首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium (Ca2+) ion concentrations that are achieved intracellularly upon membrane depolarization or activation of phospholipase C stimulate adenylate cyclase via calmodulin (CaM) in brain tissue. In the present study, this range of Ca2+ concentrations produced unanticipated inhibitory effects on the plasma membrane adenylate cyclase activity of GH3 cells. Ca2+ concentrations ranging from 0.1 to 0.8 microM exerted an increasing inhibition on enzyme activity, which reached a plateau (35-45% inhibition) at around 1 microM. This inhibitory effect was highly cooperative for Ca2+ ions, but was neither enhanced nor dependent upon the addition of CaM (1 microM) to EGTA-washed membranes. The inhibition was greatly enhanced upon stimulation of the enzyme by vasoactive intestinal peptide (VIP) and/or GTP. Prior exposure of cultured cells to pertussis toxin did not affect the inhibition of plasma membrane adenylate cyclase activity by Ca2+, although in these membranes, hormonal (somatostatin) inhibition was significantly attenuated. Maximally effective concentrations of Ca2+ and somatostatin produced additive inhibitory effects on adenylate cyclase. The addition of phosphodiesterase inhibitors demonstrated that inhibitory effects of Ca2+ were not mediated by Ca2(+)-dependent stimulation of a phosphodiesterase activity. These observations provide a mechanism for the feedback inhibition by elevated intracellular Ca2+ levels on cAMP-facilitated Ca2+ entry into GH3 cells, as well as inhibitory crosstalk between Ca2(+)-mobilizing signals and adenylate cyclase activity.  相似文献   

2.
Acidic phospholipids, unsaturated fatty acids and limited proteolysis mimic the activating effect of calmodulin on erythrocyte Ca2+-transport ATPase and on brain cyclic nucleotide phosphodiesterase, as has been reported previously in several studies. Three different antagonists of calmodulin-induced activation of these enzymes were tested for their inhibitory potency on the stimulation produced by the other activators. Trifluoperazine and penfluridol were found to antagonize all the above mentioned types of activation of Ca2+-transport ATPase in the same concentration range. Both inhibitors also can reverse the activation of phosphodiesterase by oleic acid, phosphatidylserine and calmodulin at similar concentrations. However, in contrast with erythrocyte Ca2+-transport ATPase, activation of phosphodiesterase by limited tryptic digestion cannot be antagonized by penfluridol and trifluoperazine. Calmidazolium, formerly referred to as compound R 24571, was found to be a relatively specific inhibitor of calmodulin-induced activation of phosphodiesterase and Ca2+-transport ATPase, since antagonism of the other activators required much higher concentrations of the drug. The results suggest that the investigated drugs exert their inhibitory effect on calmodulin-regulated enzymes not solely via their binding to calmodulin but may also interfere directly with the calmodulin effector enzyme. In addition, a general mechanism of activation and inhibition of calmodulin-dependent enzymes is derived from our results.  相似文献   

3.
An inhibitor protein of cyclic nucleotide phosphodiesterase is demonstrated in bovine brain extract and separated from modulator binding protein, a recently discovered inhibitory factor of phosphodiesterase. The new inhibitor protein is similar to the cyclic AMP phosphodiesterase inhibitor from bovine retina (Dumler, I. L., and Etingof, F. N. 1976) Biochim. Biophys, Acta 429, 474-484) in its heat stability: it retains full activity upon heating in a boiling water bath for 2 min. The new inhibitor protein counteracts the activation of the Ca2+-activatable cyclic nucleotide phosphodiesterase by the Ca2+-dependent modulator protein without affecting the basal activity of the enzyme. The inhibition of phosphodiesterase by the inhibitor can be reversed by high concentrations of modulator protein but is not influenced by a 20-fold increase in Ca2+ concentration. In contrast, a Ca2+-independent form of cyclic nucleotide phosphodiesterase is not inhibited by the inhibitor protein. These results suggest that the heat-stable inhibitor protein is specific against the action of the Ca2+-dependent modulator protein. Gel filtration analyses on Sephadex G-75 and G-100 columns have shown that the inhibitor protein and the modulator protein may associate in the presence of Ca2+. The molecular weights determined by the gel filtration for the free inhibitor protein and the complex of the inhibitor and modulator protein are about 70,000 and 85,000, respectively.  相似文献   

