首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Chitin synthesis and chitin degradation play an important role in cellular morphogenesis and influence the cell shape of fungal organisms. The Candida albicans genome contains four chitinase genes, CHT1, CHT2, and CHT3, which are homologous to the Saccharomyces cerevisiae CTS1 gene and C. albicans CHT4, which is homologous to S. cerevisiae CTS2. To determine which of the C. albicans CHT genes represents the functional homolog of the S. cerevisiae CTS1 gene we constructed mutants of these genes and characterized the resulting phenotypes using morphological assays such as in vivo time lapse microscopy and enzymatic assays to determine the chitinase activity. Deletion of CaCHT1 and CaCHT2 provided no phenotypic alterations in liquid culture but resulted in increased hyphal growth on solid media. Deletion of CaCHT3 generated chains of unseparated cells in the yeast growth phase strongly resembling the cts1 deletion phenotype of S. cerevisiae cells. Expression of CHT3 under control of the regulatable MAL2-promoter in C. albicans resulted in the reversion of the cell separation defect when cells were grown in maltose. Cht3, but not Cht2 when expressed in S. cerevisiae was also able to reverse the cell separation defect of the S. cerevisiae c ts1 deletion strain. Measurements of chitinase activity from yeast cells of C. albicans showed that Cht2 is bound to cells, consistent with it being GPI-anchored while Cht3 is secreted into growth medium; Cht3 is also the principal, observed activity.  相似文献   

3.
Efficient iron acquisition is an essential requirement for growth of pathogenic organisms in the iron-poor host environment. In Saccharomyces cerevisiae, high-affinity iron import depends on the multicopper ferroxidase ScFet3. ScFet3 biogenesis in the trans-Golgi compartment requires a copper-transporting P-type ATPase, ScCcc2. Here, we describe the isolation by functional complementation of a Ccc2 homologue from the pathogenic yeast Candida albicans. CaCcc2 is functionally distinct from a previously described C. albicans copper-transporting P-type ATPase, CaCrp1, which appears to be specifically involved in copper detoxification. Regulation of CaCCC2 and the phenotype of the homozygous CaCCC2 deletion indicate that it is required for high-affinity iron import, making it the bona fide CCC2 homologue of C. albicans. Remarkably, in a mouse model of systemic infection, the Caccc2Delta strain displayed robust proliferation and no significant reduction in pathogenicity, suggesting the existence of alternative mechanisms of iron uptake from host tissues. We identify haemin and haemoglobin as potential iron sources that can be used by C. albicans in a CaCcc2-independent manner.  相似文献   

4.
The UDP-glucose:glycoprotein glucosyltransferase (UGGT) is an endoplasmic reticulum sensor for quality control of glycoprotein folding. Saccharomyces cerevisiae is the only eukaryotic organism so far described lacking UGGT-mediated transient reglucosylation of N-linked oligosaccharides. The only gene in S. cerevisiae with similarity to those encoding UGGTs is KRE5. S. cerevisiae KRE5 deletion strains show severely reduced levels of cell wall beta-1,6-glucan polymer, aberrant morphology, and extremely compromised growth or lethality, depending on the strain background. Deletion of both alleles of the Candida albicans KRE5 gene gives rise to viable cells that are larger than those of the wild type (WT), tend to aggregate, have enlarged vacuoles, and show major cell wall defects. C. albicans kre5/kre5 mutants have significantly reduced levels of beta-1,6-glucan and more chitin and beta-1,3-glucan and less mannoprotein than the WT. The remaining beta-1,6-glucan, about 20% of WT levels, exhibits a beta-1,6-endoglucanase digestion pattern, including a branch point-to-linear stretch ratio identical to that of WT strains, suggesting that Kre5p is not a beta-1,6-glucan synthase. C. albicans KRE5 is a functional homologue of S. cerevisiae KRE5; it partially complements both the growth defect and reduced cell wall beta-1,6-glucan content of S. cerevisiae kre5 viable mutants. C. albicans kre5/kre5 homozygous mutant strains are unable to form hyphae in several solid and liquid media, even in the presence of serum, a potent inducer of the dimorphic transition. Surprisingly the mutants do form hyphae in the presence of N-acetylglucosamine. Finally, C. albicans KRE5 homozygous mutant strains exhibit a 50% reduction in adhesion to human epithelial cells and are completely avirulent in a mouse model of systemic infection.  相似文献   

