首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 以西双版纳热带湿性季节沟谷雨林混合凋落叶作为分解基质,在不同位置季节雨林样地,采用不同网孔( 2和0.15 mm)分解袋,开展大中型土壤动物对雨林凋落叶分解影响的实验,测定了不同网孔分解袋土壤动 物多样性、凋落叶分解速率和主要养分元素释放状况。结果显示:2 mm网孔分解袋土壤动物类群相对密度 年均值为2.67~2.83目•g-1凋落物干重,个体相对密度年均值为22.3~21.77个•g-1凋落物干重,显著 高于0.15 mm网孔分解袋的类群相对密度0.27~0.28目•g-1凋落物干重和个体相对密度2.88~2.77个•g- 1凋落物干重(p<0.01),并且0.15 mm网孔分解袋中极少量的动物个体主要为小型类群弹尾目和蜱螨目( 原生动物、湿生土壤动物线虫不计),由此我们视2 mm网孔分解袋凋落叶分解由绝大多数土壤动物和其它 土壤生物共同作用,而0.15 mm网孔分解袋基本排除了大中型土壤动物对袋内凋落叶分解的影响。2 mm网 孔分解袋凋落叶物质失重率(71%左右)、分解率指数(1.88~2.44)和主要养分元素释放率明显高于 0.15 mm分解袋(34%~35%,0.48~0.58)。通过比较两种不同网孔分解袋凋落叶失重率和元素释放率的 差异,显示出季节雨林大中型土壤动物群落对凋落叶物质损失的贡献率为年均值46%左右,并使凋落叶C/N 和C/P明显降低,而对不同元素释放率的影响不同,其中对N、S和Ca元素释放率的影响较大,而对K素释放 的影响作用最小。相关分析显示,2 mm网孔分解袋内土壤动物群落类群和个体的相对密度与凋落叶物质残 留率有较好的负相关关系,而群落香农多样性指数与凋落叶分解率指数表现出一定的正相关关系。  相似文献   

2.
Decomposition rates and nutrient dynamic (N, P, K, Ca and Mg) were determined for green leaves and fine branches immersed in the water of a small tributary of Caura river (SE-Venezuela). 16% of the original dry weight of leaves and 11% of branches were lost at the end of the first sampling period: first month for leaves and second month for branches. This dry weight reduction was probably due to leaching of soluble material. After a 9-month period, the mass loss was 60% for leaves and 20% for fine branches. The pattern of dry weight and nutrient losses are in general agreement with previous studies of decomposition of leaf litter in both terrestrial and aquatic ecosystems. Potassium and magnesium are the elements most rapidly lost, showing the dominance of leaching processes; at the end of the first month 7% of the initial amount of K and 18% of the initial amount of Mg remained in leaves. The loss of calcium and phosphorus was much slower: 61% of Ca and 47% of P remained in the leaf material after the first sampling period. In contrast to K, Mg, Ca and P, the initial amount of nitrogen in leaves remained relatively unchanged during the first month of decomposition; in the subsequent sampling period, the amount of N decreased. The elements K and Mg in branches behaved similar to leaves: 4% of K and 22% of Mg were left at the end of the first sampling period. The initial amount of Ca and P in branches decreased slightly: 88% of Ca and 83% of P remained in branches at the end of this first sampling. Nitrogen behaved differently in branches than that in leaves. In branches the amount of N remained relatively unchanged during the first 5 months of decomposition; afterwards, N showed gradual increases, probably due to immobilization. At the end of the experiment the amount of N in branches was 16% higher than the initial amount.  相似文献   

