首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The photosynthetic properties of a range of lichens (eight species) containing green algal primary photobionts of either the genus Coccomyxa, Dictyochloropsis or Trebouxia were examined with the aim of obtaining a better understanding for the different CO2 acquisition strategies of lichenized green algae. Fast transients of light/dark-dependent CO2 uptake and release were measured in order to screen for the presence or absence of a photosynthetic CO2-concentrating mechanism (CCM) within the photobiont. It was found that lichens with Trebouxia photobionts (four species) were able to accumulate a small pool of inorganic carbon (DIC; 70–140 nmol per mg chlorophyll (Chl)), in the light, which theoretically may result in, at least, a two to threefold increase in the stromal CO2 concentration, as compared to that in equilibrium with ambient air. The other lichens (four species), which were tripartite associations between a fungus, a cyanobacterium (Nostoc) and a green alga (Coccomyxa or Dictyochloropsis) accumulated a much smaller pool of DIC (10–30 nmol·(mg Chl)–1). This pool is most probably associated with the previously documented CCM of Nostoc, inferred from the finding that free-living cells of Coccomyxa did not show any signs of DIC accumulation. In addition, the kinetics of fast CO2 exchange for free-living Nostoc were similar to those of intact tripartite lichens, especially in their responses to the CCM and the carbonic anhydrase (CA) inhibitor ethoxyzolamide. Trebouxia lichens had a higher photosynthetic capacity at low and limiting external CO2 concentrations, with an initial slope of the CO2-response curve of 2.6–3.9 mol·(mg Chl)–1·h–1·Pa–1, compared to the tripartite lichens which had an initial slope of 0.5–1.1 mol-(mg Chl)–1·h–1·-Pa–1, suggesting that the presence of a CCM in the photobiont affects the photosynthetic performance of the whole lichen. Regardless of these indications for the presence or absence of a CCM, ethoxyzolamide inhibited the steady-state rate of photosynthesis at low CO2 in all lichens, indicating a role of CA in the photosynthetic process within all of the photobionts. Measurements of CA activity in photobiont-enriched homogenates of the lichens showed that Coccomyxa had by far the highest activity, while the other photobionts displayed only traces or no activity at all. As the CCM is apparently absent in Coccomyxa, it is speculated that this alga compensates for this absence with high internal CA activity, which may function to reduce the CO2-diffusion resistance through the cell.Abbreviations CA carbonic anhydrase (EC 4.2.1.1) - CCM CO2-concentrating mechanism - Chl chlorophyll - DIC dissolved inorganic carbon - EZ ethoxyzolamide or 6-ethoxy-2-benzo-thiazole-2-sulfonamide - GA glycolaldehyde - Hepps 4-(2-hydroxyethyl)-l-piperazinepropanesulfonic acid - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) This research was supported by a grant from the Swedish Natural Sciences Resource Council to K.P.  相似文献   

2.
Air-grown cells of Porphyridium purpurem contain appreciable carbonic-anhydrase activity, comparable to that in air-grown Chlamydomonas reinhardtii, but activity is repressed in CO2-grown cells. Assay of carbonic-anhydrase activity in intact cells and cell extracts shows all activity to be intracellular in Porphyridium. Measurement of inorganic-carbon-dependent photosynthetic O2 evolution shows that sodium ions increase the affinity of Porphyridium cells for HCO 3 - . Acetazolamide and ethoxyzolamide were potent inhibitors of carbonic anhydrase in cell extracts but at pH 5.0 both acetazolamide and ethoxyzolamide had little effect upon the concentration of inorganic carbon required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]). At pH 8.0, where HCO 3 - is the predominant species of inorganic carbon, the K0.5 (CO2) was increased from 50 M to 950 M in the presence of ethoxyzolamide. It is concluded that in air-grown cells of Porphyridium. HCO 3 - is transported across the plasmalemma and intracellular carbonic anhydrase increases the steady-state flux of CO2 from inside the plasmalemma to ribulose-1,5-bisphosphate carboxylase-oxygenase by catalysing the interconversion of HCO 3 - and CO2 within the cell.Abbreviations AZ acetazolamide - EZ ethoxyzolamide - K0.5[CO2] half-maximal rate of photosynthetic O2 evolution  相似文献   

