共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sufficient evidence has accumulated to identify DNA as the relevant pharmacological target of antitumor cisplatin [cis-diamminedichloroplatinum(II)]. This drug is administered intravenously so that before it reaches DNA in the nucleus of tumor cells it may interact with various compounds including sulfur-containing molecules such as L-methionine or the compounds containing these residues. L-Methionine increases the rate of reaction of cisplatin with monomeric guanosine 5'-monophosphate, and it was suggested on the basis of these results previously obtained by other authors that methionine residues could mediate the transfer of platinum onto DNA. We studied in the present work the reactions of the 1:1 complex formed between cisplatin and L-methionine or N-acetyl-L-methionine with synthetic, single- and double-stranded oligodeoxyribonucleotides and natural, high molecular mass DNA by using high-pressure liquid chromatography and flameless atomic absorption spectrophotometry. The results demonstrate that both L-methionine and N-acetyl-L-methionine decrease the rate of reaction of cisplatin with base residues in natural, high molecular mass DNA. Thus, the possibility that cisplatin bound to methionine residues serves as a drug reservoir available for platination of DNA in the nucleus of tumor cells appears unlikely. 相似文献
3.
DNA unwinding produced by site-specific intrastrand cross-links of the antitumor drug cis-diamminedichloroplatinum(II) 总被引:17,自引:0,他引:17
The DNA unwinding produced by specific adducts of the antitumor drug cis-diamminedichloroplatinum(II) has been quantitatively determined. Synthetic DNA duplex oligonucleotides of varying lengths with two base pair cohesive ends were synthesized and characterized that contained site-specific intrastrand N7-purine/N7-purine cross-links. Included are cis-[Pt(NH3)2[d(GpG)]], cis-[Pt(NH3)2(d(ApG)]], and cis-[Pt(NH3)2[d(GpTpG)]] adducts, respectively referred to as cis-GG, cis-AG, and cis-GTG. Local DNA distortions at the site of platination were amplified by polymerization of these monomers and quantitatively evaluated by using polyacrylamide gel electrophoresis. The extent of DNA unwinding was determined by systematically varying the interplatinum distance, or phasing, in polymers containing the adducts. The multimer that migrates most slowly gives the optimal phasing for cooperative bending, from which the degree of unwinding can be obtained. We find that the cis-GG and cis-AG adducts both unwind DNA by 13 degrees, while the cis-GTG adduct unwinds DNA by 23 degrees. In addition, experiments are presented that support previous studies revealing that a hinge joint forms at the sites of platination in DNA molecules containing trans-GTG adducts. On the basis of an analysis of the present and other published studies of site-specifically modified DNA, we propose that local duplex unwinding is a major determinant in the recognition of DNA damage by the Escherichia coli (A)BC excinuclease. In addition, local duplex unwinding of 13 degrees and bending by 35 degrees are shown to correlate well with the recognition of platinated DNA by a previously identified damage recognition protein (DRP) in human cells. 相似文献
4.
The effect of binding of an antitumour drug cis-diamminedichloroplatinum(II) (cis-[Pt(NH3)2Cl2]) to DNA on cutting effectiveness of BamHI, EcoRI, and SalI restriction endonucleases was quantitatively determined. The platinum complex inhibits the cleavage of plasmid pHC624 DNA linearized by BglI restrictase. From the present results we conclude that the yield of restriction endonuclease cleavage is also lowered if the platinum complex is bound outside the recognition DNA sequence of these enzymes. We propose that the origin of platinum adducts on DNA outside the recognition sequence can decrease the yield of restriction enzyme cleavage via inducing a conformational perturbation in the recognition DNA sequence of these enzymes and also via inhibition of the linear diffusion of these enzymes on DNA. 相似文献
5.