5.
6.
7.
According to different metabolic situations in various stages of Candida albicans pathogenesis the regulation of carbohydrate metabolism was investigated. We report the genetic characterization of all major C. albicans gluconeogenic and glyoxylate cycle genes (fructose-1,6-bisphosphatase, PEP carboxykinase, malate synthase and isocitrate lyase) which were isolated after functional complementation of the corresponding Saccharomyces cerevisiae deletion mutants. Remarkably, the regulation of the heterologously expressed C. albicans gluconeogenic and glyoxylate cycle genes was similar to that of the homologous S. cerevisiae genes. A C. albicans DeltaCafbp1 deletion strain failed to utilize non-fermentable carbon sources but hyphal growth was not affected. Our results show that regulation of gluconeogenesis in C. albicans is similar to that of S. cerevisiae and that the current knowledge on how gluconeogenesis is regulated will facilitate the physiological understanding of C. albicans.  相似文献   

8.
9.
10.
Stimulation of cells of the macrophage lineage is a crucial step in the sensing of yeasts by the immune system. Glycans present in both Candida albicans and Saccharomyces cerevisiae cell walls have been shown to act as ligands for different receptors leading to different stimulating pathways, some of which need receptor co-involvement. However, among these ligand-receptor couples, none has been shown to discriminate the pathogenic yeast C. albicans. We explored the role of galectin-3, which binds C. albicans beta-1,2 mannosides. These glycans are specifically and prominently expressed at the surface of C. albicans but not on S. cerevisiae. Using a mouse cell line and galectin-3-deleted cells from knockout mice, we demonstrated a specific enhancement of the cellular response to C. albicans compared with S. cerevisiae, which depended on galectin-3 expression. However, galectin-3 was not required for recognition and endocytosis of yeasts. In contrast, using PMA-induced differentiated THP-1, we observed that the presence of TLR2 was required for efficient uptake and endocytosis of both C. albicans and S. cerevisiae. TLR2 and galectin-3, which are expressed at the level of phagosomes containing C. albicans, were shown to be associated in differentiated macrophages after incubation with this sole species. These data suggest that macrophages differently sense C. albicans and S. cerevisiae through a mechanism involving TLR2 and galectin-3, which probably associate for binding of ligands expressing beta-1,2 mannosides specific to the C. albicans cell wall surface.  相似文献   

11.
Candida albicans is the single, most frequently isolated human fungal pathogen. As with most fungal pathogens, the factors which contribute to pathogenesis in C. albicans are not known, despite more than a decade of molecular genetic analysis. Candida albicans was thought to be asexual until the discovery of the MTL loci homologous to the mating type (MAT) loci in Saccharomyces cerevisiae led to the demonstration that mating is possible. Using Candida albicans mutants in genes likely to be involved in mating, we analysed the process to determine its similarity to mating in Saccharomyces cerevisiae. We examined disruptions of three of the genes in the MAPK pathway which is involved in filamentous growth in both S. cerevisiae and C. albicans and is known to control pheromone response in the former fungus. Disruptions in HST7 and CPH1 blocked mating in both MTLa and MTL(alpha) strains, whereas disruptions in STE20 had no effect. A disruption in KEX2, a gene involved in processing the S. cerevisiae pheromone Mf(alpha), prevented mating in MTL(alpha) but not MTLa cells, whereas a disruption in HST6, the orthologue of the STE6 gene which encodes an ABC transporter responsible for secretion of the Mfa pheromone, prevented mating in MTLa but not in MTL(alpha) cells. Disruption of two cell wall genes, ALS1 and INT1, had no effect on mating, even though ALS1 was identified by similarity to the S. cerevisiae sexual agglutinin, SAG1. The results reveal that these two diverged yeasts show a surprising similarity in their mating processes.  相似文献   

12.
[目的]白念珠菌CaFTH1是一种铁通透酶编码基因.为了研究CaFTH1对胞内铁代谢和液泡功能的影响,构建fth1△/△单基因缺失菌株和fth1△/△fet33△/△双基因缺失菌株.[方法]利用生物信息学软件对CaFTH1进行序列比对和分析;通过实时荧光定量PCR技术研究铁离子丰度对CaFTH1表达的影响;利用PCR介导的同源重组方法构建基因缺失菌株;利用原子吸收光谱方法测定基因缺失菌株胞内铁含量的变化,并对基因缺失菌株在缺铁条件和菌丝诱导条件下的生长状况进行研究;通过代谢转换实验,研究CaFTH1对细胞液泡功能的影响.[结果]序列比对结果表明白念珠菌CaFth1蛋白属于铁通透酶Ftr1超家族,与酿酒酵母液泡膜蛋白ScFth1具有最高的同源性.铁匮乏条件会诱导CaFTH1的表达,而富铁条件则会抑制其表达.白念珠菌CaFTH1的缺失会导致胞内铁含量的降低,fth1△/△突变菌株基础上CaFET33的缺失则会进一步降低胞内铁含量.在缺铁条件下,fth1△/△fet33△/△双基因缺失菌株在一定程度上表现出代谢转换能力的缺陷.另外,在某些固体菌丝诱导培养条件下,fth1△/△fet33△/△缺失菌株菌落表面形成褶皱能力显著增强;而在液体菌丝诱导条件下,则表现为增强的菌丝聚集能力.[结论]CaFTH1是一种低铁应答基因,在维持白念珠菌胞内铁离子稳态及液泡功能方面具有重要作用.CaFTH1和CaFET33基因的双缺失会对白念珠菌的菌落形态和菌丝聚集产生影响.  相似文献   