3.
Xu  Xiaoniu  Hirata  Eiji  Enoki  Tsutomu  Tokashiki  Yoshihiro 《Plant Ecology》2004,173(2):161-170
Decomposition of typhoon-generated and normal leaf litter and their release patterns for eight nutrient elements were investigated over 3 yr using the litterbag technique in a subtropical evergreen broad-leaved forest on Okinawa Island, Japan. Two common tree species, Castanopsis sieboldii and Schima wallichii, representative of the vegetation and differing in their foliar traits, were selected. The elements analyzed were N, P, K, Ca, Mg, Na, Al, Fe and Mn. Dry mass loss at the end of study varied in the order: typhoon green leaves > typhoon yellow leaves > normal leaves falling for both species. For the same litter type, Schima decomposed faster than Castanopsis. Dry mass remaining after 2 yr of decomposition was positively correlated with initial C:N and C:P ratios. There was a wide range in patterns of nutrient concentration, from a net accumulation to a rapid loss in decomposition. Leaf litter generated by typhoons decomposed more rapidly than did the normal litter, with rapid losses for N and P. Analysis of initial quality for the different litter types showed that the C:P ratios were extremely high (range 896 – 2467) but the P:N ratios were < 0.05 (range 0.02 – 0.04), indicating a likely P-limitation for this forest. On average 32% less N and 60% less P was retranslocated from the typhoon-generated green leaves than from the normal litter for the two species, Castanopsis and Schima. An estimated 2.13 g m–2 yr–1 more N and 0.07 g m–2 yr–1 more P was transferred to the soil as result of typhoon disturbances, which were as high as 52% of N and 74% of P inputted from leaf litter annually in a normal year. Typhoon-driven maintenance of rapid P cycling appears to be an important mechanism by which growth of this Okinawan subtropical forest is maintained.  相似文献   

4.
To gain insight into fine roots decomposition in subtropical China, the litter bag method was used to examine the decomposition dynamics of dry mass, N, P, K, and organic fractions in six natural forests and a Chinese fir plantation over a 2-year period in the Wanmulin Nature Reserve, Fujian. The seven tree species examined, representative of this area, differed significantly in their initial chemical quality and were used to determine the best substrate quality parameters to predict decomposition dynamics. Dry mass loss varied significantly among the different roots, which showed fast decomposition in the first year, with mass loss regulated by extractive and acid-soluble fraction, followed by a low rate in the second year, with mass loss dominated by acid-insoluble fraction. Net N release was constantly slower than the mass loss of acid-insoluble fractions, while K release was the other way around. Release of P seemed to be independent of disappearance of acid-insoluble fraction. Not all the very fine roots (0–1 mm) decomposed faster than the fine ones (1–2 mm), and decomposition rates of coniferous roots were not always lower than broadleaved species. Correlation analysis demonstrated that dry mass loss and net N and P release rates were not correlated with initial N concentration, but with acid-insoluble organic fraction and P related parameters at the end of a 2-year decomposition period. Our results suggest that N is a limiting factor of fine root decomposition. Additionally, P could also be an important driver of fine root decomposition and N and P dynamics in this low soil P availability area.  相似文献   

5.
Litter decomposition and nutrient release of selected dominant synusiae in an old-growth, evergreen, broad-leaved mossy forest on Ailao Mountain, Yunnan, south-west China, were studied over a 22-month period. The species studied were three dominant tall tree species, Lithocarpus xylocarpus Markg., Lithocarpus chintungensis Hsu et Qian and Castanopsis wattii A. Camus; one dominant understory species (the bamboo Sinarundinaria nitida Nakai); and a mixture of dominant mosses (including Homaliodendron scalpellifolium Fleisch, Symphyodon perrottetti Mont., Herberta longifolissa Steph. and Bazzania albicans Horik.). Fast initial litter decomposition was followed by lower rates. Decomposition rates of canopy species and bamboo leaf litter appear to be controlled by the initial concentration of lignin, nitrogen (N) and phosphorus (P) more than by morphological features of the leaves. The decay rate of moss litter was less correlated with nutrient composition and lignin concentration in initial mass. The order of decomposition rates was Castanopsis wattii > L. xylocarpus > L. chintungensis > bamboo > moss. The decomposition rate constants (k) of the leaf litter for the canopy species L. xylocarpus, L. chintungensis and Castanopsis wattii were 0.62, 0.50 and 0.64, respectively, and 0.40 and 0.22 for bamboo and moss, respectively. Turnover time (1/k) for the three canopy species was 1.61 years, 2.0 years and 1.55 years, respectively, and 2.50 years and 4.55 years for bamboo and moss, respectively. The N and P concentration in the decomposing leaf litter increased in the first 6 months and then decreased over the remaining period. There was a relatively rapid initial loss of potassium (K), followed by a slight increase. Each of calcium (Ca) and magnesium (Mg) decreased with time whereas iron (Fe) and manganese (Mn) increased with time to some extent. Nutrient release from decomposing leaf litter was in the order of K > Mg > Ca > N > P > Mn > Fe, except for bamboo (Sinarundinaria nitida) K > Ca > P > N > Mg > Mn > Fe.  相似文献   