Effect of the antitumor drug cis-diamminedichloroplatinum(II) and related platinum complexes on eukaryotic DNA replication 总被引:6,自引:0,他引:6
An SV40-based in vitro replication system has been used to examine the effects of platinum compounds on eukaryotic DNA replication. Plasmid templates containing the SV40 origin of replication were modified with the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) or the inactive analogues [Pt(dien)Cl]+ and trans-DDP. The platinated plasmids were used as templates for DNA synthesis by the DNA polymerases present in cytosolic extracts prepared from human cell lines HeLa and 293. Bifunctional adducts formed by cis- and trans-DDP inhibited DNA replication by 95% at a bound drug to nucleotide ratio [(D/N)b] of less than 9 x 10(-4), in contrast to the monofunctional [Pt(dien)Cl]+ analogues, which required a (D/N)b of 3.4 x 10(-3) for 62% inhibition of DNA replication. An average of two platinum adducts per genome was sufficient for inhibition of DNA replication by cisplatin. When trans-DDP-modified, but not cis-DDP-modified, SV40 origin containing plasmids [(D/N)b = 1.7 x 10(-3)] were allowed to incubate in the 293 cytosolic extracts for 1 h prior to addition of T-antigen to initiate replication, DNA synthesis was restored to 30% of control. This result suggested the presence of an activity in the extracts that reactivates trans-DDP-modified DNA templates for replication. This hypothesis was confirmed by an in vitro nucleotide excision repair assay that revealed activity in 293 and HeLa cell extracts selective for trans-DDP-modified plasmid DNAs. Such selective repair of trans-DDP-damaged DNA in human cells would contribute to its lack of antitumor activity. 相似文献
6.
Chemical probes of the conformation of DNA modified by cis-diamminedichloroplatinum(II) 总被引:15,自引:0,他引:15
The purpose of this work was to analyze at the nucleotide level the distortions induced by the binding of cis-diamminedichloroplatinum(II) (cis-DDP) to DNA by means of chemical probes. In order to test the chemical probes, experiments were first carried out on two platinated oligonucleotides. It has been verified by circular dichroism and gel electrophoresis that the binding of cis-DDP to an AG or to a GTG site within a double-stranded oligonucleotide distorts the double helix. The anomalously slow electrophoretic mobility of the multimers of the platinated and ligated oligomers strongly suggests that the platinated oligonucleotides are bent. The reactivity of the oligonucleotide platinated at the GTG site with chloroacetaldehyde, diethyl pyrocarbonate, and osmium tetraoxide, respectively, suggests a local denaturation of the double helix. The 5'G residue and the T residue within the adduct are no longer paired, while the 3'G residue is paired. The double helix is more distorted (but not denatured) at the 5' side of the adduct than at the 3' side. In the case of the oligonucleotide platinated at the AG site, the double helix is also more distorted at the 5' side of the adduct than at the 3' side. The G residue within the adduct is paired. The reactivities of the chemical probes with six platinated DNA restriction fragments show that even at a relatively high level of platination only a few base pairs are unpaired but the double helix is largely distorted. No local denaturation has been detected at the GG sites separated from the nearest GG or AG sites by at least three bases pairs.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
Mutagenic and genotoxic effects of DNA adducts formed by the anticancer drug cis-diamminedichloroplatinum(II). 下载免费PDF全文
The toxicity and mutagenicity of three DNA adducts formed by the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP or cisplatin) were investigated in Escherichia coli. The adducts studied were cis-[Pt(NH3)2(d(GpG))] (G*G*), cis-[Pt(NH3)2(d(ApG))] (A*G*) and cis-[Pt(NH3)2(d(GpTpG))] (G*TG*), which collectively represent approximately 95% of the DNA adducts reported to form when the drug damages DNA. Oligonucleotide 24-mers containing each adduct were positioned at a known site within the viral strand of single stranded M13mp7L2 bacteriophage DNA. Following transfection into E. coli DL7 cells, the genomes containing the G*G*, A*G* and G*TG* adducts had survival levels of 5.2 +/- 1.2, 22 +/- 2.6 and 14 +/- 2.5% respectively, compared to unmodified genomes. Upon SOS induction, the survival of genomes containing the G*G* and A*G* adducts increased to 31 +/- 5.4 and 32 +/- 4.9% respectively. Survival of the genome containing the G*TG* adduct did not increase upon SOS induction. In SOS induced cells, the G*G* and A*G* adducts gave rise predominantly to G-->T and A-->T transversions respectively, targeted to the 5' modified base. In addition, A-->G transitions were detected for the A*G* adduct and low levels of tandem mutations at the 5' modified base as well as the adjacent 5' base were also observed for both adducts. The A*G* adduct was more mutagenic than the G*G* adduct, with a mutation frequency of 6% compared to 1.4% for the latter adduct. No cis-[Pt(NH3)2)2+ intrastrand crosslink-specific mutations were observed for the G*TG* adduct. 相似文献
8.
Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II) 总被引:18,自引:0,他引:18
Murine leukemia L1210 cells, either sensitive or resistant to the toxic action of the cancer chemotherapeutic agent cis-diamminedichloroplatinum(II), have been studied for potential differences in the formation and repair of drug-induced DNA damage. The sensitivity for these experiments was obtained by using the radiolabeled analogue [3H]-cis-dichloro(ethylenediamine)platinum(II). The resistant cells demonstrated a 40% reduction in drug accumulation but a qualitatively similar profile of DNA-bound adducts. These adducts resembled those previously characterized in pure DNA and represented intrastrand cross-links at GG, AG, and GNG (N is any nucleotide) sequences in DNA. Repair of these cross-links occurred in a biphasic manner: rapid for the first 6 h and then much slower. The resistant cells removed up to 4 times as many adducts during the rapid phase of repair. The extent of this repair did not directly correlate with the degree of resistance in that cells with 100-fold resistance were only slightly more effective at repair than cells with 20-fold resistance. Therefore, although enhanced DNA repair is thought to contribute markedly to drug resistance, other mechanisms for tolerance of DNA damage may also occur in these cells. 相似文献
9.
Reaction of cis-diamminedichloroplatinum (II) and DNA in B or Z conformation 总被引:5,自引:0,他引:5 下载免费PDF全文
The nature of the adducts and the conformational changes produced in poly(dG-m5dC).poly(dG-m5dC) by cis-diamminedichloroplatinum(II) (cisPt) have been studied. In the reaction of cisPt and B-DNA, the main adduct is bidentate and arises from an intrastrand cross-link between two guanine residues separated by a cytosine. This was deduced from the study of the compounds by t.l.c. after acid hydrolysis of the polymer. The platinated polymer is not digested by S1 nuclease. The antibodies to Z-DNA bind to the platinated polymer with a smaller affinity than to poly (dG-br5dC).poly(dG-br5dC). The c.d. spectrum differs from that of poly(dG-br5dC).poly(dG-br5dC) or poly(dG-m5dC).poly-(dG-m5dC) in Z conformation. It is concluded that the bidentate adduct induces a conformational change from the B form towards a distorted Z form. In the reaction of cisPt and Z-DNA, a monodentate adduct is formed. This adduct stabilizes the Z conformation as shown by c.d. and binding to the anti-Z-DNA antibodies. At room temperature, the second function of the drug can still react with small ligands such as NH4HCO3. By heating, the second function reacts with a guanine residue. A bidentate adduct is formed as in the reaction of cisPt and B-DNA and it induces a transition from the Z form to the distorted Z form. 相似文献
10.
Conformation of DNA modified at a d(GG) or a d(AG) site by the antitumor drug cis-diamminedichloroplatinum(II) 总被引:7,自引:0,他引:7
The purpose of this work was the comparison of the conformational changes induced in the double helix by the adducts formed at d(GG) and d(AG) sites in the reaction between the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP) and DNA. Two duplexes (20-mer) containing either a single d(A*G*) or a single d(G*G) adduct were studied by means of gel electrophoresis and artificial nuclease and chemical probes. It is shown that the d(G*G*) and the d(A*G*) adducts bend DNA similarly, but at the nucleotide level they distort differently the double helix. We suggest that the weaker interactions between platinated A residues and the other nucleotides, as compared to the interactions between platinated G residues and the other nucleotides, are largely responsible for the differences in the distortions induced in DNA by the d(A*G) and d(G*G*) adducts. This suggestion is supported by the study of the distortions induced in duplexes by the d(G*G*) adducts, one of the platinated G residues being paired with a T residue. 相似文献
11.
Characterization of the adducts produced in DNA by cis-diamminedichloroplatinum(II) and cis-dichloro(ethylenediamine)platinum(II) 总被引:20,自引:0,他引:20
A Eastman 《Biochemistry》1983,22(16):3927-3933
12.
Molecular mechanics modeling of oligonucleotide adducts of the antitumor drug cis-diamminedichloroplatinum(II) 总被引:3,自引:0,他引:3
In order to assess the geometric changes caused when the antitumor drug cis-diammine-dichloroplatinum(II) (cis-DDP) binds to DNA, molecular mechanics calculations were performed on two double-stranded and two single-stranded oligonucleotides and their adducts with cis-{Pt(NH3)2}2+. For the platinated duplexes, three model structures have been derived, one involving only local disruption of base pairing with retention of the helix directionality, and two models showing pronounced kinking of the double helix. One of the kinked models is stabilized by bridging sodium ions. The other kinked duplex model shows retention of all Watson–Crick base pairing, including that of the coordinated guanines. All models exhibit hydrogen bonds connecting one ammine ligand of platinum with one or two phosphate groups located at the 5′ side of the platinated strand. 相似文献
13.