13.
14.
Structural studies of cell wall components of the pathogenic yeast Candida albicans have demonstrated the presence of beta-1,2-linked oligomannosides in phosphopeptidomannan and phospholipomannan. During C. albicans infection, beta-1,2-oligomannosides play an important role in host/pathogen interactions by acting as adhesins and by interfering with the host immune response. Despite the importance of beta-1,2-oligomannosides, the genes responsible for their synthesis have not been identified. The main reason is that the reference species Saccharomyces cerevisiae does not synthesize beta-linked mannoses. On the other hand, the presence of beta-1,2-oligomannosides has been reported in the cell wall of the more genetically tractable C. albicans relative, P. pastoris. Here we present the identification, cloning, and characterization of a novel family of fungal genes involved in beta-mannose transfer. Employing in silico analysis, we identified a family of four related new genes in P. pastoris and subsequently nine homologs in C. albicans. Biochemical, immunological, and structural analyses following deletion of four genes in P. pastoris and deletion of four genes acting specifically on C. albicans mannan demonstrated the involvement of these new genes in beta-1,2-oligomannoside synthesis. Phenotypic characterization of the strains deleted in beta-mannosyltransferase genes (BMTs) allowed us to describe the stepwise activity of Bmtps and acceptor specificity. For C. albicans, despite structural similarities between mannan and phospholipomannan, phospholipomannan beta-mannosylation was not affected by any of the CaBMT1-4 deletions. Surprisingly, depletion in mannan major beta-1,2-oligomannoside epitopes had little impact on cell wall surface beta-1,2-oligomannoside antigenic expression.  相似文献   

15.
16.
17.
Glutamine:fructose-6-phosphate amidotransferase (glucosamine-6-phosphate synthase) catalyzes the first step of the hexosamine pathway required for the biosynthesis of cell wall precursors. The Candida albicans GFA1 gene was cloned by complementing a gfa1 mutation of Saccharomyces cerevisiae (previously known as gcn1-1; W. L. Whelan and C. E. Ballou, J. Bacteriol. 124:1545-1557, 1975). GFA1 encodes a predicted protein of 713 amino acids and is homologous to the corresponding gene from S. cerevisiae (72% identity at the nucleotide sequence level) as well as to the genes encoding glucosamine-6-phosphate synthases in bacteria and vertebrates. In cell extracts, the C. albicans enzyme was 4-fold more sensitive than the S. cerevisiae enzyme to UDP-N-acetylglucosamine (an inhibitor of the mammalian enzyme) and 2.5-fold more sensitive to N3-(4-methoxyfumaroyl)-L-2,3-diaminopropanoic acid (a glutamine analog and specific inhibitor of glucosamine-6-phosphate synthase). Cell extracts from the S. cerevisiae gfa1 strain transformed with the C. albicans GFA1 gene exhibited sensitivities to glucosamine-6-phosphate synthase inhibitors that were similar to those shown by the C. albicans enzyme. Southern hybridization indicated that a single GFA1 locus exists in the C. albicans genome. Quantitative Northern (RNA) analysis showed that the expression of GFA1 in C. albicans is regulated during growth: maximum mRNA levels were detected during early log phase. GFA1 mRNA levels increased following induction of the yeast-to-hyphal-form transition, but this was a response to fresh medium rather than to the morphological change.  相似文献   

18.
Sec20p is an essential Type-II membrane protein of the human fungal pathogen Candida albicans, which is thought to be involved in mediating retrograde vesicle traffic from the Golgi to the endoplasmic reticulum (ER). Using an epitope-tagged Sec20p we obtained evidence for its localization in ER membranes, which is consistent with its proposed role in an ER-tSNARE complex. Two genes encoding potential interaction partners for Sec20p, Tip20p and Ufe1p, were identified in genomic sequences of C. albicans; these show 18% and 27% identity, respectively, to homologues in Saccharomyces cerevisiae. An interaction between the cytoplasmic domain of Sec20p and Tip20p was demonstrated by two-hybrid analysis; in addition, Tip20p was found to form homodimers. Interaction between Sec20p and Tip20p in vivo was verified by co-immunoprecipation experiments. CaUFE1, which encodes a potential ER-tSNARE, was able to complement a thermosensitive ufe1 mutation in S. cerevisiae, suggesting functional conservation between the two fungal proteins. Thus, although the sequences of some components of the ER-tSNARE complex have diverged considerably during evolution, it appears that they have retained similar functions in C. albicans and S. cerevisiae.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号