4.
To analyze the mechanism of the sexual process (macrocyst formation) in the cellular slime mold Dictyostelium mucoroides-7 (Dm7), the effects of 3',5'-cyclic adenosine monophosphate (cAMP), conditioned medium (CM) factors, and various ions including Ca2+ on zygote formation were examined. The application of cAMP was found to inhibit the sexual cell fusion. In addition, the activity of fusion inhibitor(s) contained in CM was heat stable and lost by phosphodiesterase (PDE)-treatment, thus indicating that cAMP is the inhibitor, being in contrast to ethylene as a fusion activator. Pulse experiments using two cAMP analogues, 2'-deoxy-cAMP and 8-bromo-cAMP suggested that the signal transduction system through the cell surface cAMP receptor is of particular importance for regulation of the sexual fusion process. Among several ions having effects on zygote formation, Ca2+ seemed to be necessary both for the acquisition of fusion competence and for cell fusion itself. In the presence of Ca2+, K+ and Na+ had the opposite effects on zygote formation; K+ was stimulative, while Na+ inhibitory. The significance of these findings is discussed in relation to the regulatory mechanism of zygote formation.  相似文献   

5.
The boiled supernatant fraction from rat cerebrum contained factors which inhibited the basal activity of a Ca2+-dependent phosphodiesterase from rat cerebrum. Two inhibitory fractions were isolated by DEAE-cellulose or Sephadex chromatography and were deemed proteins, based on their sensitivity to trypsin digestion. The inhibitory fractions eluted from DEAE-cellulose columns prior to the Ca2+-dependent activator protein. The inhibitory factors, unlike the activator protein, were stable to heat treatment under alkaline conditions. The inhibitory factors caused both an increase in Km for cyclic GMP and a decrease in V. In the presence of calcium ions and purified activator protein, the Ca2+-dependent phosphodiesterase was not inhibited by the factors, but instead was slightly stimulated. The inhibitory factors caused a slight apparent stimulation of a Ca2+-independent phosphodiesterase from rat cerebrum but this proved instead to be a nonspecific stabilizing effect which was minimicked by bovine serum albumin. After prolonged alkaline treatment, the purified activator protein caused a modest Ca2+-independent activation of Ca2+-dependent phosphodiesterase. The inhibitory factors antagonized the activation of Ca2+-dependent phosphodiesterase by alkaline treated activator protein or by lysophosphatidylcholine. The inhibitory factors had no effect on activity of trypsinized Ca2+-dependent phosphodiesterase. Of various other proteins, only casein mimicked the effects of the inhibitory factors on phoshodiesterase activity.  相似文献   

6.
Rapid, unidirectional Ca2+ influx was examined in isolated brown adipocytes by short incubations (30 s) with 45Ca2+. Ca2+ uptake was found to be large in the resting brown adipocyte, but was markedly inhibited when the cells were presented with norepinephrine. Specific alpha 1-adrenergic stimulation was without effect on Ca2+ uptake. The effect of norepinephrine (which had an EC50 of 140 nM) could be inhibited by beta-adrenergic blockade and could be mimicked by forskolin (an adenylate cyclase activator) and theophylline (a phosphodiesterase inhibitor). Exogenous free fatty acids such as octanoate and palmitate (classical stimulators of respiration in brown adipocytes) were also able to dramatically inhibit Ca2+ uptake by the cells. The artificial mitochondrial uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) induced a large reduction in cellular Ca2+ uptake (even in the presence of the ATPase inhibitor oligomycin), and in the presence of FCCP the inhibitory effect of norepinephrine on Ca2+ uptake was significantly reduced. The effect of beta-adrenergic stimulation on Ca2+ uptake was not directly caused by the large increase in respiration that occurs in response to norepinephrine because the respiratory inhibitor rotenone did not affect the Ca2+ response of the cells to the hormone. The evidence suggests that beta-adrenergic stimulation of brown adipocyte metabolism leads to a partial inhibition of Ca2+ uptake into the mitochondrial Ca2+ pool and we discuss the possibility that this represents the effect of a reduced membrane potential (and thus reduced Ca2+ uniport activity) in the partially uncoupled mitochondria of the thermogenically active brown adipocyte.  相似文献   

