首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Apicomplexan parasites, including Toxoplasma gondii, apically attach to their host cells before invasion. Recent studies have implicated the contents of micronemes, which are small secretory organelles confined to the apical region of the parasite, in the process of host cell attachment. Here, we demonstrate that microneme discharge is regulated by parasite cytoplasmic free Ca2+ and that the micronemal contents, including the MIC2 adhesin, are released through the extreme apical tip of the parasite. Microneme secretion was triggered by Ca2+ ionophores in both the presence and the absence of external Ca2+, while chelation of intracellular Ca2+ prevented release. Mobilization of intracellular calcium with thapsagargin or NH4Cl also triggered microneme secretion, indicating that intracellular calcium stores are sufficient to stimulate release. Following activation of secretion by the Ca2+ ionophore A23187, MIC2 initially occupied the apical surface of the parasite, but was then rapidly treadmilled to the posterior end and released into the culture supernatant. This capping and release of MIC2 by ionophore-stimulated tachyzoites mimics the redistribution of MIC2 that occurs during attachment and penetration of host cells, and both events are dependent on the actin-myosin cytoskeleton of the parasite. These studies indicate that microneme release is a stimulus-coupled secretion system responsible for releasing adhesins involved in cell attachment.  相似文献   

2.
Toxoplasma gondii is an obligate intracellular parasite that actively invades a wide variety of vertebrate cells, although the basis of its pervasive cell invasion is not completely understood. Here, we demonstrate, using several independent assays, that Toxoplasma invasion of host cells is tightly coupled to the release of proteins stored within apical secretory granules called micronemes. Both microneme secretion and cell invasion were highly temperature dependent, and partial depletion of microneme resulted in a transient loss of infectivity. Chelation of parasite intracellular calcium strongly inhibited both microneme release and invasion of host cells, and this effect was partially reversed by raising intracellular calcium using the ionophore A23187. We also provide evidence that a staurosporine-sensitive kinase activity regulates microneme discharge and is required for parasite invasion of host cells. Additionally, we demonstrate that, during apical attachment to the host cell, the micronemal protein MIC2 is released at the junction between the parasite and the host cell. During invasion, MIC2 is successively translocated towards the posterior end of the parasite and is shed before entry of the parasite into the vacuole. Furthermore, we show that the full-length cellular form of MIC2, but not the proteolytically modified secreted form of MIC2, binds specifically to host cells. Collectively, these observations strongly imply that micronemal proteins play a role in Toxoplasma invasion of host cells.  相似文献   

3.
Toxoplasma gondii is an obligate intracellular parasite and an important human pathogen. Relatively little is known about the proteins that orchestrate host cell invasion by T. gondii or related apicomplexan parasites (including Plasmodium spp., which cause malaria), due to the difficulty of studying essential genes in these organisms. We have used a recently developed regulatable promoter to create a conditional knockout of T. gondii apical membrane antigen-1 (TgAMA1). TgAMA1 is a transmembrane protein that localizes to the parasite's micronemes, secretory organelles that discharge during invasion. AMA1 proteins are conserved among apicomplexan parasites and are of intense interest as malaria vaccine candidates. We show here that T. gondii tachyzoites depleted of TgAMA1 are severely compromised in their ability to invade host cells, providing direct genetic evidence that AMA1 functions during invasion. The TgAMA1 deficiency has no effect on microneme secretion or initial attachment of the parasite to the host cell, but it does inhibit secretion of the rhoptries, organelles whose discharge is coupled to active host cell penetration. The data suggest a model in which attachment of the parasite to the host cell occurs in two distinct stages, the second of which requires TgAMA1 and is involved in regulating rhoptry secretion.  相似文献   

