共查询到12条相似文献,搜索用时 109 毫秒
1.
报道了以二聚体存在的dimo-BmK M1的1.4A分辨率晶体结构.蛋白质中的肽键是局部双键,不可旋转,因此具有顺式(cis)和反式(trans)两种构型,它们不能通过旋转操作相互转换.非脯氨酸顺式肽键是指形成该肽键的氨基是由脯氨酸以外的氨基酸提供的(Xaa-nonPro),这类肽键的顺式构型的自由能远比反式高,因此极少出现在天然蛋白质结构中.事实上,在长时间中,多肽链的“反式肽键连接”被视为蛋白质结构的一条基本规则,把顺式肽键视为不可能.随着高分辨率精确蛋白质结构数量的增加,近年来有详细的统计分析揭示,非脯氨酸顺式肽键(Xaa-nPro)在蛋白质结构中出现的几率为0.03%~0.05%,而且大多存在于功能敏感的结构区域,可能具有重要意义.但由于所用的基本结构数据都来自晶体结构,对这种反常肽键是否由结晶环境影响而形成,存在疑问.此前曾在以单体形式存在的蝎神经毒素mono-BmK M1的高分辨率结构中发现其中肽键Pr09-His10是非脯氨酸顺式肽键,并详细分析了其结构.功能意义.以二聚体存在的dimo-BmK M1的1.4A分辨率晶体结构表明,它与mono.BmK M1有不同的空间群、不同的分子堆积方式,不同的晶体环境.结构模型被高度精化,Rcryst达到0.109.dimo-BmK M1结构显示,在不对称单位中的两个M1分子在同一位置(残基9.10之间)都清晰地存在顺式肽键.立体化学分析显示,这一肽键的几何参数和局部结构与mono.BmK M1中的(9.10)顺式肽键基本相同.这一结果表明,非脯氨酸顺式肽键9.10的存在与结晶环境无关,是BmK M1分子的固有结构特征.在此基础上,综合分析了与顺式、反式肽键相关的结构元素,发现与残基(8.19)序列模体-KPXNC-(X为任意氨基酸)所决定的特征回折结构可能是分子内在的主要结构因素,其中第8位残基是Lys或Asp对决定肽键是顺式还是反式有关键作用.近来的突变实验及其晶体结构测定已证实,Lys8/Asp8是(9-10)肽键顺式/反式异构的结构开关,它们对该类分子与不同种属钠通道作用的专一选择性具有重要作用.通过BLAST搜索,发现在其他18个蛋白质中也存在相同的序列模体.KPXNC-,推测在这些蛋白质的相应肽键位置也可能存在反常的脯氨酸顺式肽键。 相似文献
2.
报道了以二聚体存在的dimo-BmKM1的1.4!分辨率晶体结构.蛋白质中的肽键是局部双键,不可旋转,因此具有顺式(cis)和反式(trans)两种构型,它们不能通过旋转操作相互转换.非脯氨酸顺式肽键是指形成该肽键的氨基是由脯氨酸以外的氨基酸提供的(Xaa-nonPro),这类肽键的顺式构型的自由能远比反式高,因此极少出现在天然蛋白质结构中.事实上,在长时间中,多肽链的“反式肽键连接”被视为蛋白质结构的一条基本规则,把顺式肽键视为不可能.随着高分辨率精确蛋白质结构数量的增加,近年来有详细的统计分析揭示,非脯氨酸顺式肽键(Xaa-nPro)在蛋白质结构中出现的几率为0.03%~0.05%,而且大多存在于功能敏感的结构区域,可能具有重要意义.但由于所用的基本结构数据都来自晶体结构,对这种反常肽键是否由结晶环境影响而形成,存在疑问.此前曾在以单体形式存在的蝎神经毒素mono-BmKM1的高分辨率结构中发现其中肽键Pro9-His10是非脯氨酸顺式肽键,并详细分析了其结构-功能意义.以二聚体存在的dimo-BmKM1的1.4"分辨率晶体结构表明,它与mono-BmKM1有不同的空间群、不同的分子堆积方式,不同的晶体环境.结构模型被高度精化,Rcryst达到0.109.dimo-BmKM1结构显示,在不对称单位中的两个M1分子在同一位置(残基9-10之间)都清晰地存在顺式肽键.立体化学分析显示,这一肽键的几何参数和局部结构与mono-BmKM1中的(9-10)顺式肽键基本相同.这一结果表明,非脯氨酸顺式肽键9-10的存在与结晶环境无关,是BmKM1分子的固有结构特征.在此基础上,综合分析了与顺式、反式肽键相关的结构元素,发现与残基(8-19)序列模体-KPXNC-(X为任意氨基酸)所决定的特征回折结构可能是分子内在的主要结构因素,其中第8位残基是Lys或Asp对决定肽键是顺式还是反式有关键作用.近来的突变实验及其晶体结构测定已证实,Lys8/Asp8是(9-10)肽键顺式/反式异构的结构开关,它们对该类分子与不同种属钠通道作用的专一选择性具有重要作用.通过BLAST搜索,发现在其他18个蛋白质中也存在相同的序列模体-KPXNC-,推测在这些蛋白质的相应肽键位置也可能存在反常的脯氨酸顺式肽键. 相似文献