3.
At concentrations of 100–200 M, ethoxyzolamide, a lipophilic inhibitor of carbonic anhydrase, considerably (by 60%) inhibited light-induced CO2-dependent oxygen evolution in pea protoplasts at the optimum concentration of inorganic carbon (100 M CO2) in the medium. At the same concentrations of the inhibitor, electron transport in isolated pea thylakoids was inhibited only by 6–9%. Acetazolamide, a water-soluble inhibitor of carbonic anhydrase, affected neither the rate of CO2-dependent O2evolution in protoplasts nor electron transport in thylakoid membranes. A light-dependent proton uptake by protoplasts was demonstrated. At pH 7.2, the induction kinetics and the rate of proton uptake were similar to those for CO2-dependent O2evolution. The rate of proton uptake was decreased twofold by 1 mM acetazolamide. This fact agrees with the notion that a membrane-bound carbonic anhydrase is operative in the plasma membrane of higher plant cells. A mechanism of its functioning is suggested. Possible functions of carbonic anhydrases in the cells of C3-plants are discussed.  相似文献   

4.
The intracellular compartmentation of carbonic anhydrase (CA; EC 4.2.1.1), an enzyme that catalyses the reversible hydration of CO2 to bicarbonate, has been investigated in potato (Solanum tuberosum L.) leaves. Although enzyme activity was mainly located in chloroplasts (87% of total cellular activity), significant activity (13%) was also found in the cytosol. The corresponding CA isoforms were purified either from chloroplasts or crude leaf extracts, respectively. The cytosolic isoenzyme has a molecular mass of 255 000 and is composed of eight identical subunits with an estimated M r of 30000. The chloroplastic isoenzyme (M r 220000) is also an octamer composed of two different subunits with M r estimated at 27 000 and 27 500, respectively. The N-terminal amino acid sequences of both chloroplastic CA subunits demonstrated that they were identical except that the M r-27 000 subunit was three amino acids shorter than that of the M r-27 500 subunit. Cytosolic and chloroplastic CA isoenzymes were found to be similarly inhibited by monovalent anions (Cl, I, N 3 - and NO 3 - ) and by sulfonamides (ethoxyzolamide and acetozolamide). Both CA isoforms were found to be dependent on a reducing agent such as cysteine or dithiothreitol in order to retain the catalytic activity, but 2-mercaptoethanol was found to be a potent inhibitor. A polyclonal antibody directed against a synthetic peptide corresponding to the N-terminal amino acid sequence of the chloroplastic CA monomers also recognized the cytosolic CA isoform. This antibody was used for immunocytolocalization experiments which confirmed the intracellular compartmentation of CA: within chloroplasts, CA is restricted to the stroma and appears randomly distributed in the cytosol.Abbreviations BSA bovine serum albumin - CA carbonic anhydrase - PMSF phenylmethylsulphonyl fluoride - BAM benzamidine - DTT dithiothreitol - 2-ME 2-mercaptoethanol - PVDF polyvinylidene difluoride The authors thanks P. Carrier and Dr. B. Dimon for technical assistance with the mass-spectrometry measurements.  相似文献   

5.
By measuring 18O exchange from doubly labeled CO2 (13C18O18O), intracellular carbonic anhydrase activity was studied with protoplasts and chloroplasts isolated from Chlamydomonas reinhardtii grown either on air (low inorganic carbon [Ci]) or air enriched with 5% CO2 (high Ci). Intact low Ci protoplasts had a 10-fold higher carbonic anhydrase activity than did high Ci protoplasts. Application of dextran-bound inhibitor and quaternary ammonium sulfanilamide, both known as membrane impermeable inhibitors of carbonic anhydrase, had no influence on the catalysis of 18O exchange, indicating that cross-contamination with extracellular carbonic anhydrase was not responsible for the observed activity. This intracellular in vivo activity from protoplasts was inhibited by acetazolamide and ethoxyzolamide. Intracellular carbonic anhydrase activity was partly associated with intact chloroplasts isolated from high and low Ci cells, and the latter had a sixfold greater rate of catalysis. The presence of dextran-bound inhibitor had no effect on chloroplast-associated carbonic anhydrase, whereas 150 micromolar ethoxyzolamide caused a 61 to 67% inhibition of activity. These results indicate that chloroplastic carbonic anhydrase was located within the plastid and that it was relatively insensitive to ethoxyzolamide. Carbonic anhydrase activity in crude homogenates of protoplasts and chloroplasts was about six times higher in the low Ci than in high Ci preparations. Further separation into soluble and insoluble fractions together with inhibitor studies revealed that there are at least two different forms of intracellular carbonic anhydrase. One enzyme, which was rather insoluble and relatively insensitive to ethoxyzolamide, is likely an intrachloroplastic carbonic anhydrase. The second carbonic anhydrase, which was soluble and sensitive to ethoxyzolamide, is most probably located in an extrachloroplastic compartment.  相似文献   

