首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrastructural characteristics of tooth buds of the polyphyodont adult lizards Liolaemus tenuis and Liolaemus gravenhorsti have been elucidated. Xenoplastic combinations of lizard whole tooth buds and neural crest cells from embryos of the quail Coturnix coturnix japonica have been cultured in vitro. Mesenchymal cells (preodontoblasts) of lizard teeth early develop filopodia that contact the basal lamina. Fragments of quail neural crest isolated by dissection were recombined with isolated lizard tooth buds and cultured for 84 hours in dishes kept in an incubator at 37.8 degrees C in air. Some identifiable quail cells in these recombinants developed a cytoplasmic extension like that of an odontoblastic process. These results suggest that lizard tooth rudiments already determined for tooth development produce some non-species specific transmissible constituents which are capable of inducing quail cranial neural crest cells to express certain dental characteristics (odontoblastogenesis) not expressed in their normal development in vivo.  相似文献   

2.
To assess the existence of specific and nonspecific epithelial instructions for mesenchymal cell differentiation we compared homospecific and heterospecific mouse and quail tissue recombinations. In heterospecific recombinants between trypsin-dissociated mouse molar mesenchyme and quail epithelia neither odontoblasts nor chondrocytes differentiated. Cartilage appeared if the quail epithelium was contaminated with homologous limb mesenchyme and odontoblasts differentiated if the mouse dental epithelium was contaminated with dental papilla cells.  相似文献   

3.
Abstract. To assess the existence of specific and nonspecific epithelial instructions for mesenchymal cell differentiation we compared homospecific and heterospecific mouse and quail tissue recombinations. In heterospecific recombinants between trypsin-dissociated mouse molar mesenchyme and quail epithelia neither odontoblasts nor chondrocytes differentiated. Cartilage appeared if the quail epithelium was contaminated with homologous limb mesenchyme and odontoblasts differentiated if the mouse dental epithelium was contaminated with dental papilla cells.  相似文献   

4.
To assess the requirement for specific or possibly non-specific epithelial instructions for mesenchymal cell differentiation, we designed studies to evaluate and compare homotypic with heterotypic tissue recombinations across vertebrate species. These studies further tested the hypothesis that determined dental papilla mesenchyme requires epithelial-derived instructions to differentiate into functional odontoblast cells using a serumless, chemically-defined medium. Theiler stage 25 C57BL/6 or Swiss Webster cap stage mandibular first molar tooth organs or trypsin-dissociated, homotypic epithelial-mesenchymal tissue recombinants resulted in the differentiation of odontoblasts within 3 days. Epithelial differentiation into functional ameloblasts was observed within 7 days. Trypsin-dissociated and isolated mesenchyme did not differentiate into odontoblasts under these experimental conditions. Heterotypic recombinants between quail Hamburger-Hamilton stages 22–26 mandibular epithelium and Theiler stage 25 dental papilla mesenchyme routinely resulted in odontoblast differentiation within 3 days in vitro. Odontoblast differentiation and the production of dentine extracellular matrix continued throughout the 10 days in organ culture. Ultrastructural observations of the interface between quail and mouse tissues indicated the reconstitution of the basal lamina as well as the maintenance of an intact basal lamina during 10 days in vitro. Quail epithelial cells did not differentiate into ameloblasts and no enamel extracellular matrix was observed. These results show that quail mandibular epithelium can provide the required developmental instructions for odontoblast differentiation in the absence of serum or other exogenous humoral factors in a chemically-defined medium. They also suggest the importance of reciprocal epithelial-mesenchymal interactions during epidermal organogenesis.  相似文献   

5.
6.
目的 为探索一种组织工程化牙齿异位培养的理想环境,检测全牙胚、牙乳头及成釉器在肾被膜环境下的发育能力.方法 利用剖腹产取出胚龄18 d的大鼠胎儿,显微外科分离牙胚,并将之进一步分为牙乳头和成釉器两部分.使用特制玻璃移植管分别将获得的全牙胚、牙乳头及成釉器植入异体大鼠肾被膜下.2周后取出培养物,HE染色观察其发育情况.结果 在肾被膜微环境下,全牙胚在肾被膜下发育良好,形成较为完整的牙齿形态和结构,单独的牙乳头可以形成牙本质,而单独的成釉器无法形成特定形态的牙冠,也无法分化成釉质.结论 证明肾被膜下是牙齿异位生长的适宜环境,ED18后成釉器发育仍然受到牙乳头调控,与此相反,牙乳头发育不再依赖成釉器的信号.  相似文献   