4.
Toxoplasma gondii is an obligate intracellular parasite that actively invades mammalian cells using a unique form of gliding motility that critically depends on actin filaments in the parasite. To determine if parasite motility is driven by a myosin motor, we examined the distribution of myosin and tested the effects of specific inhibitors on gliding and host cell invasion. A single 90 kDa isoform of myosin was detected in parasite lysates using an antisera that recognizes a highly conserved myosin peptide. Myosin was localized in T. gondii beneath the plasma membrane in a circumferential pattern that overlapped with the distribution of actin. The myosin ATPase inhibitor, butanedione monoxime (BDM), reversibly inhibited gliding motility across serum-coated slides. The myosin light-chain kinase inhibitor, KT5926, also blocked parasite motility and greatly reduced host cell attachment; however, these effects were primarily caused by its ability to block the secretion of microneme proteins, which are involved in cell attachment. In contrast, while BDM partially reduced cell attachment, it prevented invasion even under conditions in which microneme secretion was not affected, indicating a potential role for myosin in cell entry. Collectively, these results indicate that myosin(s) probably participate(s) in powering gliding motility, a process that is essential for cell invasion by T. gondii .  相似文献   

5.
Several proteins have been identified that associate with calcium release channels and potentially regulate their function. Using tacrolimus as a pharmacological tool, we investigated whether the immunophilin FKBP12 modulates ryanodine receptor channels in intestinal smooth muscle. Results with PCR demonstrated the presence of type-3 ryanodine receptor and FKBP12 in this tissue. Tacrolimus caused an irreversible increase of the intracellular calcium concentration, which was abolished by pretreatment with caffeine. The calcium channel blocker verapamil did not affect the response to tacrolimus. Tacrolimus decreased the calcium concentration in the sarcoplasmic reticulum. Caffeine, but not inositol 1,4,5-trisphosphate or heparin, abolished this effect. Finally, tacrolimus significantly and irreversibly decreased the tension generated by intestinal muscle strips. These data support our hypothesis that the immunophilin FKBP12 modulates ryanodine receptor function in smooth muscle. Interactions between such regulatory proteins and calcium release channels may play an important role in excitation-contraction coupling and other intracellular signaling processes.  相似文献   

6.
Yuan K  Bai GY  Park WH  Kim SZ  Kim SH 《Peptides》2008,29(12):2216-2224
Adenosine is a potent mediator of myocardial protection against hypertrophy via A(1) or A(3) receptors that may be partly related to atrial natriuretic peptide (ANP) release. However, little is known about the possible involvement of the A(3) receptor on ANP release. We studied the effects of the A(3) receptor on atrial functions and its modification in hypertrophied atria. A selective A(3) receptor agonist, 2-chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (2-CI-IB-MECA), was perfused into isolated, beating rat atria with and without receptor modifiers. 2-CI-IB-MECA dose-dependently increased the ANP secretion, which was blocked by the A(3) receptor antagonist, but the increased atrial contractility and decreased cAMP levels induced by 30muM 2-CI-IB-MECA were not affected. The 100muM 2-(1-hexylnyl)-N-methyladenosine (HEMADO) and N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA), A(3) receptor agonist, also stimulated the ANP secretion without positive inotropy. The potency for the stimulation of ANP secretion was 2-CI-IB-MECA>IB-MECA=HEMADO. The inhibition of the ryanodine receptor or calcium/calmodulin-dependent kinase II (CaMKII) attenuated 2-CI-IB-MECA-induced ANP release, positive inotropy, and translocation of extracellular fluid. However, the inhibition of L-type Ca(2+) channels, sarcoplasmic reticulum Ca(2+)-reuptake, phospholipase C or inositol 1,4,5-triphosphate receptors did not affect these parameters. 2-CI-IB-MECA decreased cAMP level, which was blocked only with an inhibitor of CaMKII or adenylyl cyclase. These results suggest that 2-CI-IB-MECA increases the ANP secretion mainly via A(3) receptor activation and positive inotropy by intracellular Ca(2+) regulation via the ryanodine receptor and CaMKII.  相似文献   