7.
In a previous study we described the inhibitory action of a cytosolic protein fraction from heart muscle on ATP-dependent Ca2+ uptake by sarcoplasmic reticulum; further, this inhibition was shown to be blocked by an inhibitor antagonist, also derived from the cytosol (Narayanan et al. Biochim Biophys Acta 735: 53-66, 1983). The present study examined the effects of the endogenous cytosolic Ca2+ transport inhibitor and its antagonist on ATP-dependent Ca2+ uptake by sarcolemmal vesicles isolated from rat and canine heart. The cytosolic inhibitor caused strong inhibition (up to 97%) of Ca2+ uptake by sarcolemma (SL); this inhibition could be reversed by the cytosolic inhibitor antagonist. Studies on the characteristics of inhibition revealed the following: a) Inhibition was dependent on the concentration of the inhibitor (50% inhibition with approximately 80 micrograms inhibitor protein). b) The inhibitor reduced the velocity of Ca2+ uptake without appreciably influencing the apparent affinity of the transport system for Ca2+ but caused greater than 2-fold decrease in its apparent affinity for ATP. c) The rates of unidirectional passive Ca2+ release from actively Ca2+ loaded SL vesicles were not altered by low concentrations of the inhibitor (less than 100 micrograms/ml) which were effective in producing marked inhibition of Ca2+ uptake; at higher concentrations (greater than 100 micrograms/ml), the inhibitor caused increase in the rates of passive Ca2+ release. These findings demonstrate that the activity of the ATP-driven Ca2+ pump of cardiac SL can be regulated in vitro by endogenous cytosolic proteins.  相似文献   

8.
The phosphohydrolase activity of the membrane-associated (Ca2+ + Mg2+)-dependent adenosine triphosphatase (ATPase) of the human erythrocyte can be inhibited by micromolar of nanomolar concentrations of cyclic AMP. Millimolar concentrations of cyclic AMP are less effective. The inhibitory effect of cyclic AMP is potentiated in the presence of the phosphodiesterase inhibitor, theophylline.  相似文献   

9.
The modulation of neuronal adenylylcyclase by Ca2+, acting via calmodulin, is a long-established example of a positive interaction between the Ca2(+)-mobilizing and cAMP-generating systems. In the present study, concentrations of Ca2+ that stimulate brain adenylylcyclase inhibit the adenylylcyclase of NCB-20 plasma membranes. These inhibitory effects of Ca2+ have been characterized and seem to be exerted at the catalytic unit of the enzyme; they are independent of calmodulin, Gi, and phosphodiesterase. To determine whether this inhibition of adenylylcyclase by Ca2+ could occur in the intact cell, cAMP accumulation was measured in response to bradykinin. Bradykinin, which mobilizes Ca2+ in NCB-20 cells, as a consequence of stimulating inositol phosphate production, causes a transient inhibition of prostaglandin E1 stimulation of cAMP accumulation. The inhibitory action of bradykinin is attenuated significantly by treatment of cells with the cell-permeant Ca2+ chelator, 1,2-bis-(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid. It seems likely that the inhibition of adenylylcyclase by low concentrations of Ca2+ represents a novel means for a negative interaction between Ca2(+)-mobilizing and cAMP-generating systems.  相似文献   