6.
坡度和埋深对橡胶林凋落叶分解及红外光谱特征的影响   总被引:3,自引:0,他引:3  
橡胶树凋落叶在橡胶林生态系统养分循环中起着重要的作用,研究凋落叶的分解和养分释放特性及其影响因素,对资源的循环利用及指导高效施肥具有重要意义。在海南省天然橡胶主产区选取橡胶林地进行凋落叶原位分解试验,研究坡度和埋深对橡胶树凋落叶干物质分解特性、养分元素释放规律及其物质成分红外光谱特征的影响。结果表明,凋落叶分解速率明显受到坡度和深度的影响;分解9个月后,干物质残留率高低顺序为坡地覆盖(39.6%)平地覆盖(26.8%)平地埋深(11.2%)坡地埋深(6.9%);凋落叶的损失符合Olsen指数衰减模型(P0.01),各处理凋落叶干物质分解95%所需要的时间分别为29.3、20.5、12.8和13.2个月;各处理C/N比从最初的25.1下降到12.7、14.4、16.2和16.9。分解期间各处理养分残留率差异显著(P0.05);分解9个月后,坡地覆盖处理S-I养分元素C、N、P、K、Ca、Mg的残留率最高,分别为10.9%、21.6%、10.7%、9.7%、10.4%、7.9%,而坡地埋深处理S-II最低,分别为3.8%、6.5%、3.4%、2.3%、0.8%、2.1%。傅里叶红外光谱(FTIR)分析显示,凋落叶分解前后在3387 cm~(-1)、1734 cm~(-1)处的吸收峰强度明显减弱,表明纤维素、半纤维素、木质素、多糖、脂肪族等碳水化合物遭到分解;1050 cm~(-1)处的吸收峰向低频方向位移了17 cm后变为1033 cm~(-1),表明分解破坏了凋落叶原有的可溶性糖和纤维素C—C键和C—O键伸缩振动。综上所述,埋深处理有利于加速凋落叶物质分解和养分元素释放速率;建议橡胶树生产中将凋落叶与表土混合或压青处理,提高橡胶林养分循环效率。  相似文献   

7.
This study was carried out to compare the ecological function of exotic pine (Pinus radiata—Pr) and native pine (Pinus tabulaeformis—Pt) in terms of litter decomposition and its related N dynamics and to evaluate if the presence of broad-leaved tree species (Cercidiphyllum japonicum—Cj) or shrub species (Ostryopsis davidiana—Od) litter would promote the decomposition of pine needles and N cycling. Mass remaining, N release of the four single-species litters and mixed-species (Pt + Cj; Pr + Cj; Pt + Od; Pr + Od) litters and soil N dynamics were measured at microcosm scale during an 84-day incubation period. The Pt and Pr litter, with poorer substrate quality, indicated slower decomposition rates than did the Cj and Od litter. Due to their high C/N ratios, the N mass of Pt and Pr litter continuously increased during the early stage of decomposition, which showed that Pt and Pr litter immobilized exogenous N by microbes. No significant differences of soil inorganic, dissolved organic and microbial biomass N were found between the Pt and Pr microcosm at each sampling. The results showed that the exotic Pr performed similar ecological function to the native Pt in terms of litter decomposition and N dynamics during the early stage. The presence of Cj or Od litter increased the decomposition rates of pine needle litter and also dramatically increased soil N availability. So it is feasible for plantation managers to consider the use of Cj as an ameliorative species or to retain Od in pine plantations to promote the decomposition of pine litter and increase nutrient circulation. The results also suggested that different species litters induced different soil dissolved organic nitrogen (DON). As a major soluble N pool in soil, DON developed a different changing tendency over time compared with inorganic N, and should be included into soil N dynamic under the condition of our study.  相似文献   