7.
A role for coccidian cGMP-dependent protein kinase in motility and invasion   总被引:9,自引:0,他引:9  
The coccidian parasite cGMP-dependent protein kinase is the primary target of a novel coccidiostat, the trisubstituted pyrrole 4-[2-(4-fluorophenyl)-5-(1-methylpiperidine-4-yl)-1H-pyrrol-3-yl] pyridine (compound 1), which effectively controls the proliferation of Eimeria tenella and Toxoplasma gondii parasites in animal models. The efficacy of compound 1 in parasite-specific metabolic assays of infected host cell monolayers is critically dependent on the timing of compound addition. Simultaneous addition of compound with extracellular E. tenella sporozoites or T. gondii tachyzoites inhibited [3H]-uracil uptake in a dose-dependent manner, while minimal efficacy was observed if compound addition was delayed, suggesting a block in host cell invasion. Immunofluorescence assays confirmed that compound 1 blocks the attachment of Eimeria sporozoites or Toxoplasma tachyzoites to host cells and inhibits parasite invasion and gliding motility. Compound 1 also inhibits the secretion of micronemal adhesins (E. tenella MIC1, MIC2 and T. gondii MIC2), an activity closely linked to invasion and motility in apicomplexan parasites. The inhibition of T. gondii MIC2 adhesin secretion by compound 1 was not reversed by treatment with calcium ionophores or by ethanol (a microneme secretagogue), suggesting a block downstream of calcium-dependent events commonly associated with the discharge of the microneme organelle in tachyzoites. Transgenic Toxoplasma strains expressing cGMP-dependent protein kinase mutant alleles that are refractory to compound 1 (including cGMP-dependent protein kinase knock-out lines complemented by such mutants) were used as tools to validate the potential role of cGMP-dependent protein kinase in invasion and motility. In these strains, parasite adhesin secretion, gliding motility, host cell attachment and invasion displayed a reduced sensitivity to compound 1. These data clearly demonstrate that cGMP-dependent protein kinase performs an important role in the host-parasite interaction.  相似文献   

8.
Toxosplasma gondii is the model parasite of the phylum Apicomplexa, which contains numerous obligate intracellular parasites of medical and veterinary importance, including Eimeria, Sarcocystis, Cryptosporidium, Cyclospora, and Plasmodium species. Members of this phylum actively enter host cells by a multistep process with the help of microneme protein (MIC) complexes that play important roles in motility, host cell attachment, moving junction formation, and invasion. T. gondii (Tg)MIC1-4-6 complex is the most extensively investigated microneme complex, which contributes to host cell recognition and attachment via the action of TgMIC1, a sialic acid-binding adhesin. Here, we report the structure of TgMIC4 and reveal its carbohydrate-binding specificity to a variety of galactose-containing carbohydrate ligands. The lectin is composed of six apple domains in which the fifth domain displays a potent galactose-binding activity, and which is cleaved from the complex during parasite invasion. We propose that galactose recognition by TgMIC4 may compromise host protection from galectin-mediated activation of the host immune system.  相似文献   

9.
细胞内贮存钙释放的机制   总被引:13,自引:0,他引:13  
细胞内贮存钙的释放主要由1,4,5-三磷酸肌醇(IP3)受体系统和ryanodine受体系统调控。前通过IP3与其受体结合后,诱发细胞内钙释放;后通过复杂的机制调节环腺苷二磷酸核糖含量,由cADPR直接或间接作用于ryanodine受体,进而启动由Ca^2+诱发的Ca^2+释放机制。上述两系统之间相互作用,共同调节细胞内贮存钙的释放。  相似文献   

10.
Proteolytic processing plays a significant role in the process of invasion by the obligate intracellular parasite Toxoplasma gondii. We have cloned a gene, TgSUB1, encoding for a subtilisin-type serine protease found in T. gondii tachyzoites. TgSUB1 protein is homologous to other Apicomplexan and bacterial subtilisins and is processed within the secretory pathway of the parasite. Initial cleavage occurs in the endoplasmic reticulum, after which the protein is transported to micronemes, vesicles that secrete early during host cell invasion. Upon stimulation of microneme secretion, TgSUB1 is cleaved into smaller products that are secreted from the parasite. This secondary processing is inhibited by brefeldin A and serine protease inhibitors. TgSUB1 is a candidate processing enzyme for several microneme proteins cleaved within the secretory pathway or during invasion.  相似文献   