6.
Net O2 evolution, gross CO2 uptake and net HCO inf3 su– uptake during steady-state photosynthesis were investigated by a recently developed mass-spectrometric technique for disequilibrium flux analysis with cells of the marine cyanobacterium Synechococcus PCC7002 grown at different CO2 concentrations. Regardless of the CO2 concentration during growth, all cells had the capacity to transport both CO2 and HCO inf3 su– ; however, the activity of HCO inf3 su– transport was more than twofold higher than CO2 transport even in cyanobacteria grown at high concentration of inorganic carbon (Ci = CO2 + HCO inf3 su– ). In low-Ci cells, the affinities of CO2 and HCO inf3 su– transport for their substrates were about 5 (CO2 uptake) and 10 (HCO inf3 su– uptake) times higher than in high-Ci cells, while air-grown cells formed an intermediate state. For the same cells, the intracellular accumulated Ci pool reached 18, 32 and 55 mM in high-Ci, air-grown and low-Ci cells, respectively, when measured at 1 mM external Ci. Photosynthetic O2 evolution, maximal CO2 and HCO inf3 su– transport activities, and consequently their relative contribution to photosynthesis, were largely unaffected by the CO2 provided during growth. When the cells were adapted to freshwater medium, results similar to those for artificial seawater were obtained for all CO2 concentrations. Transport studies with high-Ci cells revealed that CO2 and HCO inf3 su– uptake were equally inhibited when CO2 fixation was reduced by the addition of glycolaldehyde. In contrast, in low-Ci cells steady-state CO2 transport was preferably reduced by the same inhibitor. The inhibitor of carbonic anhydrase ethoxyzolamide inhibited both CO2 and HCO inf3 su– uptake as well as O2 evolution in both cell types. In high-Ci cells, the degree of inhibition was similar for HCO inf3 su– transport and O2 evolution with 50% inhibition occurring at around 1 mM ethoxyzolamide. However, the uptake of CO2 was much more sensitive to the inhibitor than HCO inf3 su– transport, with an apparent I50 value of around 250 M ethoxyzolamide for CO2 uptake. The implications of our results are discussed with respect to Ci utilisation in the marine Synechococcus strain.Abbreviations Chl chlorophyll - Ci inorganic carbon (CO2 + HCO inf3 su– ) - CA carbonic anhydrase - CCM CO2-concentrating mechanism - EZA ethoxyzolamide - GA glycolaldehyde - K1/2 concentration required for half-maximal response - Rubisco ribulose-1,5,-bisphosphate carboxylase-oxygenase D.S. is a recipient of a research fellowship from the Deutsche Forschungsgemeinschaft (D.F.G.). In addition, we are grateful to Donald A. Bryant, Department of Molecular and Cell Biology and Center of Biomolecular Structure Function, Pennsylvania State University, USA, for sending us the wild-type strain of Synechococcus PCC7002.  相似文献   

7.
J. Munoz  M. J. Merrett 《Planta》1989,178(4):450-455
Inorganic-carbon transport was investigated in the eukaryotic marine microalgaeStichococcus minor, Nannochloropsis oculata and aMonallantus sp. Photosynthetic O2 evolution at constant inorganic-carbon concentration but varying pH showed thatS. minor had a greater capacity for CO2 rather than HCO 3 utilization but forN. oculata andMonallantus HCO 3 was the preferred source of inorganic carbon. All three microalgae had a low affinity for CO2 as shown by the measurement of inorganic-carbon-dependent photosynthetic O2 evolution at pH 5.0. At pH 8.3, where HCO 3 is the predominant form of inorganic carbon, the concentration of inorganic carbon required for half-maximal rate of photosynthetic O2 evolution [K 0.5 (CO2)] was 53 M forMonallantus sp. and 125 M forN. oculata, values compatible with HCO 3 transport. Neither extra- nor intracellular carbonic anhydrase was detected in these three microalgal species. It is concluded that these microalgae lack a specific transport system for CO2 but that HCO 3 transport occurs inN. oculata andMonallantus, and in the absence of intracellular carbonic anhydrase the conversion of HCO 3 to CO2 may be facilitated by the internal pH of the cell.  相似文献   