8.
福建和溪亚热带雨林落叶的分解动态   总被引:1,自引:0,他引:1  
福建和溪亚热带雨林落叶的分解动态邵成,郑文教,林鹏(厦门大学,厦门361005)DynamicsoflitterdecompositioninHexisubtropicalrainforestofFujian¥ShaoCheng;ZhengWenji...  相似文献   

9.
The decomposition of axenic Lemna gibba has been studied over a 200 day period under laboratory conditions in the presence and absence of wastewater micro-organisms. The residual mass of plant litter in the decomposition vessels decreased three times more rapidly under biotic than abiotic conditions. The organic matter in the duckweed litter lost about half its weight within 67.9 days in the presence of micro-organisms while more than 200 days were required in axenic vessels. In the former case, AFDW loss followed an exponential pattern of decay. The rate constant was 0.0102 day –1 and the decay was virtually complete after 200 days. The C and K concentration of the remaining duckweed litter decreased; the N, Ca, Fe and B concentration increased in both treatments. The concentration of total N, P, K, Mg, and Mo increased in the receiving water in both treatments but was much higher under biotic than abiotic conditions. Mass balances of nutrients in the vessels and flux of these nutrients between compartments in the vessels (duckweed litter, water and sediment) have been determined. Under axenic conditions the release of elements was very slow. Only notably potassium leaching had occurred. Leaching of potassium, magnesium and organic carbon took place mainly during the first term of incubation and then slowed down. Under biotic decomposition the elemental content of the litter decreased by more than 50% over 43 days for K, 53 days for Mo, 64 days for C, 81 days for Mg, 101 days for S, 104 days for P, 108 days for Na, 111 days for N, 140 days for B. Calcium and iron immobilised in the litter. Most of the released N, S, P, K, Mg and Mo remained in the water, but B and Mn settled into the sediment. The result of the investigation demonstrated that the nutrient flux from decomposing duckweed litter is mainly a microbially mediated process.  相似文献   

10.
Early stage litter decomposition rates for Swiss forests   总被引:8,自引:0,他引:8  
The decomposition of belowground and aboveground tree litter was studied on five forest sites across Switzerland, ranging from 480 to 1500 m in altitude, and including calcareous and acidic soils. In addition to decomposition of local litter types (Picea abies, Fagus sylvatica, Castanea sativa), the decomposition of a standard beech litter was studied on all sites. After 2 years of decomposition, mass loss ranged from 18 to 71% across the different sites and litter types. The lowest decomposition rates were observed for beech roots, while mass loss was greatest for both spruce needles and spruce roots at the low-altitude site. Mass loss during the first winter correlated best with the content of water-soluble substances. After 1 year of incubation, mass loss of the standard litter varied less than did mass loss of local litter, but variance increased during the second year for aboveground litter. These observations indicate a smaller climatic influence on litter breakdown at the beginning of the decomposition process. Litter mass loss could be described using an exponential model with a decay constant depending on either lignin/N ratio or Mn content of the litter and annual soil temperature and throughfall precipitation as climatic variables. Modelling the observed mass loss indicated a strong influence of litter quality in the first 2 years of decomposition, confirming the field data from the standard litter experiment. The experiment will continue for some years and is expected to yield additional data on long-term decomposition.  相似文献   

11.
采用分解袋法,研究了长白山次生针阔混交林内9种树种叶凋落物34个月的分解过程.结果表明:在次生针阔混交林中,不同树种叶凋落物的初始N和P浓度存在很大差异,叶凋落物分解速率(k)与初始N浓度和C/N显著相关.有机物剩余百分率与C剩余百分率呈显著的线性正相关关系,与N和P剩余百分率之间呈显著的二项式回归关系. N和P剩余百分率在初期阶段随有机物分解而增加,达到峰值后逐渐降低. 随着有机物剩余百分率的下降,C/N和C/P均呈逐渐降低趋势,各种叶凋落物之间C/N和C/P的差异逐渐减小,分解末期分别趋近于23和350. 随有机物剩余百分率的降低, N/P变化不明显,当有机物剩余百分率低于25%时,不同树种叶凋落物之间N/P差异显著下降. 有机物剩余百分率可用来预测C、N和P的剩余百分率.   相似文献   