3.
蝎毒素是蝎为防卫的需要而产生的一系列活性短肽.其中蝎昆虫特异性毒素可特异性结合并调控昆虫可兴奋细胞膜上的钠离子通道,是研究离子通道结构与功能的首选探针,并在转基因抗虫植物及生物杀虫剂研究方面具有潜在的应用价值.本文对蝎β型昆虫毒素的结构与功能及其对钠离子通道的作用方式和β毒素的电压传感器捕获(voltage sensor-trapping)模型做一综述,为进一步揭示蝎β毒素的结构与功能的关系和在农作物抗虫领域的应用提供依据. 相似文献
4.
Silvia Speroni Simone Nenci Ivonne Robel Victor B. Luzhkov Bruno Canard 《Journal of molecular biology》2009,387(5):1137-1152
Astroviruses are single-stranded RNA viruses with a replication strategy based on the proteolytic processing of a polyprotein precursor and subsequent release of the viral enzymes of replication. So far, the catalytic properties of the astrovirus protease as well as its structure have remained uncharacterized. In this study, the three-dimensional crystal structure of the predicted protease of human pathogenic astrovirus has been solved to 2.0 Å resolution. The protein displays the typical properties of trypsin-like enzymes but also several characteristic features: (i) a catalytic Asp-His-Ser triad in which the aspartate side chain is oriented away from the histidine, being replaced by a water molecule; (ii) a non-common conformation and composition of the S1 pocket; and (iii) the lack of the typical surface β-ribbons together with a “featureless” shape of the substrate-binding site. Hydrolytic activity assays indicate that the S1 pocket recognises Glu and Asp side chains specifically, which, therefore, are predicted to occupy the P1 position on the substrate cleavage site. The positive electrostatic potential featured by the S1 region underlies this specificity. The comparative structural analysis highlights the peculiarity of the astrovirus protease, and differentiates it from the human and viral serine proteases. 相似文献
5.