10.
The kinetics of the ionic regulation of an adenylate cyclase associated with the excitable ciliary membrane from Paramecium tetraurelia was examined. Glycerol (30%, v/v) stabilized the enzyme, and activated by an increase in Vmax. (3-fold) and a decrease in the apparent Km for MgATP (6-fold). Kinetic analysis of Mg2+ effects showed a stimulation via a single metal-binding site separate from the substrate site, with a dissociation constant, Ks, of 0.27 mM. Analysis of Ca2+ effects showed (i) an uncompetitive inhibition with respect to substrate MgATP, and (ii) dependence of the extent of inhibition on the free Mg2+ concentration. Ki values ranged from 4 to 130 microM-Ca2+ in the presence of 0.55-2 mM-Mg2+ respectively. This indicates competition between Mg2+ and Ca2+ at the metal-binding site. The Ca2+ effect was specific; Sr2+ and Ba2+ were almost without effect, and 100 microM-Ba2+ did not interfere with the Ca2+ inhibition. The actions of Ca2+ were readily reversible after addition of EGTA. K+ activated the adenylate cyclase at concentrations around 20 mM. The stimulatory potency of K+ was dependent on the free Mg2+ concentration. At 1 mM free Mg2+, 20 mM-K+ doubled the adenylate cyclase activity. The inhibitory Ca2+ and stimulatory K+ inputs were independent of each other.  相似文献   

11.
In the present study, the effects of the cytosolic Ca2+ transport inhibitor on ATP-dependent Ca2+ uptake by, and unidirectional passive Ca2+ release from, sarcoplasmic reticulum enriched membrane vesicles were examined in parallel experiments to determine whether inhibitor-mediated enhancement in Ca2+ efflux contributes to inhibition of net Ca2+ uptake. When assays were performed at pH 6.8 in the presence of oxalate, low concentrations (less than 100 micrograms/mL) of the inhibitor caused substantial inhibition of Ca2+ uptake by SR (28-50%). At this pH, low concentrations of the inhibitor did not cause enhancement of passive Ca2+ release from actively Ca2+-loaded sarcoplasmic reticulum. Under these conditions, high concentrations (greater than 100 micrograms/mL) of the inhibitor caused stimulation of passive Ca2+ release but to a much lesser extent when compared with the extent of inhibition of active Ca2+ uptake (i.e., twofold greater inhibition of Ca2+ uptake than stimulation of Ca2+ release). When Ca2+ uptake and release assays were carried out at pH 7.4, the Ca2+ release promoting action of the inhibitor became more pronounced, such that the magnitude of enhancement in Ca2+ release at varying concentrations of the inhibitor (20-200 micrograms/mL) was not markedly different from the magnitude of inhibition of Ca2+ uptake. In the absence of oxalate in the assay medium, inhibition of Ca2+ uptake was observed at alkaline but not acidic pH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The two presumed calmodulin antagonists calmidazolium and compound 48/80 were compared for their effects on several calmodulin-dependent and calmodulin-independent enzyme systems. Compound 48/80 and calmidazolium were found to be about equipotent in antagonizing the calmodulin-dependent fraction of brain phosphodiesterase and erythrocyte Ca2+-transporting ATPase. Compound 48/80 combines high potency with high specificity in that: (1) the basal, calmodulin-independent, activity of calmodulin-regulated enzymes was not suppressed; (2) calmodulin-independent enzyme activities, such as Ca2+-transporting ATPases of sarcoplasmic reticulum, Mg2+-dependent ATPases of different tissues and Na+/K+-transporting ATPase of cardiac sarcolemma, were far less altered, or not altered at all, by compound 48/80 as compared with calmidazolium; and (3) antagonism of proteolysis-induced stimulation as opposed to calmodulin-induced activation of erythrocyte Ca2+-transporting ATPase required a 32 times higher concentration of compound 48/80. In all these aspects compound 48/80 was found to be a superior antagonist to calmidazolium since inhibition of calmodulin-independent events by the other agent occurred at considerably lower concentrations. Therefore compound 48/80 is proposed to be a much more specific and useful tool for studying the participation of calmodulin in biological processes than the presently used agents.  相似文献   

