首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
PCR and R18 fluorescence dequenching assays have been combined to monitor the kinetics of fusion of bovine leukemia virus with target cells (CC81, OVK, or Raji). Antibodies raised against gp51 allow us to demonstrate that not only the hydrophobic N-terminal domain of the transmembrane glycoprotein gp30 but also specific domains of gp51 (amino acids 39 to 103) are involved in bovine leukemia virus-cell fusion.  相似文献   

2.
The DNA sequence was determined for a region of the pseudorabies virus (PRV) genome to which a mutation defining resistance to a monoclonal antibody has been mapped (M. W. Wathen and L. M. K. Wathen, J. Virol., 51:57-62, 1984). This sequence was found to contain an open reading frame that did not include an amino acid sequence directing N-linked glycosylation. This open reading frame was expressed in uninfected Chinese hamster ovary cells to produce the PRV glycoprotein gp50. When PRV-infected Vero cells were incubated in the presence of tunicamycin, the gp50 that was produced had an identical molecular weight to that produced in the absence of drug. When infected cells were incubated in the presence of monensin, the molecular weight of gp50 was reduced from 60,000 to 45,000, but was not sensitive to endo-beta-N-acetylglucosaminidase H. These observations led to the conclusion that gp50 does not contain N-linked carbohydrate, as predicted from the DNA sequence. A region of the amino acid sequence and the positions of the cysteine residues of PRV gp50 are homologous to glycoprotein D of herpes simplex virus.  相似文献   

3.
We have isolated and sequenced a cDNA clone encoding the mouse LAMP-1 (mLAMP-1) major lysosomal membrane glycoprotein. The deduced protein sequence, which included the NH2-terminal portion of the mLAMP-1 molecule, consisted of 382 amino acids (Mr 41,509). The predicted structure of this protein included an NH2-terminal intralumenal domain consisting of two homology units of approximately 160 residues each separated by a proline-rich hinge region. Each homology unit contained four cysteine residues with two intercysteine intervals of 36-38 residues and one of 68 or 76 residues. The molecule also contained 20 asparagine-linked glycosylation sites within residues 1-287, a membrane-spanning region from residues 347 to 370, and a carboxyl-terminal cytoplasmic domain of 12 residues. The biochemical properties and amino acid sequence of mLAMP-1 were highly similar to those of two other molecules that have been studied as cell surface onco-differentiation antigens: a highly sialylated polylactosaminoglycan-containing glycoprotein isolated from human chronic myelogenous leukemia cells (Viitala, J., Carlsson, S. R., Siebert, P. D., and Fukuda, M. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, in press) and the mouse gp130 (P2B) glycoprotein, in which an increase in beta 1-6 branching of asparagine-linked oligosaccharides has been correlated with metastatic potential in certain tumor cells (Dennis, J.W., Laferte, S., Waghorne, C., Breitman, M.L., and Kerbel, R.S. (1987) Science 236, 582-585).  相似文献   

4.
A monoclonal antibody was produced to the exterior envelope glycoprotein (gp120) of the human T-cell lymphotropic virus (HTLV)-IIIB isolate of the human immunodeficiency virus (HIV). This antibody binds to gp120 of HTLV-IIIB and lymphadenopathy-associated virus type 1 (LAV-1) and to the surface of HTLV-IIIB- and LAV-1-infected cells, neutralizes infection by cell-free virus, and prevents fusion of virus-infected cells. In contrast, it does not bind, or weakly binds, the envelope of four heterologous HIV isolates and does not neutralize heterologous isolates HTLV-IIIRF and HTLV-IIIMN. The antibody-binding site was mapped to a 24-amino-acid segment, using recombinant and synthetic segments of HTLV-IIIB gp120. This site is within a segment of amino acid variability known to contain the major neutralizing epitopes (S. D. Putney, T. J. Matthews, W. G. Robey, D. L. Lynn, M. Robert-Guroff, W. T. Mueller, A. J. Langlois, J. Ghrayeb, S. R. Petteway, K. J. Weinhold, P. J. Fischinger, F. Wong-Staal, R. C. Gallo, and D. P. Bolognesi, Science 234:1392-1395, 1986). These results localize an epitope of HIV type-specific neutralization and suggest that neutralizing antibodies may be effective in controlling cell-associated, as well as cell-free, virus infection.  相似文献   