Brian McClain Ethan Settembre Brenda R.S. Temple A. Richard Bellamy 《Journal of molecular biology》2010,397(2):587-661
The rotavirus inner capsid particle, known as the “double-layered particle” (DLP), is the “payload” delivered into a cell in the process of viral infection. Its inner and outer protein layers, composed of viral protein (VP) 2 and VP6, respectively, package the 11 segments of the double-stranded RNA (dsRNA) of the viral genome, as well as about the same number of polymerase molecules (VP1) and capping-enzyme molecules (VP3). We have determined the crystal structure of the bovine rotavirus DLP. There is one full particle (outer diameter ∼ 700 Å) in the asymmetric unit of the P212121 unit cell of dimensions a = 740 Å, b = 1198 Å, and c = 1345 Å. A three-dimensional reconstruction from electron cryomicroscopy was used as a molecular replacement model for initial phase determination to about 18.5 Å resolution, and the 60-fold redundancy of icosahedral particle symmetry allowed phases to be extended stepwise to the limiting resolution of the data (3.8 Å). The structure of a VP6 trimer (determined previously by others) fits the outer layer density with very little adjustment. The T = 13 triangulation number of that layer implies that there are four and one-third VP6 trimers per icosahedral asymmetric unit. The inner layer has 120 copies of VP2 and thus 2 copies per icosahedral asymmetric unit, designated VP2A and VP2B. Residues 101-880 fold into a relatively thin principal domain, comma-like in outline, shaped such that only rather modest distortions (concentrated at two “subdomain” boundaries) allow VP2A and VP2B to form a uniform layer with essentially no gaps at the subunit boundaries, except for a modest pore along the 5-fold axis. The VP2 principal domain resembles those of the corresponding shells and homologous proteins in other dsRNA viruses: λ1 in orthoreoviruses and VP3 in orbiviruses. Residues 1-80 of VP2A and VP2B fold together with four other such pairs into a “5-fold hub” that projects into the DLP interior along the 5-fold axis; residues 81-100 link the 10 polypeptide chains emerging from a 5-fold hub to the N-termini of their corresponding principal domains, clustered into a decameric assembly unit. The 5-fold hub appears to have several distinct functions. One function is to recruit a copy of VP1 (or of a VP1-VP3 complex), potentially along with a segment of plus-strand RNA, as a decamer of VP2 assembles. The second function is to serve as a shaft around which can coil a segment of dsRNA. The third function is to guide nascent mRNA, synthesized in the DLP interior by VP1 and 5′-capped by the action of VP3, out through a 5-fold exit channel. We propose a model for rotavirus particle assembly, based on known requirements for virion formation, together with the structure of the DLP and that of VP1, determined earlier. 相似文献
6.
7.
Feng Shao Yu-Mei Xiong Rong-Huan Zhu Min-Hua Ling Cheng-Wu Chi Da-Cheng Wang 《Protein expression and purification》1999,17(3):358
The gene encoding a neurotoxin (BmK M1) from the scorpion Buthus martensii Karsch was expressed in Saccharomyces cerevisiae at a high level with the alcohol dehydrogenase promoter. SDS–PAGE of the culture confirmed expression and showed secretion into medium from yeast. Recombinant BmK M1 was purified rapidly and efficiently by ion exchange and gel filtration chromatography to homogeneity, produced a single band on tricine–SDS–PAGE, and processed the homologous N-terminus. Amino acid analysis and N-terminal sequencing demonstrated that the recombinant toxin was processed correctly from the α-mating factor leader sequence and was chemically identical to the native form. The expressed recombinant BmK M1 was toxic for mice, which indicated that it was biologically active. Quantitative estimation showed that recombinant BmK M1 had an LD50 similar to that of the native toxin. 相似文献
8.
Eleonora V. Shtykova Lyudmila A. Baratova Natalia V. Fedorova Victor A. Radyukhin Alexander L. Ksenofontov Vladimir V. Volkov Alexander V. Shishkov Alexey A. Dolgov Liudmila A. Shilova Oleg V. Batishchev Cy M. Jeffries Dmitri I. Svergun 《PloS one》2013,8(12)
Influenza A virus matrix protein M1 is one of the most important and abundant proteins in the virus particles broadly involved in essential processes of the viral life cycle. The absence of high-resolution data on the full-length M1 makes the structural investigation of the intact protein particularly important. We employed synchrotron small-angle X-ray scattering (SAXS), analytical ultracentrifugation and atomic force microscopy (AFM) to study the structure of M1 at acidic pH. The low-resolution structural models built from the SAXS data reveal a structurally anisotropic M1 molecule consisting of a compact NM-fragment and an extended and partially flexible C-terminal domain. The M1 monomers co-exist in solution with a small fraction of large clusters that have a layered architecture similar to that observed in the authentic influenza virions. AFM analysis on a lipid-like negatively charged surface reveals that M1 forms ordered stripes correlating well with the clusters observed by SAXS. The free NM-domain is monomeric in acidic solution with the overall structure similar to that observed in previously determined crystal structures. The NM-domain does not spontaneously self assemble supporting the key role of the C-terminus of M1 in the formation of supramolecular structures. Our results suggest that the flexibility of the C-terminus is an essential feature, which may be responsible for the multi-functionality of the entire protein. In particular, this flexibility could allow M1 to structurally organise the viral membrane to maintain the integrity and the shape of the intact influenza virus. 相似文献
9.