13.
Islets microdissected from ob/ob-mice were exposed to 3mM pentobarbital in media which were normal or deficient in Ca2+. This treatment resulted in marked decrease of the islet content of cyclic AMP recorded in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Pentobarbital had a dual effect on insulin release. In addition to being a potent inhibitor of glucose-stimulated insulin release in media containing 2.56 mM Ca2+ it increased the amounts of insulin released in high glucose media deficient in Ca2+. There was a transient stimulation with ordinary concentrations of Ca2+ and 3mM glucose whtn the media also contained 3-isobutyl-1-methylxanthine. The stimulatory effect of pentobarbital persisted after replacing part of the Ca2+ in the beta-cell membrane with lanthanum ions and it could not be mimicked by lowering the oxygen tension of the incubation medium. It is suggested that pentobarbital stimulation of insulin release is the result of a specific action of the drug on the distribution of Ca2+ within the pancreatic beta-cells.  相似文献   

14.
Experiments were designed to determine the mechanism by which methylxanthines elevate abalone sperm cAMP concentrations and induce the acrosome reaction (AR). Theophylline or, more effectively, 1-methyl-3-isobutylxanthine (MIX) inhibit the cyclic nucleotide phosphodiesterase activities of abalone sperm homogenates. 45Ca2+ uptake by sperm is also stimulated by theophylline, and more effectively by MIX, and this stimulatory effect is blocked by KCN. Verapamil, a compound known to antagonize Ca2+ conductance, has no effect on the Ca2+ or MIX-induced cAMP elevation at concentrations up to 200 microM. However, verapamil reduces the sperm cAMP elevation caused by the addition of Ca2+ plus MIX. This inhibition is not complete, even at 200 microM verapamil. The AR induced by Ca2+ plus MIX is completely inhibited by 200 microM verapamil. The data suggest that these methylxanthines elevate abalone sperm cyclic nucleotide concentrations by inhibiting cyclic nucleotide phosphodiesterase activities. Furthermore, since sperm cAMP metabolism is modulated by Ca2+ flux, methylxanthines also appear to elevate abalone sperm cAMP concentrations by their effects on Ca2+ transport. The Ca2+-induced cAMP elevation occurs through a verapamil-insensitive mechanism, whereas the potentiation by MIX of the Ca2+ effect to elevate cAMP occurs through both verapamil-insensitive and -sensitive mechanisms. The methylxanthine-induced AR is mediated by a primary effect on Ca2+ transport and occurs through a verapamil-sensitive mechanism. Cyclic AMP may play a role in the methylxanthine-induced AR, but does not appear to act as the primary mediator of this exocytotic event.  相似文献   

15.
Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium.   总被引:2,自引:0,他引:2       下载免费PDF全文
In the ciliated protozoan Paramecium, Ca2+ and cyclic nucleotides are believed to act as second messengers in the regulation of the ciliary beat. Ciliary adenylate cyclase was activated 20-30-fold (half-maximal at 0.8 microM) and inhibited by higher concentrations (10-20 microM) of free Ca2+ ion. Ca2+ activation was the result of an increase in Vmax., not a change in Km for ATP. The activation by Ca2+ was seen only with Mg2+ATP as substrate; with Mn2+ATP the basal adenylate cyclase activity was 10-20-fold above that with Mg2+ATP, and there was no further activation by Ca2+. The stimulation by Ca2+ of the enzyme in cilia and ciliary membranes was blocked by the calmodulin antagonists calmidazolium (half-inhibition at 5 microM), trifluoperazine (70 microM) and W-7 (50-100 microM). When ciliary membranes (which contained most of the ciliary adenylate cyclase) were prepared in the presence of Ca2+, their adenylate cyclase was insensitive to Ca2+ in the assay. However, the inclusion of EGTA in buffers used for fractionation of cilia resulted in full retention of Ca2+-sensitivity by the ciliary membrane adenylate cyclase. The membrane-active agent saponin specifically suppressed the Ca2+-dependent adenylate cyclase without inhibiting basal activity with Mg2+ATP or Mn2+ATP. The ciliary adenylate cyclase was shown to be distinct from the Ca2+-dependent guanylate cyclase; the two activities had different kinetic parameters and different responses to added calmodulin and calmodulin antagonists. Our results suggest that Ca2+ influx through the voltage-sensitive Ca2+ channels in the ciliary membrane may influence intraciliary cyclic AMP concentrations by regulating adenylate cyclase.  相似文献   