12.
Summary The influence of NPK-fertilizer on decomposition of litter layers and deposited logging residues (brash) on a clearfelled Sitka spruce stand was followed during two years by zero-tension lysimetry and litterbags. Root development of second rotation planted trees on this peaty gley soil are restricted to the litter layers (LFH) and without fertilizer are dependent on its decomposition for release of nutrients. A comparison of fertilized and control plots showed few site differences and similar hydrological properties. Fertilizer addition (urea-N, rock-P and KCl) immediately raised leachate concentrations of NH4−N, K and PO4−P, the last remaining high over the period. NO3−N increased dramatically in the second year leachates from the fertilized area. Within two years 45, 60 and 75% of added NPK respectively were recovered in leachates. Two-year-old litter in litterbags lost weight significantly more slowly after fertilization. The calculated values were 0.28 (control plot) and 0.15 (fertilized plot). Mean values were derived from individual regressions and allowed microsite variation to be assessed. The difference in is attributed to available C limitation although N concentration of needles increased on both plots, P concentration increased slowly on the control plot while K and Mg decreased on both. Ca concentrations doubled with fertilization and remained constant over two years. The rapid loss of fertilizer and slight response from planted trees indicate delayed application of fertilizers may be desirable.  相似文献   

13.
The influence on the decomposition rate of ivy litter (Hedera helix L.) of three ligneous overstorey species (oak, Quercus robur L., white poplar, Populus alba and ash, Fraxinus excelsior L.) that support ivy was studied in an alluvial hardwood forest. The ivy provides an abundant litter at the end of spring. The decomposition of ivy litter and the nutrient release rate were analyzed over four months during the growing season of the canopy trees, the hypothesis being that throughfall could slow down the mass loss rate of ivy depending on the support species. Mathematical models for mass loss and nutrient (P, N, K and Mg) release rates were developed. Mass loss rate and the release rate of magnesium, nitrogen and phosphorus show significant differences depending on species whereas no influence of species was observed on the release rate of potassium. The results illustrate the significant effect of oak compared to ash and poplar in slowing down mass loss rate and nitrogen, phosphorus and magnesium release rates. The mass loss rate over time under the three species followed the proposed exponential model, whereas the release rates of phosphorus and magnesium did not follow this model. This model is fitted to the data in two cases out of three for potassium. Magnesium and potassium are released more rapidly when nitrogen accumulates and the phosphorus content does not change significantly. No species × date interaction was observed, except in the case of magnesium. The species effect is interpreted as an effect of composition of throughfalls and presence or absence of inhibitory substances such as phenolic compounds.  相似文献   

14.
Decomposition of litter and the release of nutrients during decomposition were studied both above- and below-ground in a salt marsh in southern Australia. Above-ground litter of two species, Sclerostegia arbuscula and Sarcocomia quinqueflora, placed in a salt marsh bordering Westernport Bay, Victoria lost significantly different amounts of weight (61% and 50%, respectively) after 272 days in the field. Below-ground litter buried at depths of 10, 20 and 30 cm lost only 35-43% of its initial weight during the same period. Above-ground litter lost more N than below-ground litter (ca. 50% versus 30%, respectively), more P (ca. 80% versus 45%), more K (ca. 90% versus 65%), more Ca (ca. 50% versus 10%), and more Mg (ca. 40% versus 25%). Significant differences in the rate at which elements (N, P, Ca, and Mg) were lost occurred at different depths in below-ground litter. Above-ground litter of the two species examined also differed in the rates and amount of most elements (N, P, Ca, and Mg) lost.  相似文献   