Zongyun Chen Fan Luo Jing Feng Weishan Yang Danyun Zeng Ruiming Zhao Zhijian Cao Maili Liu Wenxin Li Ling Jiang Yingliang Wu 《PloS one》2013,8(4)
Background
Recently, a new subfamily of long-chain toxins with a Kunitz-type fold was found in scorpion venom glands. Functionally, these toxins inhibit protease activity and block potassium channels. However, the genomic organization and three-dimensional (3-D) structure of this kind of scorpion toxin has not been reported.Principal Findings
Here, we characterized the genomic organization and 3-D nuclear magnetic resonance structure of the scorpion Kunitz-type toxin, LmKTT-1a, which has a unique cysteine pattern. The LmKTT-1a gene contained three exons, which were interrupted by two introns located in the mature peptide region. Despite little similarity to other Kunitz-type toxins and a unique pattern of disulfide bridges, LmKTT-1a possessed a conserved Kunitz-type structural fold with one α-helix and two β-sheets. Comparison of the genomic organization, 3-D structure, and functional data of known toxins from the α-KTx, β-KTx, γ-KTx, and κ-KTx subfamily suggested that scorpion Kunitz-type potassium channel toxins might have evolved from a new ancestor that is completely different from the common ancestor of scorpion toxins with a CSα/β fold. Thus, these analyses provide evidence of a new scorpion potassium channel toxin subfamily, which we have named δ-KTx.Conclusions/Significance
Our results highlight the genomic, structural, and evolutionary diversity of scorpion potassium channel toxins. These findings may accelerate the design and development of diagnostic and therapeutic peptide agents for human potassium channelopathies. 相似文献10.
11.
Aquaporins are a family of water and small molecule channels found in organisms ranging from bacteria to animals. One of these channels, the E. coli protein aquaporin Z (AqpZ), has been shown to selectively conduct only water at high rates. We have expressed, purified, crystallized, and solved the X-ray structure of AqpZ. The 2.5 Å resolution structure of AqpZ suggests aquaporin selectivity results both from a steric mechanism due to pore size and from specific amino acid substitutions that regulate the preference for a hydrophobic or hydrophilic substrate. This structure provides direct evidence on the molecular mechanisms of specificity between water and glycerol in this family of channels from a single species. It is to our knowledge the first atomic resolution structure of a recombinant aquaporin and so provides a platform for combined genetic, mutational, functional, and structural determinations of the mechanisms of aquaporins and, more generally, the assembly of multimeric membrane proteins. 相似文献
12.
Nathaniel E. Clark 《Journal of molecular biology》2009,393(2):435-447
α-N-acetylgalactosaminidase (α-NAGAL; E.C. 3.2.1.49) is a lysosomal exoglycosidase that cleaves terminal α-N-acetylgalactosamine residues from glycopeptides and glycolipids. In humans, a deficiency of α-NAGAL activity results in the lysosomal storage disorders Schindler disease and Kanzaki disease. To better understand the molecular defects in the diseases, we determined the crystal structure of human α-NAGAL after expressing wild-type and glycosylation-deficient glycoproteins in recombinant insect cell expression systems. We measured the enzymatic parameters of our purified wild-type and mutant enzymes, establishing their enzymatic equivalence. To investigate the binding specificity and catalytic mechanism of the human α-NAGAL enzyme, we determined three crystallographic complexes with different catalytic products bound in the active site of the enzyme. To better understand how individual defects in the α-NAGAL glycoprotein lead to Schindler disease, we analyzed the effect of disease-causing mutations on the three-dimensional structure. 相似文献