5.
J P Li  R K Bestwick  C Spiro    D Kabat 《Journal of virology》1987,61(9):2782-2792
The leukemogenic membrane glycoprotein of Friend spleen focus-forming virus (SFFV) has an apparent Mr of 55,000 (gp55), is encoded by a recombinant env gene, and occurs on cell surfaces and in intracellular organelles. There is evidence that the amino-terminal region of gp55 forms a dualtropic-specific domain that is connected to the remainder of the glycoprotein by a proline-rich linker (C. Machida, R. Bestwick, B. Boswell, and D. Kabat, Virology 144:158-172, 1985). Using the colinear form of a cloned polycythemic strain of SFFV proviral DNA, we constructed seven in-phase env mutants by insertion of linkers and by a deletion. The mutagenized SFFVs were transfected into fibroblasts and were rescued by superinfection with a helper murine leukemia virus. Four of the mutants cause erythroblastosis. These include one with a 6-base-pair (bp) insert in the ecotropic-related sequence near the 3' end of the gene, two with a 12- or 18-bp insert in the region that encodes the proline-rich linker, and one with a 6-bp insert in the dualtropic-specific region. The other mutants (RI, Sm1, and Sm2) are nonpathogenic and contain lesions in dualtropic-specific region. The other mutants (RI, Sm1, and Sm2) are nonpathogenic and contain lesions in dualtropic-specific sequences that are highly conserved among strains of SFFV. A pathogenic revertant (RI-rev) was isolated from one mouse that developed erythroblastosis 3 weeks after infection with RI. RI-rev contains a second-site env mutation that affects the same domain as the primary mutation does and that increases the size of the encoded glycoprotein. All pathogenic SFFVs encode glycoproteins that are expressed on cell surfaces, whereas the nonpathogenic glycoproteins are exclusively intracellular. The pathogenic SFFVs also specifically cause a weak interference to superinfection by dualtropic MuLVs. These results are compatible with the multidomain model for the structure of gp55 and suggest that processing of gp55 to plasma membranes is required for pathogenesis. The amino-terminal region of gp55 binds to dualtropic murine leukemia virus receptors, and this interaction is preserved in the SFFV mutants that cause erythroblastosis.  相似文献   

6.
Human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) oligomerization was investigated by coexpressing wild-type and truncated envelope glycoproteins to determine the minimum sequence required for mutant-wild-type hetero-oligomerization. The gp41 putative amphipathic alpha-helix, Leu-550 to Leu-582, was essential for hetero-oligomer formation. Alanine substitution of 9 of the 10 residues composing the gp41 amphipathic alpha-helix 4-3 hydrophobic repeat sequence was required to inhibit mutant-wild-type hetero-oligomerization and to render the envelope glycoprotein precursor, gp160, monomeric. This indicates that multiple hydrophobic contacts contribute to the stable envelope glycoprotein oligomeric structure. Single alanine substitutions within the hydrophobic repeat sequence did not affect gp160 oligomeric structure but abolished syncytium-forming function. Some mutations also diminished gp160 processing efficiency and the association between gp120 and gp41 in a position-dependent manner. These results indicate that the gp41 amphipathic alpha-helix 4-3 hydrophobic repeat sequence plays a central role in HIV-1 envelope glycoprotein oligomerization and fusion function.  相似文献   

7.
A monoclonal antibody (mAb), designated 0.5 alpha, derived from a patient with adult T-cell leukemia was found previously to neutralize the human T-cell leukemia/lymphotropic type I (HTLV-I) virus in in vitro assays and bind to the major envelope glycoprotein (gp46) of HTLV-I (Matsushita, S., Guroff, M.R., Trepel, J., Crossman, J., Mitsuya, H., and Broder, S. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2671-2676). We have designed experiments to determine the epitope for this mAb. Using simultaneous multiple peptide synthesis, we synthesized 481 overlapping octapeptides which corresponded to the sequence of gp46. We mapped the epitope for mAb 0.5 alpha to lie between residues 186 and 195 of gp46. This result was confirmed by independently synthesizing a peptide containing this epitope which bound specifically to mAb 0.5 alpha with an approximate Ka = 4 x 10(7) M-1. In addition, the peptide inhibited mAb 0.5 alpha binding to gp46 derived from T-cells infected with HTLV-I. This epitope containing peptide may facilitate understanding HTLV-1 infection of T-cells.  相似文献   