7.
Comparative analysis of tooth development in the main vertebrate lineages is needed to determine the various evolutionary routes leading to current dentition in living vertebrates. We have used light, scanning and transmission electron microscopy to study tooth morphology and the main stages of tooth development in the scincid lizard, Chalcides viridanus, viz., from late embryos to 6-year-old specimens of a laboratory-bred colony, and from early initiation stages to complete differentiation and attachment, including resorption and enamel formation. In C. viridanus, all teeth of a jaw have a similar morphology but tooth shape, size and orientation change during ontogeny, with a constant number of tooth positions. Tooth morphology changes from a simple smooth cone in the late embryo to the typical adult aspect of two cusps and several ridges via successive tooth replacement at every position. First-generation teeth are initiated by interaction between the oral epithelium and subjacent mesenchyme. The dental lamina of these teeth directly branches from the basal layer of the oral epithelium. On replacement-tooth initiation, the dental lamina spreads from the enamel organ of the previous tooth. The epithelial cell population, at the dental lamina extremity and near the bone support surface, proliferates and differentiates into the enamel organ, the inner (IDE) and outer dental epithelium being separated by stellate reticulum. IDE differentiates into ameloblasts, which produce enamel matrix components. In the region facing differentiating IDE, mesenchymal cells differentiate into dental papilla and give rise to odontoblasts, which first deposit a layer of predentin matrix. The first elements of the enamel matrix are then synthesised by ameloblasts. Matrix mineralisation starts in the upper region of the tooth (dentin then enamel). Enamel maturation begins once the enamel matrix layer is complete. Concomitantly, dental matrices are deposited towards the base of the dentin cone. Maturation of the enamel matrix progresses from top to base; dentin mineralisation proceeds centripetally from the dentin–enamel junction towards the pulp cavity. Tooth attachment is pleurodont and tooth replacement occurs from the lingual side from which the dentin cone of the functional teeth is resorbed. Resorption starts from a deeper region in adults than in juveniles. Our results lead us to conclude that tooth morphogenesis and differentiation in this lizard are similar to those described for mammalian teeth. However, Tomes processes and enamel prisms are absent.  相似文献   

8.
It is well established that the capacity for teeth to differentiate “in vitro” depends upon: (a) the age of the embryonic rudiments at the time of excision and (b) the number of cells within each tissue type which are capable of differentiating into organ culture. This paper studies ultrastructural aspects of tooth buds grown in vitro from lizard embryos and compares these characteristics with those observed in dental germs grown in situ in older lizard embryos. Moreover, we report the self-differentiation in vitro dental tissues from adult lizard and compare this phenomenon with the main features of a morphogenetic field. Our results suggest that approximately in the first third of gestation in L. gravenhorsti the dental buds has already acquired the capacity for self-differentiation in vitro. The ultrastuctural observations show that there are no significant differences between odontoblasts and ameloblasts in situ and in vitro. The tooth from “adult lizards,” isolated by combined microsurgical and enzymatic procedure and cultured in semisolid-liquid medium were also able to differentiate teeth. This phenomenon implies that self-differentiation is not rigidly determined, and that in these animals the tooth tissues represents a continuous morphogenetic field throughout the animal's life. This property is intrinsic, resides in the isolated tooth tissues, and is relatively independent of external factors. In addition, these studies indicate that the chick chorio–allantoic membrane and the semisolid-liquid culture medium supply the majority of the factors required for development of these tissues.  相似文献   