A Osuna L M Ruiz-Perez M C Lopez S Castanys F Gamarro D G Craciunescu C Alonso 《The Journal of parasitology》1987,73(2):272-277
The present report deals with the alterations produced by cis-diamminedichloroplatinum (II) (DDP), and 2 of its analogs: cis-Pt(II)(tranylcypromine)2Cl2 and cis-Pt(II)(benzothiazole)2Cl2 in cultured epimastigote forms of Trypanosoma cruzi. Studies have been performed at the ultrastructural level and the inhibitory effect of these complexes on macromolecule synthesis, evaluated by 3H-thymidine, 3H-uridine, and 3H-leucine incorporation, has been investigated. DDP at concentrations of 50 and 100 micrograms/ml does not inhibit significantly the incorporation of radioactive precursors, but a clear decrease was observed with the 2 analogs. Eight hours of treatment at a concentration of 10 micrograms/ml rendered in all 3 cases an increase in autophagic vacuoles and lipids as well as an abnormal condensation of the nucleus chromatin. 相似文献
14.
Mapping of cis-diamminedichloroplatinum(II) (cis-DDP, cisplatin) DNA adducts over >3000 nucleotides was carried out using a replication blockage assay. The sites of inhibition of modified T4 DNA polymerase, also referred to as stop sites, were analyzed to determine the effects of local sequence context on the distribution of intrastrand cisplatin cross-links. In a 3120 base fragment from replicative form M13mp18 DNA containing 24.6% guanine, 25.5% thymine, 26.9% adenine and 23.0% cytosine, 166 individual stop sites were observed at a bound platinum/nucleotide ratio of 1-2 per thousand. The majority of stop sites (90%) occurred at G(n>2) sequences and the remainder were located at sites containing an AG dinucleotide. For all of the GG sites present in the mapped sequences, including those with Gn(>)2, 89% blocked replication, whereas for the AG sites only 17% blocked replication. These blockage sites were independent of flanking nucleotides in a sequence of N(1)G*G*N(2) where N(1), N(2) = A, C, G, T and G*G* indicates a 1,2-intrastrand platinum cross-link. The absence of long-range sequence dependence was confirmed by monitoring the reaction of cisplatin with a plasmid containing an 800 bp insert of the human telomere repeat sequence (TTAGGG)(n). Platination reactions monitored at several formal platinum/nucleotide ratios or as a function of time reveal that the telomere insert was not preferentially damaged by cisplatin. Both replication blockage and telomere-insert plasmid platination experiments indicate that cisplatin 1,2-intrastrand adducts do not form preferentially at G-rich sequences in vitro. 相似文献
15.
The antisera specific for dehistonized Hela cell chromatin were obtained by injecting rabbits or goats. Treatment of chromatin with cis-DDP crosslinked the active proteins to DNA thus preventing dissociation of the proteins in a high salt environment.Immunochemical staining of electrophoretically separated chromosomal proteins transferred to nitrocellulose sheets revealed that cis-DDP among others crosslinked the protein with m.w. of about 81 000. This protein is the only major protein antigen presented in several human tumors and absent in normal human tissues. 相似文献
16.
The in vivo cross-linking of cytokeratins to DNA in intact Novikoff ascites hepatoma cells exposed to the chromium salt K2CrO4 and cis-diamminedichloroplatinum(II) (cis-DDP) was studied. Cytokeratin-DNA complexes were obtained by high-speed centrifugation of cells solubilized in buffered 4% sodium dodecyl sulfate. The cytokeratins were identified electrophoretically and immunologically by use of polyclonal and monoclonal antibodies. Time dependence experiments showed that detectable cross-linking occurred after cells were exposed to K2CrO4 for at least 4 h, and the amount of keratin-DNA complexes increased with the incubation time. Each of the three Novikoff ascites hepatoma cytokeratins (p39, p49, and p56) showed a different apparent rate of cross-link formation with DNA. Cytokeratin-DNA complexes were detectable in our system only with K2CrO4 concentrations of 200 microM or greater, and saturation in cross-linking was effected at approximately 2 mM. Higher K2CrO4 concentrations (up to 5 mM) did not produce further significant increases in the amount of cross-linked cytokeratins. Chromium and cis-DDP cross-linked the same cytokeratins at approximately the same ratios; however, both agents cross-linked the major cytokeratins selectively, since not all cytokeratins present in Novikoff hepatoma cell lysates could be cross-linked to DNA. Further evidence of DNA-cytokeratin complexes was obtained by CsCl gradient centrifugation. Our results document the ability of chromate and cis-DDP to produce DNA-cytokeratin cross-links in vivo and show that in live Novikoff hepatoma cells some, but not all, of the components of intermediate filaments are within cross-linking distance of DNA. 相似文献
17.