8.
Two molecularly cloned, replication-defective variants of feline leukemia virus, called 61B and 61C, have both been shown to cause fatal immunodeficiency in cats when coinfected with a replication-competent, minimally pathogenic helper virus, but 61B exhibits a longer latency period between infection and disease (J. Overbaugh, E. A. Hoover, J. I. Mullins, D. P. W. Burns, L. Rudensey, S. L. Quackenbush, V. Stallard, and P. R. Donahue, Virology 188:558-569, 1992). Infection of the 3201 feline T-cell line with 61B plus helper virus also results in longer time from infection to cytopathic effect compared with 61C plus helper virus, providing an in vitro system with which to study the mechanism for this difference. We report that the primary determinant of cytopathicity of 61B maps to gp70, the extracellular envelope glycoprotein. The long latency of 61B, on the other hand, maps to the extracellular portion of the envelope transmembrane protein, in which there are only four predicted amino acid differences between 61B and 61C. These differences render 61B replication defective, and two of the predicted amino acid changes lie in a region that is highly conserved among many retroviruses. The eventual onset of 61B cytopathicity in cell culture was associated with the outgrowth of an apparent recombinant virus that encodes the pathogenic gp70 of 61B and replaces the transmembrane protein of 61B with that of the helper virus. Thus, during in vitro infection, a cytopathic virus evolved from a replication-defective virus and a nonpathogenic virus, suggesting that recombination between multiple variants in natural infection may influence progression of feline leukemia virus-associated immunodeficiency disease.  相似文献   

9.
Entry of an enveloped virus such as Epstein-Barr virus (EBV) into host cells involves fusion of the virion envelope with host cell membranes either at the surface of the cell or within endocytic vesicles. Previous work has indirectly implicated the EBV glycoprotein gp85 in this fusion process. A neutralizing monoclonal antibody to gp85, F-2-1, failed to inhibit binding of EBV to its receptor but interfered with virus fusion as measured with the self-quenching fluorophore octadecyl rhodamine B chloride (R18) (N. Miller and L. M. Hutt-Fletcher, J. Virol. 62:2366-2372, 1988). To test further the hypothesis that gp85 functions as a fusion protein, EBV virion proteins including or depleted of gp85 were incorporated into lipid vesicles to form virosomes. Virosomes were labeled with R18, and those that were made with undepleted protein were shown to behave in a manner similar to that of R18-labeled virus. They bound to receptor-positive but not to receptor-negative cells and fused with Raji cells but not with receptor-positive, fusion-incompetent Molt 4 cells; monoclonal antibodies that inhibited binding or fusion of virus inhibited binding and fusion of virosomes, and virus competed with virosomes for attachment to cells. In contrast, virosomes made from virus proteins depleted of gp85 by immunoaffinity chromatography remained capable of binding to receptor-positive cells but failed to fuse. These results are compatible with the hypothesis that gp85 is actively involved in the fusion of EBV with lymphoblatoid cell lines and suggest that the ability of antibody F-2-1 to neutralize infectivity of EBV represents a direct effect on the function of gp85 as a fusion protein.  相似文献   

10.
A neutralization-resistant variant of human immunodeficiency virus type 1 (HIV-1) that emerged during in vitro propagation of the virus in the presence of neutralizing serum from an infected individual has been described. A threonine-for-alanine substitution at position 582 in the gp41 transmembrane envelope glycoprotein of the variant virus was responsible for the neutralization-resistant phenotype (M.S. Reitz, Jr., C. Wilson, C. Naugle, R. C. Gallo, and M. Robert-Guroff, Cell 54:57-63, 1988). The mutant virus also exhibited reduced sensitivity to neutralization by 30% of HIV-1-positive sera that neutralized the parental virus, suggesting that a significant fraction of the neutralizing activity within these sera can be affected by the amino acid change in gp41 (C. Wilson, M. S. Reitz, Jr., K. Aldrich, P. J. Klasse, J. Blomberg, R. C. Gallo, and M. Robert-Guroff, J. Virol. 64:3240-3248, 1990). It is shown here that the change of alanine 582 to threonine specifically confers resistance to neutralizing by antibodies directed against both groups of discontinuous, conserved epitopes related to the CD4 binding site on the gp120 exterior envelope glycoprotein. Only minor differences in binding of these antibodies to wild-type and mutant envelope glycoproteins were observed. Thus, the antigenic structure of gp120 can be subtly affected by an amino acid change in gp41, with important consequences for sensitivity to neutralization.  相似文献   

