility complex (MHC) class I-like molecules whose expression is induced by cellular stresses such as infections and tumorigenesis. Humans have two families of NKG2D ligands (NKG2DL): MHC class I-related chains (MIC) encoded in the MHC and UL16-binding proteins (ULBP) encoded outside the MHC. By contrast, mice have only the latter family of ligands; instead, they have non-MHC-encoded MILL molecules that are closely related to MIC, but do not function as NKG2DL. To gain insights into the origin and evolution of MIC, ULBP, and MILL gene families, we conducted comparative genomic analysis of NKG2DL family genes in five mammalian species. In the opossum MHC, we identified a ULBP-like gene adjacent to a previously described MIC-like gene, suggesting that ULBP genes were originally encoded in the MHC. The opossum genome also contained a transcribed MILL-like gene in a region syntenic to the rodent regions encoding MILL molecules. These observations indicate that MIC-, ULBP-, and MILL-like genes emerged before the divergence of placental and marsupial mammals. Comparison of the human, cattle, rat, mouse, and opossum genomes indicates that after emigration from the MHC, ULBP genes underwent extensive duplications in each species. In mice, some of the ULBP genes appear to have been translocated telomerically on the same chromosome, forming a major cluster of existent NKG2DL genes.  相似文献   

6.
Chen  Zhang-qun  Annilo  Tarmo  Shulenin  Sergey  Dean  Michael 《Mammalian genome》2004,15(5):335-343
We have identified and cloned three mouse genes that belong to the ABCA subfamily of ATP-binding cassette (ABC) transporters. These three genes are arranged in a tandem head-to-tail cluster spanning about 300 kb on mouse Chromosome (Chr) 7F3. Phylogenetic analysis indicates that although the three genes are related to human and mouse ABCA3, they are not orthologs of any of the current list of 48 human ABC genes and were, therefore, named Abca14, Abca15, and Abca16. The coding region of each gene is split into 31 exons, has an open reading frame of more than 1600 amino acids, and encodes a full transporter molecule with two nucleotide-binding folds (NBF) and two transmembrane domains (TMD). All three genes are predominantly expressed in testis, which suggests that they may perform special functions in testicular development or spermatogenesis. Interestingly, the human genome contains only fragments (less than ten exons) of at least two different ABC genes in the syntenic region on Chromosome 16p12 that are scattered among other, unrelated genes and are not capable of coding functional ABC transporters.(Zhang-qun Chen and Tarmo Annilo) These authors contributed equally to this study.Sequence data from this article have been deposited with the DDBJ/EMBL/GenBank Data Libraries under accession numbers AY243470–AY243472.  相似文献   

7.
The evolutionarily conserved genomic organization of the Hox genes has been a puzzle ever since it was discovered that their order along the chromosome is similar to the order of their functional domains along the antero-posterior axis. Why has this colinearity been maintained throughout evolution? A close look at regulatory sequences from the mouse Hox clusters(1,2) suggests that enhancer sharing between adjacent Hox genes may be one reason. Moreover, characterizing the activity of one of these mouse enhancers in Drosophila(2) illustrates that despite many similarities, not all Hox clusters are built in the same way.  相似文献   

8.
Myrosinase (thioglucoside glucohydrolase, EC 3.2.3.1.) is in Brassicaceae species such as Brassica napus and Sinapis alba encoded by two differentially expressed gene families, MA and MB, consisting of about 4 and 10 genes, respectively. Southern blot analysis showed that Arabidopsis thaliana contains three myrosinase genes. These genes were isolated from a genomic library and two of them, TGG1 and TGG2, were sequenced. They were found to be located in an inverted mode with their 3 ends 4.4 kb apart. Their organization was highly conserved with 12 exons and 11 short introns. Comparison of nucleotide sequences of TGG1 and TGG2 exons revealed an overall 75% similarity. In contrast, the overall nucleotide sequence similarity in introns was only 42%. In intron 1 the unusual 5 splice border GC was used. Phylogenetic analyses using both distance matrix and parsimony programs suggested that the Arabidopsis genes could not be grouped with either MA or MB genes. Consequently, these two gene families arose only after Arabidopsis had diverged from the other Brassicaceae species. In situ hybridization experiments showed that TGG1 and TGG2 expressing cells are present in leaf, sepal, petal, and gynoecium. In developing seeds, a few cells reacting with the TGG1 probe, but not with the TGG2 probe, were found indicating a partly different expression of these genes.  相似文献   