Rearrangement of interstrand cross-links into intrastrand cross-links in cis-diamminedichloroplatinum(II)-modified DNA. 下载免费PDF全文
In the reaction of the anticancer drug cis-diamminedichloroplatinum(II) (cis-DDP) with DNA, bifunctional intrastrand and interstrand cross-links are formed. In this work, we show that at 37 degrees C interstrand cross-links (ICL) are labile and rearrange into intrastrand cross-links. The ICL instability was first studied with a 10 base pairs (bp) double-stranded oligonucleotide containing a unique site-specific ICL resulting from chelation of the N7 position of two guanine residues on the opposite strands of DNA at the d(GC/GC) site by a cis-diammineplatinum(II) residue. The bonds between the platinum and the N7 of guanine residues within the interstrand adduct are cleaved. In 50 mM NaCl or NaClO4, this cleavage results in the formation of monofunctional adducts which subsequently form intrastrand cross-links. One cleavage reaction takes place per cross-linked duplex in either of both DNA strands. Whereas the starting cross-linked 10 bp duplex is hydrogen bonded, the two complementary DNA strands separate after the cleavage of the ICL. Under these conditions, the cleavage reaction is irreversible allowing its rate measurement (t1/2= 29+/-2 h) and closure of monofunctional adducts to intrastrand cross-links occurs within single-stranded DNA. Within a longer cross-linked oligonucleotide (20 bp), ICL are apparently more stable (t1/2= 120+/-12 h) as a consequense of monofunctional adducts closure back to ICL. We propose that the ICL cleavage is reversible in DNA and that these adducts rearrange finally into intrastrand cross-links. Our results could explain an 'ICL unhooking' in previously reported in vivo repair studies [Zhenet al. (1993)Carcinogenesis14, 919-924]. 相似文献
18.
19.
Reaction of nucleic acids with cis-diamminedichloroplatinum(II): interstrand cross-links 总被引:4,自引:0,他引:4
In the reaction of cis-diamminedichloroplatinum(II) (cis-DDP) with double-helical (dC-dG)4.(dC-dG)4 or (dC-dG)5.(dC-dG)5, intrastrand and interstrand cross-links between two guanine residues are formed. This is shown by gel electrophoresis in denaturing conditions of the reaction products and by high-performance liquid chromatography (HPLC) analysis of the products digested with nuclease P1. In the reaction of cis-DDP and poly(dG-dC).poly(dG-dC), at relatively low levels of platination, it is mainly interstrand cross-links between two guanine residues that are formed. This is shown by HPLC analysis of the nuclease P1 digest and by gel electrophoresis in denaturing and nondenaturing conditions of the platinated polymer after cleavage with the restriction enzyme HhaI. Moreover, the antibodies to platinated poly(dG-dC).poly(dG-dC) cross-react with the interstrand cross-linked (dC-dG)4 or (dC-dG)5 but not with the intrastrand cross-linked (dC-dG)4 or (dC-dG)5. These antibodies cross-react with platinated natural DNA. The amount of interstrand cross-links deduced from radioimmunoassays (0.5% of the total bound platinum) is lower than that (2%) deduced by gel electrophoresis in denaturing conditions of a platinated DNA restriction fragment. By gel electrophoresis, it is also shown that in vitro the isomer trans-DDP is more efficient in forming interstrand cross-links than cis-DDP. 相似文献
20.
The structural distortion of oligonucleotides upon cis-PtCl2(NH3)2[d(T-C-T-C-G-G-T-C-T-C)-N7(5), N7(6)] reveals shifting of 4 phosphorus resonances due to platination. 3 Resonances could be assigned by selective 31P-irradiation, showing P(6) (P between the two Gs) to be shifted 1.5 ppm to low field. In the concomitant double strands P(6) is shifted 0.9 ppm to lower field. A similar peak has been observed in platinated salmon sperm DNA (37 degrees C), indicating that Pt-binding to GpG-fragments in DNA is similar to that found for the decanucleotide, so the distortion of DNA might be comparable. 相似文献