11.
Toxoplasma gondii is a protozoan parasite that infects a wide variety of warm-blooded animals and humans, in which it causes opportunistic disease. As an obligate intracellular parasite, T. gondii must invade a host cell to survive and replicate during infection. Recent studies suggest that T. gondii secretes a variety of proteins that appear to function during invasion or intracellular replication. These proteins originate from three distinct regulated secretory organelles called micronemes, rhoptries and dense granules. By discharging the contents of its secretory organelles at precise steps in invasion, T. gondii appears to timely deploy secretory proteins to their correct target destinations. Based on the timing of secretion and the characteristics of secretory proteins, an emerging theme is that T. gondii compartmentalizes its secretory proteins according to general function. Thus, it appears that micronemal proteins may function during parasite attachment to host cells, rhoptry proteins may facilitate parasite vacuole formation and host organellar association, and dense granule proteins likely promote intracellular replication, possibly by transporting and processing nutrients from the host cell. However, as more T. gondii secretory proteins are identified and characterized, it is likely that additional functions will be ascribed to each class of proteins secreted- by this fascinating invasive parasite.  相似文献   

12.
Functional peripheral mature follicular B (FoB) lymphocytes are thought to develop from immature transitional cells in a BCR-dependent manner. We have previously shown that BCR cross-linking in vitro results in death of early transitional (T1) B cells, whereas late transitional (T2) B cells survive and display phenotypic characteristics of mature FoB cells. We now demonstrate that diacylglycerol (DAG), a lipid second messenger implicated in cell survival and differentiation, is produced preferentially in T2 compared with T1 B cells upon BCR cross-linking. Consistently, inositol 1,4,5-triphosphate is also produced preferentially in T2 compared with T1 B cells. Unexpectedly, the initial calcium peak appears similar in both T1 and T2 B cells, whereas sustained calcium levels are higher in T1 B cells. Pretreatment with 2-aminoethoxydiphenylborate, an inhibitor of inositol 1,4,5-triphosphate receptor-mediated calcium release, and verapamil, an inhibitor of L-type calcium channels, preferentially affects T1 B cells, suggesting that distinct mechanisms regulate calcium mobilization in each of the two transitional B cell subsets. Finally, BCR-mediated DAG production is dependent upon Bruton's tyrosine kinase and phospholipase C-gamma2, enzymes required for the development of FoB from T2 B cells. These results suggest that calcium signaling in the absence of DAG-mediated signals may lead to T1 B cell tolerance, whereas the combined action of DAG and calcium signaling is necessary for survival and differentiation of T2 into mature FoB lymphocytes.  相似文献   

13.
Like other members of the medically important phylum Apicomplexa, Toxoplasma gondii is an obligate intracellular parasite that secretes several classes of proteins involved in the active invasion of target host cells. Proteins in apical secretory organelles known as micronemes have been strongly implicated in parasite attachment to host cells. TgMIC2 is a microneme protein with multiple adhesive domains that bind target cells and is mobilized onto the parasite surface during parasite attachment. Here, we describe a novel parasite protein, TgM2AP, which is physically associated with TgMIC2. TgM2AP complexes with TgMIC2 within 15 min of synthesis and remains associated with TgMIC2 in the micronemes, on the parasite surface during invasion and in the culture medium after release from the parasite plasma membrane. TgM2AP is proteolytically processed initially when its propeptide is removed during transit through the golgi and later while it occupies the parasite surface after discharge from the micronemes. We show that TgM2AP is a member of a protein family expressed by coccidian parasites including Neospora caninum and Eimeria tenella. This phylogenic conservation and association with a key adhesive protein suggest that TgM2AP is a fundamental component of the T. gondii invasion machinery.  相似文献   

14.
The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in the invasion process. The sequence of these secretion events and the external signals that trigger release are not known. We have used time-lapse video microscopy to study changes in intracellular calcium levels in Plasmodium falciparum merozoites during erythrocyte invasion. In addition, we have developed flow cytometry based methods to measure relative levels of cytosolic calcium and study surface expression of apical organelle proteins in P. falciparum merozoites in response to different external signals. We demonstrate that exposure of P. falciparum merozoites to low potassium ion concentrations as found in blood plasma leads to a rise in cytosolic calcium levels through a phospholipase C mediated pathway. Rise in cytosolic calcium triggers secretion of microneme proteins such as the 175 kD erythrocyte binding antigen (EBA175) and apical membrane antigen-1 (AMA-1) to the merozoite surface. Subsequently, interaction of EBA175 with glycophorin A (glyA), its receptor on erythrocytes, restores basal cytosolic calcium levels and triggers release of rhoptry proteins. Our results identify for the first time the external signals responsible for the sequential release of microneme and rhoptry proteins during erythrocyte invasion and provide a starting point for the dissection of signal transduction pathways involved in regulated exocytosis of these key apical organelles. Signaling pathway components involved in apical organelle discharge may serve as novel targets for drug development since inhibition of microneme and rhoptry secretion can block invasion and limit blood-stage parasite growth.  相似文献   