11.
The envelope glycoproteins of the human immunodeficiency virus and the related simian immunodeficiency virus (SIV) mediate viral entry into host cells by fusing viral and target cell membranes. We have reported expression, purification, and characterization of gp140 (also called gp160e), the soluble, trimeric ectodomain of the SIV envelope glycoprotein, gp160 (B. Chen et al., J. Biol. Chem. 275:34946-34953, 2000). We have now expressed and purified chimeric proteins of SIV gp140 and its variants with the catalytic subunit (C) of Escherichia coli aspartate transcarbamoylase (ATCase). The fusion proteins (SIV gp140-ATC) bind viral receptor CD4 and a number of monoclonal antibodies specific for SIV gp140. The chimeric molecule also has ATCase activity, which requires trimerization of the ATCase C chains. Thus, the fusion protein is trimeric. When ATCase regulatory subunit dimers (R(2)) are added, the fusion protein assembles into dimers of trimers as expected from the structure of C(6)R(6) ATCase. Negative-stain electron microscopy reveals spikey features of both SIV gp140 and SIV gp140-ATC. The production of the fusion proteins may enhance the possibilities for structure determination of the envelope glycoprotein either by electron cryomicroscopy or X-ray crystallography.  相似文献   

12.
Pseudorabies virus (PRV) is an alphaherpesvirus which causes an economically important disease of swine. One of the PRV glycoproteins, gp50, was previously identified as the sequence homolog of herpes simplex virus glycoprotein gD (E.A. Petrovskis, J.G. Timmins, M.A. Armentrout, C.C. Marchioli, R.J. Yancey, Jr., and L.E. Post, J. Virol. 59:216-223, 1986). gp50 was evaluated as a PRV subunit vaccine candidate. gp50 protected mice from PRV-induced mortality either when delivered via infection with a recombinant vaccinia virus or when administered as a subunit vaccine produced in a eucaryotic cell line, Chinese hamster ovary (CHO) cells. In addition, gp50 synthesized in CHO cells protected pigs from lethal infection with PRV. This result demonstrates that a single viral glycoprotein could induce a protective immune response in the natural host of a herpesvirus infection.  相似文献   

13.
The entry of human immunodeficiency virus type 1 into cells proceeds via a fusion mechanism that is initiated by binding of the viral glycoprotein gp120-gp41 to its cellular receptor CD4. Species- and tissue-specific restrictions to viral entry suggested the participation of additional membrane components in the postbinding fusion events. In a previous study (H. Golding, J. Manischewitz, L. Vujcic, R. Blumenthal, and D. Dimitrov, J. Virol. 68:1962-1968, 1994), it was found that phorbol myristate acetate (PMA) inhibits human immunodeficiency virus type 1 envelope-mediated cell fusion by inducing down modulation of an accessory component(s) in the CD4-expressing cells. The fusion inhibition was seen in a variety of cells, including T-cell transfectants expressing engineered CD4 receptors (CD4.401 and CD4.CD8) which are not susceptible to down modulation by PMA treatment. In the current study, it was found that preincubation of A2.01.CD4.401 cells with soluble monomeric gp120 for 1 h at 37 degrees C primed them for PMA-induced down modulation (up to 70%) of the tailless CD4 receptors. The gp120-priming effect was temperature dependent, and the down modulation may have occurred via clathrin-coated pits. Importantly, nonhuman cell lines expressing tailless CD4 molecules did not down modulate their CD4 receptors under the same conditions. The gp120-dependent PMA-induced down modulation of tailless CD4 receptors could be efficiently blocked by the human monoclonal antibodies 48D and 17B, which bind with increased avidity to gp120 that was previously bound to CD4 (M. Thali, J. P. Moore, C. Furman, M. Charles, D. D. Ho, J. Robinson, and J. Sodroski, J. Virol. 67:3978-3988, 1993). These findings suggest that gp120 binding to cellular CD4 receptors induces conformational changes leading to association of the gp120-CD4 complexes with accessory transmembrane molecules that are susceptible to PMA-induced down modulation and can target the virions to clathrin-coated pits.  相似文献   