9.
Legumin-like 11S and vicilin-like 7S globulins are the main storage proteins of most angiosperms and gymnosperms. The subunits of the hexameric legumin are synthesized as a precursor comprising a N-terminal acidic - and a C-terminal basic -chain. The trimeric vicilin molecule consists of subunits composed of two symmetrical N- and C-terminal structural domains.In a multiple alignment we have compared the N-terminal and C-terminal domains of 11 legumns and seven vicilins of several dicot, monocot, and gymnosperm species. The comparisons using all six possible pairwise combinations reveal that the N-terminal and C-terminal domains of both protein families are similar to each other. These results together with data on the distribution of variable and conserved regions, on the positions of susceptible sites for proteolytic attack, as well as on the published 7S protein tertiary structure suggest that both protein families share a common single-domain ancestor molecule and lead to the hypothesis that a triplication event has occurred during the evolution of a putative legumin/vicilin ancestor gene.Moreover, the comparison of the intron/exon pattern reveals that at least three out of five intron positions are precisely conserved between the genes of both protein families, further supporting the idea of a common evolutionary origin of recent legumin and vicilin encoding genes. Correspondence to: H. Bäumlein  相似文献   

10.
Using pairs of degenerate primers, we conducted a polymerase chain reaction to amplify the partial R2R3 domains of a majority of the R2R3-MYB family genes from Fagus crenata and identified a total of 85 independent gene fragments. By phylogenetic analysis of the deduced amino acid sequences, we found that many of the beech genes clustered with members from Arabidopsis, suggesting that these members represent beech orthologs of Arabidopsis. Some of the orthologous relationships became more evident when the complete gene structures were compared. Further, a large number of genes formed an additional and expanding cluster, independent from the other subgroups. These members were further compared with the Populus and Vitis family genes. In the epidermal cell fate clade, expansion of the beech family genes was comparable with those of the Populus and Vitis families, but the number of genes present in every subclade fluctuated extensively. Beech genes were abundant in the general flavonoid pathway regulation and TT2-related subclades; no beech gene was included in the anthocyanin-related subclade. Further analysis of the newly amplified regulatory genes to elucidate their functions may clarify the role of these genes in the evolution of plant species.  相似文献   

11.
Like the immunoglobulin Igh-V and Igk-V gene families, the human or mouse TCRV gene families may be grouped into subfamilies displaying >75% nucleic acid sequence similarity among their members. Systematic interspecies sequence comparisons reveal that most mouse Tcr-V subfamilies exhibit clear homology to human TCRV subfamilies (>60% amino acid sequence similarity). Homologous pairs of TCRV genes in mice and humans show higher sequence similarity than TCRV genes from different subfamilies within either species, indicating transpecies evolution of TCRV genes. Mouse and human homologues show conservation of their relative map order, particularly in the 3' region and a similar sequential and developmentally programmed expression. When the V regions from both species were analyzed together, local length differences and conserved residues in the loop regions were revealed, characteristic of each of the four TCRV families.The alignment data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the alignment number DS23485. The data are available by the EBI FTP server and file server  相似文献   

12.
13.
Novel immune-type receptors (NITRs) are immunoglobulin-variable (V) domain-containing cell surface proteins that possess characteristic activating/inhibitory signaling motifs and are expressed in hematopoietic cells. NITRs are encoded by multigene families and have been identified in bony fish species. A single gene cluster, which encodes 36 NITRs that can be classified into 12 families, has been mapped to zebrafish chromosome 7. We report herein the presence of a second NITR gene cluster on zebrafish chromosome 14, which is comprised of three genes (nitr13, nitr14a, and nitr14b) representing two additional NITR gene families. Phylogenetic analyses indicate that the V domains encoded by the nitr13 and nitr14 genes are more similar to each other than any other zebrafish NITR suggesting that these genes arose from a tandem gene duplication event. Similar analyses comparing zebrafish Nitr13 and Nitr14 to NITRs from other fish species indicate that the nitr13 and nitr14 genes are phylogenetically related to the catfish IpNITR13 and IpNITR15 genes. Sequence features of the chromosomal region encoding nitr13 suggest that this gene arose via retrotransposition.  相似文献   