8.
Net photosynthesis in the submersed angiosperms Myriophyllum spicatum L. and Hydrilla verticillata (L.f.) Royal was inhibited by 21% O2, but the degree of inhibition was greater for plants in the high than in the low photorespiratory state. Increasing the CO2 concentration from 50 through 2,500 l l-1 decreased the O2 inhibition of the high-photorespiration plants in a competitive manner, but it had no effect on the O2 inhibition of plants in the low photorespiratory state. Carbonic-anhydrase activity increased by almost threefold with the induction of the low photorespiratory state. Ethoxyzolamide, an inhibitor of carbonic anhydrase, reduced the net photosynthesis of low-photorespiration Myriophyllum and Hydrilla plants by 40%, but their dark respiration was unaffected. This ethoxyzolamide inhibition of net photosynthesis exhibited a competitive response to CO2 concentration, resulting in a decrease in the apparent affinity of photosynthesis for CO2. The net photosynthesis of plants in the high photorespiratory state was inhibited only slightly by ethoxyzolamide, and this inhibition was independent of the CO2 level. Ethoxyzolamide treatment caused an increase in the O2 inhibition of net photosynthesis of plants in the low photorespiratory state. Ethoxyzolamide increased the low CO2 compensation points of low-photorespiration Myriophyllum and Hydrilla, but the values for the high-photorespiration plants were unchanged. In comparison, the CO2 compensation points of the terrestrial plants Sorghum bicolor (C4), Moricandia arvensis (C3-C4 intermediate) and Nicotiana tabacum (C3) were unaltered by ethoxyzolamide treatment. These data indicate that the low photorespiratory state in Myriophyllum and Hydrilla is repressed by ethoxyzolamide treatment, thus implicating carbonic anhydrase as a component of the photorespiration-reducing mechanism in these plants. The competitive interaction of CO2 with ethoxyzolamide provides evidence that the low photorespiratory state in submersed angiosperms is the result of some type or types of CO2 concentrating mechanism. In Myriophyllum it may be via bicarbonate utilization, but in Hydrilla it probably takes the form of an inducible C4-type system.Abbreviations PEP phosphoenolpyruvate - RuBP ribulose bisphosphate  相似文献   

9.
A. Laisk  O. Kiirats  V. Oja  U. Gerst  E. Weis  U. Heber 《Planta》1992,186(3):434-441
Exchange of CO2 and O2 and chlorophyll fluorescence were measured in the presence of 360 1 · 1–1 CO2 in nitrogen in Helianthus annuss L. leaves which had been preconditioned in the dark or at a photon flux density (PFD) of 24 mol · m–2 · s–1 either in 21 or 0% O2. An initial light-dependent O2 outburst of 6 mol · m–2 was measured after aerobic dark incubation. It was attributed to the reduction of electron carriers, predominantly plastoquinone. The maximum initial rate of O2 evolution at PFD 8000 mol · m–2 · s–1 was 170 mol · m–2 · s–2 or about four times the steady CO2-and light-saturated rate of photosynthesis. Fluorescence measurements showed that the rate was still acceptor-limited. Fast O2 evolution ceased after electron carriers were reduced in the dark-adapted leaf, but continued for a short time at the lower rate of 62 mol · m–2 · s–1 in the light-adapted leaf. The data are interpreted to show that enzymes involved in 3-phosphoglycerate reduction are dark-inhibited, but were fully active in low light. In a dark-adapted leaf, respiratory CO2 evolution continued under nitrogen; it was partially inhibited by illumination. Prolonged exposure of a leaf to anaerobic conditions caused reducing equivalents to accumulate. This was shown by a slowly increasing chlorophyll fluorescence yield which indicated the reduction of the PSII acceptor QA in the dark. When the leaf was illuminated, no O2 evolution was detected from short light pulses, although transient O2 production was appreciable during longer light pulses. This indicates that an electron donor (pool size about 2–3 e/PSII reaction center) became reduced in the dark and the first photons were used to oxidise this donor instead of water.Abbreviations Chl chlorophyll - CRC carbon reduction cycle - GAPDH NADP-glyceraldehyde-phosphate dehydrogenase - PFD photon flux density - PGA 3-phosphoglycerate - RuBP ribulose bisphosphate - TCA tricarboxylic acid cycle To whom correspondence should be addressedThis work received support by the Estonian Academy of Sciences, the Gottfried-Wilhelm-Leibniz Program of the Deutsche For-schungsgemeinschaft and the Sonderforschungsbereich 251 of the University of Würzburg.  相似文献   