16.
The calcium signal and phosphatidylinositol breakdown in 2H3 cells   总被引:23,自引:0,他引:23  
Phosphatidylinositol (PI) and its phosphorylated derivatives are rapidly broken down in 2H3 cells stimulated with antigen, with a time course which coincides with the generation of the Ca signal. Stimulated PI breakdown is absolutely dependent on Ca2+ in the medium with a concentration dependence similar to that of the Ca signal and histamine release described in the preceding paper. However, PI breakdown does not depend on the rise in free cytoplasmic Ca2+ concentration in stimulated cells over the range 100 nM to 1 microM. Thus, stimulation by the ionophore A23187 causes only a small increase in PI breakdown and the Ca signal stimulated by antigen can be selectively blocked with appropriate concentrations of Zn2+ (100 microM) or La3+ (10-100 microM) which have small or negligible effects on stimulated PI breakdown. Both PI breakdown and the Ca signal appear to depend on a common external Ca2+ site (or sites) with Km approximately equal to 0.4 mM, and the data are consistent with either independent activation of PI phosphodiesterase and the Ca signal after antigenic stimulation, or with PI breakdown as a component of the mechanism by which the Ca signal is generated.  相似文献   

17.
The mechanism by which palmitoyl-CoA inhibits Ca2+ uptake in liver and heart mitochondria was examined. At a given concentration of palmitoyl-CoA, the extent of inhibition is inversely related to the concentration of the respiratory substrate succinate. Palmitoyl-CoA inhibition of uncoupler-stimulated respiration and respiration stimulated by ionophore-A23187-induced Ca2+ cycling is also relieved by high succinate concentrations. These effects of palmitoyl-CoA and succinate concentration are distinct from the increase in inner-membrane permeability, which can be produced by palmitoyl-CoA and Ca2+ [Beatrice, Palmer & Pfeiffer (1980) J. Biol. Chem. 255, 8663-8671]. The apparent K0.5 of the mitochondrial Ca2+ pump is not altered by palmitoyl-CoA. No or negligible effects of palmitoyl-CoA on the Ca2+-uptake rate are observed when ascorbate replaces succinate as an energy source. These findings, together with the known activity of palmitoyl-CoA as a competitive inhibitor of the dicarboxylate carrier [Morel, Lauquin, Lunardi, Duszynski & Vignais (1974) FEBS Lett. 39, 133-138], indicate that palmitoyl-CoA inhibits energy-linked Ca2+ transport by limiting the rate of electron transport through limitation of succinate entry into the mitochondria rather than by directly inhibiting the Ca2+ carrier.  相似文献   

18.
Isolated male germ cells of the mouse possess a heat-stable stimulatory activity of Ca2+-dependent, calmodulin-free phosphodiesterase. Ionic exchange chromatography allowed partial purification of the activator and the isolation of multiple forms of phosphodiesterase stimulation inhibitor. The activator has been identified as calmodulin on the basis of chromatographic behaviour and electrophoretic mobility. Quantitative analysis showed variations of calmodulin levels at different stages of spermatogenesis. Quantitative analysis of cyclic nucleotide hydrolysis in germ cell cytosol showed that the activity of Ca2+-dependent phosphodiesterase is different in meiotic and post-meiotic mouse male germ cells. These data suggest that calcium-dependent pathway and a Ca2+-dependent regulation of cyclic nucleotides are present in developing germ cells.  相似文献   