14.
Truncation of the human immunodeficiency virus (HIV) or simian immunodeficiency virus (SIV) gp41 cytoplasmic tail (CT) can modulate the fusogenicity of the envelope glycoprotein (Env) on infected cells and virions. However, the CT domains involved and the underlying mechanism responsible for this "inside-out" regulation of Env function are unknown. HIV and SIV CTs are remarkably long and contain amphipathic alpha-helical domains (LLP1, LLP2, and LLP3) that likely interact with cellular membranes. Using a cell-cell fusion assay and a panel of HIV Envs with stop codons at various positions in the CT, we show that truncations of gp41 proximal to the most N-terminal alpha helix, LLP2, increase fusion efficiency and expose CD4-induced epitopes in the Env ectodomain. These effects were not seen with a truncation distal to this domain and before LLP1. Using a dye transfer assay to quantitate fusion kinetics, we found that these truncations produced a two- to fourfold increase in the rate of fusion. These results were observed for X4-, R5-, and dual-tropic Envs on CXCR4- and CCR5-expressing target cells and could not be explained by differences in Env surface expression. These findings suggest that distal to the membrane-spanning domain, an interaction of the gp41 LLP2 domain with the cell membrane restricts Env fusogenicity during Env processing. As with murine leukemia viruses, where cleavage of a membrane-interactive R peptide at the C terminus is required for Env to become fusogenic, this restriction of Env function may serve to protect virus-producing cells from the membrane-disruptive effects of the Env ectodomain.  相似文献   

15.
D Chen  E C Stabell    P D Olivo 《Journal of virology》1995,69(7):4515-4518
Varicella-zoster virus (VZV) gene 51 encodes a protein which is homologous to UL9, the origin of DNA replication-binding protein of herpes simplex virus type 1. No genetic information is available on VZV gene 51, but its product has been shown to bind to virtually the same recognition sequence as does UL9 (D. Chen and P. D. Olivo, J. Virol. 68:3841-3849, 1994; N. D. Stow, H. M. Weir, and E. C. Stow, Virology 177:570-577, 1990). We report here that gene 51 can complement a UL9 null mutant (hr94) (A. K. Malik, R. Martinez, L. Muncy, E. P. Carmichael, and S. K. Weller, Virology 190:702-715, 1992), but at a level which is only 20% of that of UL9. Quantitation of viral DNA synthesis suggests that this phenotype is due to a defect in viral DNA synthesis. Regardless, the ability of VZV gene 51 to complement UL9 suggests that alphaherpesviruses have a highly conserved mechanism of initiation of viral DNA synthesis.  相似文献   

16.
The envelope glycoprotein (Env) of human immunodeficiency virus mediates virus entry into cells by undergoing conformational changes that lead to fusion between viral and cellular membranes. A six-helix bundle in gp41, consisting of an interior trimeric coiled-coil core with three exterior helices packed in the grooves (core structure), has been proposed to be part of a fusion-active structure of Env (D. C. Chan, D. Fass, J. M. Berger, and P. S. Kim, Cell 89:263–273, 1997; W. Weissenhorn, A. Dessen, S. C. Harrison, J. J. Skehel, and D. C. Wiley, Nature 387:426–430, 1997; and K. Tan, J. Liu, J. Wang, S. Shen, and M. Lu, Proc. Natl. Acad. Sci. USA 94:12303, 1997). We analyzed the effects of amino acid substitutions of arginine or glutamic acid in residues in the coiled-coil (heptad repeat) domain that line the interface between the helices in the gp41 core structure. We found that mutations of leucine to arginine or glutamic acid in position 556 and of alanine to arginine in position 558 resulted in undetectable levels of Env expression. Seven other mutations in six positions completely abolished fusion activity despite incorporation of the mutant Env into virions and normal gp160 processing. Single-residue substitutions of glutamic acid at position 570 or 577 resulted in the only viable mutants among the 16 mutants studied, although both viable mutants exhibited impaired fusion activity compared to that of the wild type. The glutamic acid 577 mutant was more sensitive than the wild type to inhibition by a gp41 coiled-coil peptide (DP-107) but not to that by another peptide corresponding to the C helix in the gp41 core structure (DP-178). These results provide insight into the gp41 fusion mechanism and suggest that the DP-107 peptide may inhibit fusion by binding to the homologous region in gp41, probably by forming a peptide-gp41 coiled-coil structure.  相似文献   