9.
The mesenchymal-epithelial interactions that characterize the early stages of tooth and hair follicle morphogenesis share certain similarities, and there is increasing evidence that mesenchymal cells derived from both mature structures retain interactive and stem cell-like properties. This study aimed to gauge the cross-appendage inductive capabilities of cultured tooth dental papilla (or pulp) cells from different species and ages of donor. Adult human and juvenile rat tooth papilla cells were implanted into surgically inactivated hair follicles within two different microenvironments. The human cells interacted with follicle epithelium to regenerate new end bulbs and create multiple differentiated hair fibers. Rodent tooth dental cells also induced new epithelial matrix structures and stimulated de novo hair formation. However, in many instances they also elicited mineralization and bone formation, a phenomenon that appeared to relate to their donor's age; the type of tooth of origin; and the host environment. Taken together, this study reveals that cultured dental papilla cells from postnatal mammals (adult, juvenile, and newborn) retain inductive molecular signals that must be common to both hair and teeth follicles. It highlights the stem cell-like qualities and morphogenetic abilities of tooth and hair follicle cells from mature humans, and their capacity for cross-appendage and interspecies communication and interaction. Besides the developmental implications, the present findings have relevance for stem cell biology, hair growth, tissue repair, and other biotechnologies. Moreover, the critical importance of considering the local microenvironment in which different cells/tissues are naturally or experimentally engineered is firmly demonstrated.  相似文献   

10.
Dental stem cells can differentiate into different types of cells. Dental pulp stem cells, stem cells from human exfoliated deciduous teeth, periodontal ligament stem cells, stem cells from apical papilla, and dental follicle progenitor cells are five different types of dental stem cells that have been identified during different stages of tooth development. The availability of dental stem cells from discarded or removed teeth makes them promising candidates for tissue engineering. In recent years, three-dimensional (3D) tissue scaffolds have been used to reconstruct and restore different anatomical defects. With rapid advances in 3D tissue engineering, dental stem cells have been used in the regeneration of 3D engineered tissue. This review presents an overview of different types of dental stem cells used in 3D tissue regeneration, which are currently the most common type of stem cells used to treat human tissue conditions.  相似文献   

11.
Teeth develop from epithelium and neural crest-derived mesenchyme via a series of reciprocal epithelial-mesenchymal interactions. The majority of the dental papilla of the tooth has been demonstrated to be of neural crest origin. However, non-neural crest cells have also been observed in this region from the bud stage of tooth development onwards. The number of these non-neural crest-derived cells rises as the dental papilla develops. However, their origin is unknown. We have followed migration of cells into the tooth in vitro using DiI to fate map regions surrounding the developing tooth. To identify the contribution of mesodermally-derived cells, we have utilised Mesp1cre/R26R transgenic reporter mice. We document that cells outside the early tooth primordium migrate into the developing dental papilla from the late cap stage of development. Here, we show that migrating cells are mesodermally-derived and create a network of endothelial cells, forming the blood vessels of the tooth. No cells of mesodermal origin were present in the condensed mesenchyme surrounding the dental epithelium until the cap stage of tooth development. Mesodermally-derived cells start invading the dental papilla at the late cap stage, providing the blood supply to the dental pulp. Endothelial cells are able to invade the developing dental papilla in vitro using the slice culture method. Understanding the origin and timing of migration of the mesodermally-derived cells is an important advance in our understanding of how a tooth develops and is particularly relevant to studies which aim to create bioengineered teeth.  相似文献   

12.
At the bud stage of tooth development the neural crest derived mesenchyme condenses around the dental epithelium. As the tooth germ develops and proceeds to the cap stage, the epithelial cervical loops grow and appear to wrap around the condensed mesenchyme, enclosing the cells of the forming dental papilla. We have fate mapped the dental mesenchyme, using in vitro tissue culture combined with vital cell labelling and tissue grafting, and show that the dental mesenchyme is a much more dynamic population then previously suggested. At the bud stage the mesenchymal cells adjacent to the tip of the bud form both the dental papilla and dental follicle. At the early cap stage a small population of highly proliferative mesenchymal cells in close proximity to the inner dental epithelium and primary enamel knot provide the major contribution to the dental papilla. These cells are located between the cervical loops, within a region we have called the body of the enamel organ, and proliferate in concert with the epithelium to create the dental papilla. The condensed dental mesenchymal cells that are not located between the body of the enamel organ, and therefore are at a distance from the primary enamel knot, contribute to the dental follicle, and also the apical part of the papilla, where the roots will ultimately develop. Some cells in the presumptive dental papilla at the cap stage contribute to the follicle at the bell stage, indicating that the dental papilla and dental follicle are still not defined populations at this stage. These lineage-tracing experiments highlight the difficulty of targeting the papilla and presumptive odontoblasts at early stages of tooth development. We show that at the cap stage, cells destined to form the follicle are still competent to form dental papilla specific cell types, such as odontoblasts, and produce dentin, if placed in contact with the inner dental epithelium. Cell fate of the dental mesenchyme at this stage is therefore determined by the epithelium.  相似文献   