10.
A burst of net CO2 uptake was observed during the first 3–4 min after the onset of illumination in both wild-type Chlamydomonas reinhardii in which carbonic anhydrase was chemically inhibited with ethoxyzolamide and in a mutant of C. reinhardii (ca-1-12-1C) deficient in carbonic anhydrase activity. The burst was followed by a rapid decrease in the CO2 uptake rate so that net evolution often occurred. After a 2–3 min period of CO2 evolution, net CO2 uptake again increased and ultimately reached a steady-state, positive rate. From [14CO2]-tracer studies it was determined that CO2 fixation proceeded at a nearly linear rate throughout the period of illumination. Thus, prior to reaching a steady state, there was a rapid accumulation of inorganic carbon inside the cells which apparently reached a supercritical concentration and the excess was excreted, causing a subsequent efflux of CO2. A post illumination burst of net CO2 efflux was also observed in ethoxyzolamide-inhibited wild type and ca-1 mutant cells, but not in the unihibited wild type. [14CO2]-tracer experiments revealed that this burst was the result of a collapse of a large internal inorganic carbon pool at the onset of darkness rather than a photorespiratory post-illumination burst. These results indicate that upon illumination, chemical or genetic inhibition of carbonic anhydrase initially causes an accumulation of excess inroganic carbon in C. reinhardii cells, and that unknown regulatory mechanisms correct for this imbalance by first excreting the excess inorganic carbon and then, after several dampened oscillations, achieving an equilibrium between bicarbonate uptake, bicarbonate dehydration, and CO2 fixation.  相似文献   

11.
Summary The effects of carbonic anhydrase inhibitors on secretion by macropodine parotid and mandibular glands were investigated using anaesthetized red kangaroos. In the parotid gland, acetazolamide (500 mol·l-1) reduced a stable acetylcholine-evoked, half-maximal flow rate of 2.02±0.034 to 0.27±0.023 ml·min-1 (87% reduction). Concurrently, salivary bicarbonate concentration and secretion fell (129.4±1.46 to 80.9±1.63 mmol·l-1 and 264.8±7.96 to 22.3±2.30 mol·min-1, respectively), phosphate and chloride concentrations rose (14.0±0.79 to 27.6±0.85 mmol·l-1 and 5.6±0.25 to 27.5±1.32 mmol·l-1, respectively), sodium concentration and osmolality were unaltered, and potassium concentration fell (8.8±0.33 to 6.4±0.29 mmol·l-1). High-rate cholinergic stimulation during acetazolamide blockade was unable to increase salivary flow beyond 11±0.9% of that for equivalent unblocked control stimulation. However, superimposition of isoprenaline infusion on the acetylcholine stimulation caused a three-fold increase in the blocked flow rate. These treatments were accompanied by small increases in salivary phosphate and chloride concentrations but not bicarbonate concentration. Methazolamide infusion caused similar changes in parotid secretion. In the mandibular gland, acetazolamide infusion had no effect on salivary flow rate during either low- or high-level acetylcholine stimulation. Acetazolamide caused no alterrations in salivary electrolyte secretion at low flow rates, but curtailed the rise in bicarbonate concentration associated with high-level acetylcholine stimulation. Acetazolamide administration did not affect the increase in salivary flow rate associated with isoprenaline infusion, but did block the concomitant increase in bicarbonate concentration and secretion substantially. It was concluded that neither cholinergic nor adrenergic stimulation of mandibular fluid secretion depends on secretion of bicarbonate derived from catalysed hydration of CO2, but a substantial proportion of the increase in bicarbonate secretion during isoprenaline administration, which is probably ductal in origin, is so dependent. In contrast to other salivary glands, including the ovine parotid, fluid secretion by the kangaroo parotid gland during cholinergic stimulation is largely dependent (about 90%) on secretion of bicarbonate derived from hydration of CO2 catalysed by glandular carbonic anhydrase. Fluid secretion during adrenergic stimulation is not bicarbonate dependent.Abbreviations b.w. body weight - PAH p-aminohippurate - PCO2 partial pressure carbon dioxide - PCO2 partial pressure of oxygen  相似文献   