15.
Hoff, E. F., Cook, S. H., Sherman, G. D., Harper, J. M., Ferguson, D. J. P., Dubremetz, J. F., and Carruthers, V. B. 2001. Toxoplasma gondii: Molecular cloning and characterization of a novel 18-kDa secretory antigen, TgMIC10. Experimental Parasitology, 97, 77-88. During host cell invasion, Toxoplasma gondii secretes proteins from specialized organelles (micronemes and rhoptries) located at the apical end of the parasite. The contents of the micronemes appear to be crucial to T. gondii invasion, as inhibition of microneme secretion prevents parasite entry into host cells. Here we describe a new T. gondii microneme protein, TgMIC10. Molecular characterization of a full-length TgMIC10 cDNA revealed that TgMIC10 lacks homology to any previously characterized proteins, although a homologue, NcMIC10, was identified in a closely related parasite, Neospora caninum. TgMIC10 has an unusually long secretory leader sequence of 58 amino acids; the mature TgMIC10 is 18 kDa, possesses nine diglutamic acid repeats and an imperfect repeat sequence (RK(R/Y)HEEL), and is entirely devoid of cysteines. Antibodies raised against recombinant TgMIC10 recognized the native TgMIC10 and localized the protein to the micronemes in indirect immunofluorescence and immunoEM experiments. Comparison of immunofluorescence images indicates that TgMIC10 expression is higher in T. gondii tachyzoites, which are responsible for active infection, than in bradyzoites, which are responsible for latent infection.  相似文献   

16.
Cell invasion by the intracellular parasite Toxoplasma gondii occurs through an active process that involves dynamic events, such as gliding motility and conoid extrusion, followed by a sequential secretion from specialized secretory organelles. Increase of intracellular Ca2+ by ionophores induces conoid extrusion, although in an irreversible way, thus limiting the characterization of the regulatory pathways. In this report we studied the effect of different activating conoid conditions to characterize the regulatory mechanisms involved. Exposure of tachyzoites to ethanol, a well-known activator of microneme secretion through the increase of intracellular Ca2+, induced conoid extrusion without affecting parasite viability nor its in vitro invasive capability, in a process that could be completely reverted and repeatedly reactivated. A temporal relationship between conoid extrusion and microneme secretion was here studied. Under this condition, signal transduction pathways and the precise role of the parasite cytoskeleton were characterized. Our results indicate that phospholipase C, Ca2+ released through channels sensitive to inositol-3-phosphate and ryanodine, as well as myosin together with actin filaments, but not microtubules, all participate in conoid extrusion. Specific inhibitors for serine-threonine kinases blocked conoid extrusion; in contrast, calmodulin inhibitors did not affect the induction. A regulatory model for conoid activation is here proposed.  相似文献   

17.
Abstract. The albumen gland of the freshwater pulmonate snail Helisoma duryi produces and secretes the perivitelline fluid, which coats fertilized eggs and provides nutrients to the developing embryos. It is known that perivitelline fluid secretion is stimulated by dopamine through the activation of a dopamine D1‐like receptor, which in turn stimulates cAMP production leading to the secretion of perivitelline fluid. This paper examines the glandular release of perivitelline fluid and provides evidence for the role of Ca2+ in the regulated secretion of perivitelline fluid based on protein secretion experiments and inositol 1,4,5‐trisphosphate assays. Dopamine‐stimulated protein secretion by the albumen gland is reduced in Ca2+‐free medium or in the presence of plasma membrane Ca2+ channel blockers, although the Ca2+ channel subtype involved is unclear. In addition, dopamine‐stimulated protein secretion does not directly involve phospholipase C‐generated signaling pathways and Ca2+ release from intracellular stores. Sarcoplasmic/endoplasmic reticulum Ca2+‐ATPase inhibitors had little effect on protein secretion when applied alone; however, they potentiated dopamine‐stimulated protein secretion. Dantrolene, an inhibitor of ryanodine receptors, 8‐(N,N‐diethylamino)‐octyl‐3,4,5‐trimethoxybenzoate hydrochloride, a nonspecific inhibitor of intracellular Ca2+ channels, and 2‐aminoethyldiphenylborate, an inhibitor of inositol 1,4,5‐trisphosphate receptors, did not suppress protein secretion, suggesting Ca2+ release from internal stores does not directly regulate protein secretion. Thus, the influx of Ca2+ from the extracellular space appears to be the major pathway mediating protein secretion by the albumen gland. The results are discussed with respect to the role of Ca2+ in controlling exocytosis of proteins from the albumen gland secretory cells.  相似文献   