17.
A gene encoding a homolog of glycoprotein B of herpes simplex virus (gB homolog) has been identified on the Marek's disease virus (MDV) genome (L. J. N. Ross, M. Sanderson, S. D. Scott, M. M. Binns, T. Doel, and B. Milne, J. Gen. Virol. 70:1789-1804, 1989); however, the molecular and immunological characteristics of the gene product(s) are still not clear. In the present study, the gB homolog of MDV was expressed in insect cells by a recombinant baculovirus, and it was characterized to determine its molecular and antigenic properties. The expressed recombinant protein had three molecular sizes (88 to 110, 58, and 49 kDa) and was recognized by antisera from chickens inoculated with each of the three serotypes of MDV. By immunofluorescence analysis, it was shown that the protein was expressed in the cytoplasm and on the surface of the recombinant baculovirus-infected cells. The gB homolog of MDV was processed similarly to pseudorabies virus and varicella-zoster virus with respect to cleavage and the intramolecular disulfide bond between the cleaved products. Interestingly, the expressed protein reacted with monoclonal antibody M51, specific to the B antigen (gp100, gp60, gp49) of MDV, although the locations of the gene encoding the B antigen and of the gene encoding the gB homolog were reported to be different. Moreover, competitive experiments revealed that anti-gB homolog serum and monoclonal antibody M51 recognized the same molecules. From these results, the gB homolog and the B antigen of MDV seem to be the same glycoprotein.  相似文献   

18.
The E1 membrane glycoprotein of Sindbis virus contains structural and functional domains, which are conformationally dependent on the presence of intramolecular disulfide bridges (B. A. Abell and D. T. Brown, J. Virol. 67:5496-5501, 1993; R. P. Anthony, A. M. Paredes, and D. T. Brown, Virology 190:330-336, 1992). We have examined the disulfide bonds in E1 and have determined that the E1 membrane glycoprotein contains two separate sets of interconnecting disulfide linkages, which divide the protein into two domains at amino acid 129. These separate sets of disulfides may stabilize and define the structural and functional regions of the E1 protein.  相似文献   

19.
Epstein-Barr virus glycoprotein homologous to herpes simplex virus gB.   总被引:23,自引:19,他引:4  
M Gong  T Ooka  T Matsuo    E Kieff 《Journal of virology》1987,61(2):499-508
  相似文献   

20.
The envelope glycoprotein (Env) complex of human immunodeficiency virus type 1 has evolved a structure that is minimally immunogenic while retaining its natural function of receptor-mediated virus-cell fusion. The Env complex is trimeric; its six individual subunits (three gp120 and three gp41 subunits) are associated by relatively weak, noncovalent interactions. The induction of neutralizing antibodies after vaccination with individual Env subunits has proven very difficult, probably because they are inadequate mimics of the native complex. Our hypothesis is that a stable form of the Env complex, perhaps with additional modifications to rationally alter its antigenic structure, may be a better immunogen than the individual subunits. A soluble form of Env, SOS gp140, can be made that has gp120 stably linked to the gp41 ectodomain by an intermolecular disulfide bond. This protein is fully cleaved at the proteolysis site between gp120 and gp41. However, the gp41-gp41 interactions in SOS gp140 are too weak to maintain the protein in a trimeric configuration. Consequently, purified SOS gp140 is a monomer (N. Schülke, M. S. Vesanen, R. W. Sanders, P. Zhu, D. J. Anselma, A. R. Villa, P. W. H. I. Parren, J. M. Binley, K. H. Roux, P. J. Maddon, J. P. Moore, and W. C. Olson, J. Virol. 76:7760-7776, 2002). Here we describe modifications of SOS gp140 that increase its trimer stability. A variant SOS gp140, designated SOSIP gp140, contains an isoleucine-to-proline substitution at position 559 in the N-terminal heptad repeat region of gp41. This protein is fully cleaved, has favorable antigenic properties, and is predominantly trimeric. SOSIP gp140 trimers are noncovalently associated and can be partially purified by gel filtration chromatography. These gp140 trimers are dissociated into monomers by anionic detergents or heat but are relatively resistant to nonionic detergents, high salt concentrations, or exposure to a mildly acidic pH. SOSIP gp140 should be a useful reagent for structural and immunogenicity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号