12.
It has been proposed that many marine macroalgae are able to utilize HCO 3 for photosynthesis and growth, and that energy-dependent ion pumping is involved in this process. We have therefore studied the light-dependent alkalization of the surrounding medium by two species of marine macroscopic brown algae,Fucus serratus L. andLaminaria saccharina (L.) Lamour. with the aim of investigating the role of extracellular carbonic anhydrase (EC 4.2.1.1.) in the assimilation of inorganic carbon from the seawater medium. In particular, the influence of membrane-impermeable or slowly permeable carbonic-anhydrase inhibitors on the rate of alkalization of the seawater has been investigated. Inhibition of the alkalization rate occurred in both species at an alkaline pH (pH 8.0) but no inhibition was observed at an acidic pH (pH 6.0). The alkalization was found to be light-dependent and inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethylurea and, thus, correlated with photosynthesis. Alkalization by macroalgae has previously been shown to be proportional to inorganiccarbon uptake. We suggest that alkalization of the medium at alkaline pH in both of the species examined is mainly the consequence of an extracellular reaction. The reaction is catalyzed by extracellular carbonic anhydrase which converts HCO 3 to OH and CO2; CO2 is then taken up through the plasmalemma. However, we do not exclude the involvement of other mechanisms of inorganic-carbon uptake.Abbreviations AZ acetazolamide - CA carbonic anhydrase - CAext extracellular carbonic anhydrase - Ci inorganic carbon - DBS dextran-bound sulfonamide - DCMU 3-(3,4-dichloro-phenyl)-1,1-dimethylurea - PPFD photosynthetic photon flux density This study was carried out with financial support by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Carl Trygger's Fund for Scientific Research (Sweden), SJFR (Swedish Council for Forestry and Agricultural Research) and CICYT (Spain). Z. Ramazanov is an invited professor of Ministerio de Educación y Ciencia, Spain.  相似文献   

13.
14.
Summary The activity of carbonic anhydrase (CA), which catalyses the equilibrium CO2H++HCO 3 - , was investigated in various tissues implicated in the excretion of CO2 by Birgus latro. Carbonic anhydrase was detected in the water-soluble fraction of gill tissue but also occurred in association with lipids (membrane bound). This is consistent with a CO2 excretory role and an ion regulation function for the gills. In the lungs (branchial chamber lining) CA activity was found in the membrane bound fraction but was not detected in the soluble fraction, suggesting that the lung CA is not important for ion regulation. The specific CA activity of gill tissue homogenate (A=1.8±0.7·mg-1) was higher than that measured for lung homogenates (A=0.4±0.2·mg-1), but when the whole organ was considered the total CA activity in the lungs was not significantly different from total CA activity in the gills. In comparison to aquatic and amphibious crustaceans the specific activity of carbonic anhydrase in the lungs was high (25% cf. gill activity). This CA activity in the lungs could be correlated with significant CO2 excretion by the lungs. CA may be retained in the branchial tissue as an adjunct to ion reabsorption by the gills.  相似文献   