14.
We have recently identified a new vertebrate gene family encoding putative hyaluronan (HA) synthases. Three highly conserved related genes have been identified, designatedHAS1, HAS2,andHAS3in humans andHas1, Has2,andHas3in the mouse. All three genes encode predicted plasma membrane proteins with multiple transmembrane domains and approximately 25% amino acid sequence identity to theStreptococcus pyogenesHA synthase, HasA. Furthermore, expression of any oneHASgene in transfected mammalian cells leads to high levels of HA biosynthesis. We now report the chromosomal localization of the threeHASgenes in human and in mouse. The genes localized to three different positions within both the human and the mouse genomes.HAS1was localized to the human chromosome 19q13.3–q13.4 boundary andHas1to mouse Chr 17.HAS2was localized to human chromosome 8q24.12 andHas2to mouse Chr 15.HAS3was localized to human chromosome 16q22.1 andHas3to mouse Chr 8. The map position forHAS1reinforces the recently reported relationship between a small region of human chromosome 19q and proximal mouse chromosome 17.HAS2mapped outside the predicted critical region delineated for the Langer–Giedion syndrome and can thus be excluded as a candidate gene for this genetic syndrome.  相似文献   

15.
16.
Chondromodulin-I (ChM-I) and tenomodulin (TeM) are homologous angiogenesis inhibitors. We have analyzed the spatial relationships between capillary networks and the localization of these molecules during mouse and chick development. ChM-I and TeM proteins have been localized to the PECAM-1-negative avascular region: ChM-I is expressed in the avascular cartilage, whereas TeM is detectable in dense connective tissues, including tendons and ligaments. We have also examined the vasculature of chick embryos by injection with India ink and have performed in situ hybridization of the ChM-I and TeM genes. The onset of ChM-I expression is associated with chondrogenesis during mouse embryonic development. ChM-I expression is also detectable in precartilaginous or noncartilaginous avascular mesenchyme in chick embryos, including the somite, sclerotome, and heart. Hence, the expression domains of ChM-I and TeM during vertebrate development incorporate the typical avascular regions of the mesenchymal tissues. This study was partly supported by Grants-in-Aid from the Ministry of Education, Culture, Sport, Science, and Technology of Japan and by the Tanabe Medical Frontier Conference.  相似文献   

17.
18.
Dlx-2 (also called Tes-1), a mammalian member of the Distal-less family of homeobox genes, is expressed during murine fetal development in spatially restricted domains of the forebrain. Searching for a candidate neurological mutation that might involve this gene, we have assigned the human and mouse loci to regions of conserved synteny on human chromosome 2, region cen-q33, and mouse chromosome 2 by Southern analysis of somatic cell hybrid lines. An EcoRI dimorphism, discovered in common inbred laboratory strains, was used for recombinant inbred strain mapping. The results place Dlx-2/Tes-1 near the Hox-4 cluster on mouse chromosome 2.  相似文献   

19.

Background

The phylum Nematoda is biologically diverse, including parasites of plants and animals as well as free-living taxa. Underpinning this diversity will be commensurate diversity in expressed genes, including gene sets associated specifically with evolution of parasitism.

Methods and Findings

Here we have analyzed the extensive expressed sequence tag data (available for 37 nematode species, most of which are parasites) and define over 120,000 distinct putative genes from which we have derived robust protein translations. Combined with the complete proteomes of Caenorhabditis elegans and Caenorhabditis briggsae, these proteins have been grouped into 65,000 protein families that in turn contain 40,000 distinct protein domains. We have mapped the occurrence of domains and families across the Nematoda and compared the nematode data to that available for other phyla. Gene loss is common, and in particular we identify nearly 5,000 genes that may have been lost from the lineage leading to the model nematode C. elegans. We find a preponderance of novelty, including 56,000 nematode-restricted protein families and 26,000 nematode-restricted domains. Mapping of the latest time-of-origin of these new families and domains across the nematode phylogeny revealed ongoing evolution of novelty. A number of genes from parasitic species had signatures of horizontal transfer from their host organisms, and parasitic species had a greater proportion of novel, secreted proteins than did free-living ones.

Conclusions

These classes of genes may underpin parasitic phenotypes, and thus may be targets for development of effective control measures.  相似文献   

20.
The genes encoding the α1 and β subunits of voltage-sensitive calcium channel were mapped in the mouse by analysis of the progeny of two multilocus crosses. The α1, β2, and β4 subunit genes, termed Cchna1, Cchb2, and Cchb4, are located at different sites on proximal Chr 2, while the β3 subunit gene Cchb3 maps to Chr 15 near Wnt1. These results together with previous mapping data indicate that the calcium channel genes are dispersed in the mouse genome, unlike the sodium channel genes, which are clustered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号