13.
We have shown earlier that epidermal growth factor (EGF) inhibits morphogenesis and cell differentiation in mouse embryonic teeth in organ culture. This inhibition depends on the stage of tooth development so that only teeth at early developmental stages respond to EGF (A-M. Partanen, P. Ekblom, and I. Thesleff (1985) Dev. Biol. 111, 84-94). We have now studied the quantity and pattern of EGF binding in teeth at various stages of development by incubating the dissected tooth germs with 125I-labeled EGF. Although the quantity of 125I-EGF binding per microgram DNA stays at the same level, localization of 125I-EGF binding by autoradiography reveals that the distribution of binding sites changes dramatically. In bud stage the epithelial tooth bud that is intruding into the underlying mesenchyme has binding sites for EGF, but the condensation of dental mesenchymal cells around the bud does not bind EGF. At the cap stage of development the dental mesenchyme binds EGF, but the dental epithelium shows no binding. This indicates that the dental mesenchyme is the primary target tissue for the inhibitory effect of EGF on tooth morphogenesis during early cap stage. During advanced morphogenesis the binding sites of EGF disappear also from the dental papilla mesenchyme, but the dental follicle which consists of condensed mesenchymal cells surrounding the tooth germ, binds EGF abundantly. We have also studied EGF binding during the development of other embryonic organs, kidney, salivary gland, lung, and skin, which are all formed by mesenchymal and epithelial components. The patterns of EGF binding in various tissues suggest that EGF may have a role in the organogenesis of epitheliomesenchymal organs as a stimulator of epithelial proliferation during initial epithelial bud formation and branching morphogenesis. The results of this study indicate that EGF stimulates or maintains proliferation of undifferentiated cells during embryonic development and that the expression of EGF receptors in different organs is not related to the age of the embryo, but is specific to the developmental stage of each organ.  相似文献   

14.
Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.  相似文献   

15.
Experimental evidence that the neural crest participates in tooth development in any osteichthyan fish has so far been lacking. Using vital dye cell-lineage tracking, we demonstrate that trigeminal stream neural crest cells contribute to the dental papilla of developing teeth in the Australian lungfish. Trigeminal neural crest cells labeled before migration have been traced during the earliest stages of tooth development. Neural crest cells from a single midbrain locus were relocated as ectomesenchyme in all developing teeth of the lungfish regardless of their topographical position in the dentition. These cells remain at the dental papilla interface and become cells committed to dentine production. Our findings provide the first cell-lineage evidence that cranial neural crest is fated to ectomesenchyme for tooth development and dentine production in the living sister-group to tetrapods. This shows that cranial neural crest contribution to teeth is conserved from this node on the tetrapod phylogeny.  相似文献   

16.
Here, we report on the first attempt to bioengineer tooth using a spontaneously immortalized mesenchymal cell line. To assess the odontogenic potential of this cell line, odontoblast-lineage cells (OLC) were re-associated with competent dental epithelium isolated from E14.5 mice. A novel three-dimensional organ germ culture method was applied to nurture the constructs in vitro. Additionally, recombinants were transplanted under the kidney capsule in host animals for 2 weeks. Transplants developed into tooth tissues in one-third of the cases. OLC-derived GFP-positive cells could be identified in mineralizing tooth germs by immunohistochemistry. OLCs were capable of intercellular and cell-matrix communication, thus they eventually differentiated into functional odontoblasts. In summary, we managed to utilize OLCs for dental mesenchyme substitution in tooth regeneration experiments. Therefore, our spontaneously transformed cell line proved its potential for future complex, tooth developmental and bioengineering studies.  相似文献   