15.
Transgenic tobacco (Nicotiana tabacum L. cv. W38) with an antisense gene directed against the mRNA of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit was used to determine the kinetic properties of Rubisco in vivo. The leaves of these plants contained only 34% as much Rubisco as those of the wild type, but other photosynthetic components were not significantly affected. Consequently, the rate of CO2 assimilation by the antisense plants was limited by Rubisco activity over a wide range of CO2 partial pressures. Unlike in the wild-type leaves, where the rate of regeneration of ribulose bisphosphate limited CO2 assimilation at intercellular partial pressures above 400 ubar, photosynthesis in the leaves of the antisense plants responded hyperbolically to CO2, allowing the kinetic parameters of Rubisco in vivo to be inferred. We calculated a maximal catalytic turnover rate, kcat, of 3.5+0.2 mol CO2·(mol sites)–1·s–1 at 25° C in vivo. By comparison, we measured a value of 2.9 mol CO2·(mol sites)–1·–1 in vitro with leaf extracts. To estimate the Michaelis-Menten constants for CO2 and O2, the rate of CO2 assimilation was measured at 25° C at different intercellular partial pressures of CO2 and O2. These measurements were combined with carbon-isotope analysis (13C/12C) of CO2 in the air passing over the leaf to estimate the conductance for transfer of CO2 from the substomatal cavities to the sites of carboxylation (0.3 mol·m–2·s–1·bar–1) and thus the partial pressure of CO2 at the sites of carboxylation. The calculated Michaelis-Menten constants for CO2 and O2 were 259 ±57 bar (8.6±1.9M) and 179 mbar (226 M), respectively, and the effective Michaelis-Menten constant for CO2 in 200 mbar O2 was 549 bar (18.3 M). From measurements of the photocompensation point (* = 38.6 ubar) we estimated Rubisco's relative specificity for CO2, as opposed to O2 to be 97.5 in vivo. These values were dependent on the size of the estimated CO2-transfer conductance.Abbreviations and Symbols A CO2-assimilation rate - gw conductance for CO2 transfer from the substomatal cavities to the sites of carboxylation - Kc, Ko Michaelis-Menten constants for carboxylation, oxygenation of Rubisco - kcat Vcmax/[active site] - O partial pressure of O2 at the site of carboxylation - pc partial pressure of CO2 at the site of carboxylation - pi intercellular CO2 partial pressure - Rd day respiration (non-photorespiratory CO2 evolution) - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Sc/o relative specificity factor for Rubisco - SSu small subunit of Rubisco - Vcmax, Vomax maximum rates of Rubisco carboxylation, oxygenation - * partial pressure of CO2 in the chloroplast at which photorespiratory CO2 evolution equals the rate of carboxylation  相似文献   

16.
Summary Quantitative analysis has been made of the reactions underlying the Hansson histochemical method for carbonic anhydrase, with a view toward resolving controversies that have arisen regarding its application and specificity.The basic event is the loss of CO2 from the surface of solutions containing HCO 3 , PO 4 2– and cobalt at pH 6–8. Displacement of the equilibria H2CO3 CO2 to the right elevates the pH, and at 6.8 a cobalt precipitate is formed. When tissue containing carbonic anhydrase is floated on the surface, the loss of CO2 and elevation of pH is accelerated at the enzyme site, leading to ncreased cobalt deposits. These are converted to cobalt sulphide for visualization.Study of the changes of pH and CO2 equilibria during the reaction point strongly to the fact that enzymic activity is being measured by the cobalt localization. This activity is reduced or abolished by appropriate concentrations of acetazolamide (or other sulphonamide inhibitors of carbonic anhydrase) and the powerful inorganic inhibitor, cyanate (CNO) ion.  相似文献   

17.
In C4 grasses belonging to the NADP-malic enzyme-type subgroup, malate is considered to be the predominant C4 acid metabolized during C4 photosynthesis, and the bundle sheath cell chloroplasts contain very little photosystem-II (PSII) activity. The present studies showed that Flaveria bidentis (L.), an NADP-malic enzyme-type C4 dicotyledon, had substantial PSII activity in bundle sheath cells and that malate and aspartate apparently contributed about equally to the transfer of CO2 to bundle sheath cells. Preparations of bundle sheath cells and chloroplasts isolated from these cells evolved O2 at rates between 1.5 and 2 mol · min–1 · mg–1 chlorophyll (Chl) in the light in response to adding either 3-phosphoglycerate plus HCO 3 or aspartate plus 2-oxoglutarate. Rates of more than 2 mol O2 · min–1 · mg–1 Chl were recorded for cells provided with both sets of these substrates. With bundle sheath cell preparations the maximum rates of light-dependent CO2 fixation and malate decarboxylation to pyruvate recorded were about 1.7 mol · min–1 · mg–1 Chl. Compared with NADP-malic enzyme-type grass species, F. bidentis bundle sheath cells contained much higher activities of NADP-malate dehydrogenase and of aspartate and alanine aminotransferases. Time-course and pulse-chase studies following the kinetics of radiolabelling of the C-4 carboxyl of C4 acids from 14CO2 indicated that the photosynthetically active pool of malate was about twice the size of the aspartate pool. However, there was strong evidence for a rapid flux of carbon through both these pools. Possible routes of aspartate metabolism and the relationship between this metabolism and PSII activity in bundle sheath cells are considered.Abbreviations DHAP dihydroxyacetone phosphate - NADP-ME(-type) NADP-malic enzyme (type) - NADP-MDH NADP-malate dehydrogenase - OAA oxaloacetic acid - 2-OG 2-oxoglutarate - PEP phosphoenolpyruvate - PGA 3-phosphoglycerate - Pi orthophosphate - Ru5P ribulose 5-phosphate  相似文献   