18.
Group B coxsackieviruses (CVB) are associated with viral-induced heart disease and are among the leading causes of aseptic meningitis worldwide. Here we show that CVB entry into polarized brain microvasculature and aortic endothelial cells triggers a depletion of intracellular calcium stores initiated through viral attachment to the apical attachment factor decay-accelerating factor. Calcium release was dependent upon a signaling cascade that required the activity of the Src family of tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3. CVB-mediated calcium release was required for the activation of calpain-2, a calcium-dependent cysteine protease, which controlled the vesicular trafficking of internalized CVB particles. These data point to a specific role for calcium signaling in CVB entry into polarized endothelial monolayers and highlight the unique signaling mechanisms used by these viruses to cross endothelial barriers.  相似文献   

19.
The ryanodine receptor has been mainly regarded as the Ca2+ release channel from sarcoplasmic reticulum controlling skeletal and cardiac muscle contraction. However, many studies have shown that it is widely expressed, with functions not restricted to muscular contraction. This study examined whether ryanodine receptor plays a role in calcium signaling in the liver. RT-PCR analysis of isolated hepatocytes showed expression of a truncated type 1 ryanodine receptor, but no type 2 or type 3 message was detected. We also detected binding sites for [3H]ryanodine in the microsomal cellular fraction and in permeabilized hepatocytes. This binding was displaced by caffeine and dantrolene, but not by ruthenium red, heparin or cyclic ADP-Ribose. Ryanodine, by itself, did not trigger Ca2+ oscillations in either primary cultured hepatocytes or hepatocytes within the intact perfused rat liver. In both preparations, however, ryanodine significantly increased the frequency of the cytosolic free [Ca2+] oscillations evoked by an alpha1 adrenergic receptor agonist. Experiments in permeabilized hepatocytes showed that both ryanodine and cyclic ADP-ribose evoked a slow Ca2+ leak from intracellular stores and were able to increase the Ca2+-released response to a subthreshold dose of inositol 1,4,5-trisphosphate. Our findings suggest the presence of a novel truncated form of the type 1 ryanodine receptor in rat hepatocytes. Ryanodine modulates the pattern of cytosolic free [Ca2+] oscillations by increasing oscillation frequency. We propose that the Ca2+ released from ryanodine receptors on the endoplasmic reticulum provides an increased pool of Ca2+ for positive feedback on inositol 1,4,5-trisphosphate receptors.  相似文献   

20.
Host cell invasion is a key step in the life cycle of the intracellular parasite Toxoplasma gondii, the causative agent of toxoplasmosis. Attachment and invasion by this parasite is dependent on secretion of proteins from the micronemes, cigar-shaped organelles found in the apical end of the parasite. Although many of these proteins contain adhesive motifs suggestive of a role in parasite attachment, a growing subset of microneme proteins (MICs) do not possess adhesive sequences implying that they have alternative roles. We have identified a novel 16 kDa microneme protein, TgMIC11, that is conserved among several coccidian parasites. As it traffics through the secretory system, TgMIC11 is modified by two successive proteolytic events to remove an internal propeptide, resulting in the mature protein that consists of an alpha-chain and beta-chain tethered by a single disulfide bond. Dual staining immunofluorescence confirmed that TgMIC11 localises to the apical micronemes and, like other micronemal proteins, it is also secreted in a calcium dependent manner. This is the first microneme protein characterised to date in the phylum Apicomplexa that possesses this unique structure and undergoes maturation by removal of an internal propeptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号