15.
Mass loss and nutrient release during litter decomposition drive biogeochemical cycling in terrestrial ecosystems. However, the relationship between the litter decomposition process and the decomposition stage, precipitation, and litter quality has rarely been addressed, precluding our understanding of how litter decomposition regulates nutrient cycling in various ecosystems and their responses to climate change. In this study, we measured mass loss as well as carbon and nutrient releases during the decomposition of 16 types of leaf litter under three precipitation treatments over 12 months in a common garden experiment (i.e., using standardized soil and climatic conditions). Sixteen types of leaves were divided into three functional groups (evergreen, deciduous, and herbaceous). The objectives were to understand the effects of decomposition stages and precipitation regimes on litter decomposition and to examine the relationship between this effect and chemical properties. The mass loss and release of nitrogen and potassium were significantly higher in the 6‐ to 12‐month stage of decomposition (high temperature and humidity) than in the 0‐ to 6‐month stage. Phosphorus was relatively enriched in evergreen leaves after 6 months of decomposition. The rates of mass loss and nutrient release were significantly greater in herbaceous than in deciduous and evergreen leaves. Increasing precipitation from 400 to 800 mm accelerated mass loss and potassium release but decreased phosphorus release in the 0‐ to 6‐month stage of decomposition. These results highlighted the contribution to and complexity of litter chemical properties in litter decomposition.  相似文献   

16.
李巧玲  曾辉 《生态学报》2017,37(7):2342-2351
凋落叶分解是控制森林湿地物质循环的重要生态过程,是全球C、N等元素循环的重要一部分。以美国南卡罗来纳州10种典型植物的凋落叶为研究对象,通过2a的分解实验测定分解阶段凋落叶的生物量残留率、分解速率常数k和C、N残留百分比,探讨初始凋落叶化学性质对分解速率常数k的影响。结果表明:(1)十种凋落叶生物量在两年内降解至初始的14.5%—66.2%,种间差异可达4倍以上;分解速率常数k在0.26—1.64a~(-1)之间,针叶分解速率阔叶分解速率;(2)分解速率常数k与初始凋落叶酸溶性组分(AS)极显著正相关(P0.001),与初始C含量、酸不溶组分(AIF)和AIF/N比均显著负相关(P0.05);(3)凋落叶C残留百分比持续下降至10.2%—66.1%,而N残留百分比因物种与分解阶段不同呈现不同变化规律。结果表明,森林湿地中凋落叶初始C组分差异是其分解速率的种间极大差异的主要原因,评估森林湿地的C、N循环应充分考虑种间差异。  相似文献   

17.
A field-scale experiment with nitrogen (N) addition treatments was performed in three forest types – a pine (Pinus massoniana Lamb.) forest, a pine-broadleaf mixed forest (mixed) and a mature monsoon evergreen broadleaf forest (mature) – in tropical China. Two kinds of leaf litter, Schima superba Chardn. & Champ. and Castanopsis chinensis Hance, were studied using the litterbag technique after more than 2 years of continuous N additions. The objective of this study was to understand the cumulative effect of N addition on litter decomposition in the tropical forests and to determine if the initial effects of N addition changes over time. Results indicated that leaf litter decomposition was significantly faster in the mature forest than in the mixed or pine forests. The mean fraction of mass remaining after 12-months of decomposition was: mature (0.22) < mixed (0.50) < pine (0.51) for the two litters. Nitrogen addition significantly depressed litter decomposition in the pine forest and the mature forest, but had no significant effect in the mixed forest. These results suggest that N deposition has significant cumulative effect on litter decomposition.  相似文献   