19.
While studying the effects of membrane phosphorylation on active Ca2+ transport in cardiac sarcoplasmic reticulum (SR) we used NaF (a conventional phosphatase inhibitor) in the Ca2+ transport assay medium to suppress protein dephosphorylation by endogenous phosphatases. Unexpectedly, depending on the experimental conditions employed, NaF was found to cause a strong inhibitory or stimulatory effect on ATP-dependent, oxalate-facilitated Ca2+ uptake (Ca2+ pump) activity of SR. Investigation of this phenomenon using canine cardiac SR revealed the following. Exposure of SR to NaF in the absence of Ca2+ or ATP in the Ca2+ transport assay medium (prior to initiating Ca2+ transport by the addition of Ca2+ or ATP) promoted a striking concentration-dependent inhibitory effect of NaF (50% and 90% inhibition with approx. 4 and 10 mM NaF, respectively) on Ca2+ uptake by SR; the magnitude of inhibition did not differ appreciably with varying oxalate concentrations. In contrast, exposure of SR to NaF in the presence of both Ca2+ and ATP resulted in a concentration-dependent stimulatory effect of NaF (half-maximal stimulation at approx. 2.5 mM NaF with 2.5 mM oxalate in assay) on Ca2+ uptake; the magnitude of stimulation decreased with increasing oxalate concentration (greater than 2-fold at 1 mM oxalate, 10% at 5 mM oxalate). The inhibitory effect prevailed when SR was exposed to NaF in the presence of Ca2+ alone (without ATP) or ATP alone (without Ca2+). Both the inhibitory and stimulatory effects of NaF were specific to fluoride ion, as NaCl (1-10 mM) showed no effect on Ca2+ uptake by SR under identical assay conditions. A persistently less active state of the Ca2+ pump (evidenced by decreased Ca2+ transport rates) resulted upon pretreatment of SR with NaF in the absence of Ca2+ or ATP; presence of Ca2+ and ATP during pretreatment prevented this transition. The inhibitory action of NaF on the Ca2+ pump was accompanied by a two-fold increase in K0.5 for Ca2+ and decrements in Hill coefficient (nH) and Ca(2+)-stimulated ATP hydrolysis, as well as steady-state level of Ca(2+)-induced phosphoenzyme. The stimulatory effect of NaF, on the other hand, was associated with an increase in the ratio of Ca2+ transported/ATP hydrolysed with only minor changes, if any, in the above parameters. These findings imply that the divergent effects of fluoride are dependent on specific conformational states of the Ca(2+)-ATPase which evolve during the catalytic and ion transport cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
We examined the role of Ca(2+) in the control of basal and hormone-stimulated ornithine decarboxylase activity in isolated pig granulosa cells maintained under chemically defined conditions in vitro. Omission of Ca(2+) from the incubation medium (measured Ca(2+) concentration 5mum) decreased basal enzymic activity, and significantly (P<0.01) impaired the response to maximally stimulating doses of either lutropin or follitropin. No significant alteration occurred in the concentration of either gonadotropin required to elicit half-maximal effects. The addition of EGTA (1.27-2.0mm) to chelate residual extracellular Ca(2+) further decreased hormone-induced rises in ornithine decarboxylase activity. Despite the presence of 1.27mm concentrations of extracellular Ca(2+), the administration of presumptive Ca(2+) antagonists, believed to impair trans-membrane Ca(2+) influx [verapamil (10-100mum), nifedipine (1-100mum) or CoCl(2) (1mm)] suppressed hormone-stimulated ornithine decarboxylase activity. The inhibitory effects of verapamil or of Ca(2+) omission from the medium were not overcome by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.25mm), or by cholera toxin, or by an exogenously supplied cyclic AMP analogue, 8-bromo cyclic AMP. Conversely, micromolar concentrations of a putative bivalent-cation ionophore, A23187, increased significantly the stimulation of ornithine decarboxylase activity by saturating concentrations of lutropin or 8-bromo cyclic AMP. Thus the present observations implicate Ca(2+) ions in the modulation of hormone action and cellular function in normal ovarian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号