17.
Despite advances in the knowledge of tooth morphogenesis and differentiation, relatively little is known about the aetiology and molecular mechanisms underlying supernumerary tooth formation. A small number of supernumerary teeth may be a common developmental dental anomaly, while multiple supernumerary teeth usually have a genetic component and they are sometimes thought to represent a partial third dentition in humans. Mice, which are commonly used for studying tooth development, only exhibit one dentition, with very few mouse models exhibiting supernumerary teeth similar to those in humans. Inactivation of Apc or forced activation of Wnt/β(catenin signalling results in multiple supernumerary tooth formation in both humans and in mice, but the key genes in these pathways are not very clear. Analysis of other model systems with continuous tooth replacement or secondary tooth formation, such as fish, snake, lizard, and ferret, is providing insights into the molecular and cellular mechanisms underlying succesional tooth development, and will assist in the studies on supernumerary tooth formation in humans. This information, together with the advances in stem cell biology and tissue engineering, will pave ways for the tooth regeneration and tooth bioengineering.  相似文献   

18.
The enamel knot (EK), which is a transient signaling center in the tooth germ, regulates both the differential growth of the dental epithelium and the tooth shape. In this study, the regeneration of the EK was evaluated. The EK regions were removed from the E14 and E16 dental epithelia, and the remaining epithelia were recombined with their original dental mesenchymes. All these tooth germs could develop into calcified teeth after being transplanted into the kidney capsule for 3 weeks. One primary EK was regenerated earlier, and two or three secondary EKs were regenerated later in culture. When simply recombined without removing the EK, the tooth germ, which had four secondary EKs and four cuspal areas of the dental papilla, generated one primary EK first and subsequent secondary EKs. These results indicate that the patterning of the EK in all tooth germs always starts from a primary EK independent of the direct epithelial or mesenchymal control. This suggests that neither the dental epithelium nor the dental mesenchyme can dictate the pattern or number of the EK formation, but the interaction between the dental epithelium and the dental mesenchyme is essential for the regeneration and patterning of the EKs.  相似文献   

19.
Mercury (Hg) vapor is released from dental "silver" tooth fillings into human mouth air after chewing, but its possible uptake routes and distribution among body tissues are unknown. This investigation demonstrates that when radioactive 203Hg is mixed with dental Hg/silver fillings (amalgam) and placed in teeth of adult sheep, the isotope will appear in various organs and tissues within 29 days. Evidence of Hg uptake, as determined by whole-body scanning and measurement of isotope in specific tissues, revealed three uptake sites: lung, gastrointestinal, and jaw tissue absorption. Once absorbed, high concentrations of dental amalgam Hg rapidly localize in kidneys and liver. Results are discussed in view of potential health consequences from long-term exposure to Hg from this dental material.  相似文献   

20.
部分蜥蜴类牙齿特征补充   总被引:2,自引:0,他引:2  
The characteristics of modern lizard teeth have often been overlooked as an aid to classification. In order to i-dentify isolated teeth or rows of teeth on the jaws of Quaternary lizard fossils, we observed many modern lizard skulls with complete tooth rows, and thereby discovered that there are different patterns of tooth arrangement which are a significant aid to classification and also valuable in distinguishing lizard tooth fragments or isolated teeth. Our observations suggest that lizard teeth can be divided into three major types: 1 ) Homodont, pleurodont with single-cusp. This kind of teeth is usually slender and closely spaced. Teeth number 20 - 30 or more. The smaller-sized lizards, such as Gekkos gecko, G.Japonicus, Eumeces chinensis (Fig. 1 :A, a), E. xanthi, Leiolopisma tsinlingensis (Fig. 1 :B, b), L. reevesii, Ly-gosoma indicum, Platyurus platyurus and Hemidactylus frenatus, have this kind of arrangement. 2) Heterodont, sub-acrodont or pleurodont, with single-conical cusp teeth at the anterior of the tooth row and with flat-conical bicuspid teeth posteriorly. There are about 18 - 19 check teeth. Eremias argus (Fig. 1:C,c), E. multiocellata and E. brenchltyi have this kind of arrangement. 3 ) Heterodont, with single-conical cusp teeth in the anterior part of the tooth row and with tricuspid, subacrodont teeth posteriorly. There are vertical grooves between the teeth on the external side of the low-er jaw. The fourth tooth in most species is canine-like. There are 16 or less check teeth. The larger-sized lizards, such as Phrynocephalus przewalski, P. frontalis (Fig. 1:D,d), Japalura splendida, J. flaviceos (Fig. 1 : E, e), Calotes versicolor and Leioleps belliana etc. possess this kind of arrangement. Evolutionary trends in lizard teeth are briefly dis-cussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号