18.
19.
Production of hydrogen peroxide has been found in Ulva rigida (Chlorophyta). The formation of H2O2 was light dependent with a production of 1.2 mol·g FW–1·h–1 in sea water (pH 8.2) at an irradiance of 700 mol photons m–2·s–1. The excretion was also pH dependent: in pH 6.5 the production was not detectable (< 5 nmol·g FW–1·h–1) but at pH 9.0 the production was 5.0 mol·g FW–1·h–1. The production of H2O2 was totally inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). The ability of U. rigida growing in tanks (7501) under a natural light regime to excrete H2O2 was checked and found to be seven times higher at 08.00 hours than other times of the day. The H2O2 concentration in the cultivation tank (density: 2 g FW·l–1) reached the highest value (3 M) at 11.00 hours. Photosynthesis was not influenced by H2O2 formation. The H2O2 is suggested to come from the Mehler reaction (pseudocyclic photophosphorylation). With an oxygen evolution of 120 mmol·g FW–1·h–1 at pH 8.2 and 90 mmol·g FW–1·h–1 at pH 9.0, 0.5% and 2.7% of the electrons were used for extracellular H2O2 production. The H2O2 production is sufficiently high to be of physiological and ecological significance, and is suggested to be a part of the defence against epi and endophytes.Abbreviations ACL artificial, continuous light - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - GNL greenhouse - LDC Luminol-dependent chemiluminescence - SOD Superoxide dismutase This investigation was supported by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Hierta-Retzius Foundation, Marianne and Marcus Wallenberg Foundation, the Swedish Environmental Protection Board, and CICYT Spain.  相似文献   

20.
The mechanism of inorganic-carbon (Ci) accumulation in the red seaweed Gracilaria tenuistipitata Zhang et Xia has been investigated. Extracellular and intracellular carbonic-anhydrase (CA) activities have been detected. Photosynthetic O2 evolution in thalli and protoplasts of G. tenuistipitata were higher at pH 6.5 than at pH 8.6, where HCO 3 is the predominant form of Ci. Dextran-bound sulfonamide (DBS), a specific inhibitor of extracellular CA, reduced photosynthetic O2 evolution at pH 8.6 and did not have any effect at pH 6.5. After inhibition with DBS, O2 evolution was similar to the rate that could be supported by CO2 from spontaneous dehydration of HCO 3 . The rate of photosynthetic alkalization of the surrounding medium by the algal thallus was dependent on the concentration of Ci and inhibited by DBS. We suggest that the general form of Ci that enters through the plasma membrane of G. tenuistipitata is CO2. Bicarbonate is utilized mainly by an indirect mechanism after dehydration to CO2, and this mechanism involves extracellular CA.Abbreviations Ci inorganic carbon (CO2 + HCO 3 ) - CA carbonic anhydrase - DIC dissolved inorganic carbon (total) - DBS dextran-bound sulfonamide - EZ ethoxyzolamide - NSW natural seawater - PPFD photosynthetic photon flux density - REA relative enzyme activity - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This research was supported by the Deutsche Forschungsgemeinschaft (Bonn) as a programme of the Sonderforschungsbereich 251 der Universität Würzburg and by the Fonds der Chemischen Industrie (Frankfurt). Joint work in Würzburg was possible thanks to travel grants from the Chancellor of the University of Würzburg, Professor R. Günther, from the Australian National University under the auspices of its Overseas Studies Programme, and from the New Zealand — Federal Republic of Germany Scientific and Technological Exchange Programme, which are gratefully acknowledged. We thank Dr. A. Meyer and Ms. E. Kilian for untiringly conducting part of the experimental work, Ms. G. Theumer and Ms. D. Faltenbacher-Werner for their valuable assistance, and Mr. H. Walz (Walz Company, Effeltrich, FRG) for his skilled help with the calibration of our gas-exchange system for measurements with helox. The Department of Conservation, New Zealand, is thanked for permission to collect lichens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号