18.
杉木人工林凋落物分解对氮沉降的响应   总被引:2,自引:0,他引:2  
凋落物分解是陆地生态系统养分循环的关键过程,是全球碳(C)收支的一个重要主要组成部分,正受到全球大气氮(N)沉降的深刻影响。探讨大气氮沉降条件下森林凋落物的分解,有利于揭示森林生态系统C平衡和养分循环对全球变化的响应。选择福建沙县官庄林场1992年栽种的杉木(Cunninghamia lanceolata)人工林为研究对象,自2004年开始野外模拟氮沉降试验,至今12年。氮沉降处理分4个水平,N0、N1、N2和N3分别为0、60、120、240 kg N hm-2 a-1。2015年12月开展分解袋试验,对经过氮沉降处理12年的凋落物(叶、枝、果)进行模拟原位分解,每3个月收回一次分解袋样品,为期2年,同时测定凋落物干物质残留量及其C、N和磷(P)含量。结果表明,经2年分解后,氮沉降条件下凋落物叶、枝和果的干物质残留率平均值分别为27.68%、47.02%和43.18%,说明分解速率大小依次为叶 > 果 > 枝。凋落物叶、枝和果的分解系数平均为0.588、0.389和0.455,周转期(分解95%年限)分别为4-5年、6-8年和5-7年。低-中氮处理(N1和N2)均促进凋落物叶、枝和果的分解,以N1的效果更明显,而N3起到抑制作用。N1处理的凋落物叶、枝和果的周转期分别为:4.50年、6.09年和5.85年,N2处理的分别为4.95年、8.16年和6.19年。模拟氮沉降在一定程度上增加了凋落物叶、枝和果分解过程中的N和P含量,但降低了C含量。凋落物叶、枝和果分解过程中C元素呈现释放-富集-释放模式,N和P元素呈现释放与富集交替,除枝的N元素外,其他均表现为释放量大于富集量。  相似文献   

19.
解婷婷  单立山  张鹏 《生态学报》2022,42(19):8041-8049
为探讨水分变化对农林复合生态系统凋落物分解特性的影响,以河西走廊杨树(Populus)-玉米(Zea mays)凋落物为研究对象,设置正常水分(9200 m3/hm2,对照),轻度干旱胁迫(减少15%,7800 m3/hm2),中度干旱胁迫(减少30%,6400 m3/hm2)3种不同水分处理条件,采用分解袋法研究了不同水分条件下杨树叶和玉米秸秆的质量残留率、分解速率和养分含量变化特征。结果表明:(1)随着干旱胁迫的加剧,两种凋落物的质量残留率均增加,而分解速率降低。经过164 d的分解后,杨树叶和玉米秸秆的质量残留率分别为70.43%-77.49%、63.55%-68.29%。分析表明:水分和时间对各类型凋落物的质量残留率均有极显著的影响(P<0.001),但二者的交互作用不显著(P>0.05);干旱胁迫显著降低了玉米秸秆的分解速率,但杨树叶的分解速率却只是在中度干旱胁迫下显著降低(P<0.05)。对于不同类型凋落物而言,分解速率表现为玉米秸秆>杨树叶。(2)两种类型凋落物的氮(N)残留率在分解过程中表现为降低的趋势,但随着干旱程度的加大,N的残留率增加,表明水分抑制了N的释放过程。分解164d后,同一类型凋落物不同水分条件下的N残留率均存在显著差异。对于同一水分条件下不同凋落物而言,玉米秸秆的N残留率最低,而杨树叶最高。总的来说,水分降低对干旱区农林复合系统内凋落物的分解和氮元素含量具有显著的抑制作用。  相似文献   

20.
利用分解袋法对日本亚高山针叶林的针叶(Abies veitchii Lindl,and A.mariesi Mast.)和阔叶(Betula ermanii Cham.and B.corylifolia Regal.et Maxim.)凋落物进行了分解实验研究。结果表明尽管分解初期的两种凋落物的养分以及分解后期凋落物剩余重量差异很大,但两种凋落物养分浓度在分解后期(30个月以后)趋于一致。这种趋同现象在不同养分中有不同的趋同机制。氮元素浓度升高到分解后期浓度差变小,这种现象是由于分解菌的固持作用及受木质素的束缚所致;钾和镁在分解初期浓度急剧下降,进而浓度差变小,是由于淋溶作用所致。在分解过程中这些元素非常容易被淋溶掉,直到和土壤中的浓度达到一致为止。钙是结构元素,它的行踪和有机物组分有密切关系。由于分解后期有机组分木质化和腐殖质化进而浓度趋同,所以钙的浓度也相应趋同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号