首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To evaluate the effect of endurance training on ventilatory function in older individuals, 1) 14 master athletes (MA) [age 63 +/- 2 yr (mean +/- SD); maximum O2 uptake (VO2max) 52.1 +/- 7.9 ml . kg-1 . min-1] were compared with 14 healthy male sedentary controls (CON) (age 63 +/- 3 yr; VO2max of 27.6 +/- 3.4 ml . kg-1 . min-1), and 2) 11 sedentary healthy men and women, age 63 +/- 2 yr, were reevaluated after 12 mo of endurance training that increased their VO2max 25%. MA had a significantly lower ventilatory response to submaximal exercise at the same O2 uptake (VE/VO2) and greater maximal voluntary ventilation (MVV), maximal exercise ventilation (VEmax), and ratio of VEmax to MVV than CON. Except for MVV, all of these parameters improved significantly in the previously sedentary subjects in response to training. Hypercapnic ventilatory response (HCVR) at rest and the ventilatory equivalent for CO2 (VE/VCO2) during submaximal exercise were similar for MA and CON and unaffected by training. We conclude that the increase in VE/VO2 during submaximal exercise observed with aging can be reversed by endurance training, and that after training, previously sedentary older individuals breathe at the same percentage of MVV during maximal exercise as highly trained athletes of similar age.  相似文献   

2.
Ventilation and brain blood flow (BBF) were simultaneously measured during carbon monoxide (CO) inhalation in awake and sleeping goats up to HbCO levels of 40%. Unilateral BBF, which was continuously measured with an electromagnetic flow probe placed around the internal maxillary artery, progressively increased with CO inhalation in the awake and both sleep stages. The increase in BBF with CO inhalation during rapid-eye-movement (REM) sleep (delta BBF/delta arterial O2 saturation = 1.34 +/- 0.27 ml X min-1 X %-1) was significantly greater than that manifested during wakefulness (0.87 +/- 0.14) or slow-wave sleep (0.92 +/- 0.13). Ventilation was depressed by CO inhalation during both sleep stages but was unchanged from base-line values in awake goats. In contrast to slow-wave (non-REM) sleep, the ventilatory depression of REM sleep was primarily due to a reduction in tidal volume. Since tidal volume is more closely linked to central chemoreceptor function, we believe that these data suggest a possible role of the increased cerebral perfusion during hypoxic REM sleep. Induction of relative tissue alkalosis at the vicinity of the medullary chemoreceptor may contribute to the ventilatory depression exhibited during this sleep period.  相似文献   

3.
In conscious rats, focal CO2 stimulation of the medullary raphe increases ventilation, whereas interference with serotonergic function here decreases the ventilatory response to systemic hypercapnia. We sought to determine whether repeated administration of a selective serotonin reuptake inhibitor in this region would increase the ventilatory response to hypercapnia in unanesthetized rats. In rats instrumented with electroencephalogram-electromyogram electrodes, 250 or 500 microM fluoxetine or artificial cerebrospinal fluid (aCSF) was microdialyzed into the medullary raphe for 30 min daily over 15 days. To compare focal and systemic treatment, two additional groups of rats received 10 mg x kg(-1) x day(-1) fluoxetine or vehicle systemically. Ventilation was measured in normocapnia and in 7% CO2 before treatment (day 0), acutely (days 1 or 3), on day 7, and on day 15. There was no change in normocapnic ventilation in any treatment group. Rats that received 250 microM fluoxetine microdialysis showed a significant 13% increase in ventilation in wakefulness during hypercapnia on day 7, due to an increase in tidal volume. In rats microdialyzed with 500 microM fluoxetine, there were 16 and 32% increases in minute ventilation during hypercapnia in wakefulness and sleep on day 7, and 20 and 28% increases on day 15, respectively, again due to increased tidal volume. There was no change in the ventilatory response to CO2 in rats microdialyzed with aCSF or in systemically treated rats. Chronic fluoxetine treatment in the medullary raphe increases the ventilatory response to hypercapnia in an unanesthetized rat model, an effect that may be due to facilitation of chemosensitive serotonergic neurons.  相似文献   

4.
Augmented hypoxic ventilatory response in men at altitude.   总被引:9,自引:0,他引:9  
To test the hypothesis that the hypoxic ventilatory response (HVR) of an individual is a constant unaffected by acclimatization, isocapnic 5-min step HVR, as delta VI/delta SaO2 (l.min-1.%-1, where VI is inspired ventilation and SaO2 is arterial O2 saturation), was tested in six normal males at sea level (SL), after 1-5 days at 3,810-m altitude (AL1-3), and three times over 1 wk after altitude exposure (PAL1-3). Equal medullary central ventilatory drive was sought at both altitudes by testing HVR after greater than 15 min of hyperoxia to eliminate possible ambient hypoxic ventilatory depression (HVD), choosing for isocapnia a P'CO2 (end tidal) elevated sufficiently to drive hyperoxic VI to 140 ml.kg-1.min-1. Mean P'CO2 was 45.4 +/- 1.7 Torr at SL and 33.3 +/- 1.8 Torr on AL3, compared with the respective resting control end-tidal PCO2 of 42.3 +/- 2.0 and 30.8 +/- 2.6 Torr. SL HVR of 0.91 +/- 0.38 was unchanged on AL1 (30 +/- 18 h) at 1.04 +/- 0.37 but rose (P less than 0.05) to 1.27 +/- 0.57 on AL2 (3.2 +/- 0.8 days) and 1.46 +/- 0.59 on AL3 (4.8 +/- 0.4 days) and remained high on PAL1 at 1.44 +/- 0.54 and PAL2 at 1.37 +/- 0.78 but not on PAL3 (days 4-7). HVR was independent of test SaO2 (range 60-90%). Hyperoxic HCVR (CO2 response) was increased on AL3 and PAL1. Arterial pH at congruent to 65% SaO2 was 7.378 +/- 0.019 at SL, 7.44 +/- 0.018 on AL2, and 7.412 +/- 0.023 on AL3.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The ventilatory response of the newborn to CO2 was studied using a rebreathing method that minimized changes in arterial PO2 during the test. The aim was to study the variability of the ventilatory response to CO2 and take this into account to assess the relative magnitude of the response to CO2 during rapid-eye-movement (REM) sleep and quiet sleep (QS). Five full-term babies aged 4-6 days were given 5% CO2 in air to rebreathe for 1.5-3 min. O2 was added to the rebreathing circuit to maintain arterial O2 saturation and transcutaneous PO2 (Ptco2) at prerebreathing levels. Tests were repeated four to five times in REM sleep and QS. Mean Ptco2 levels varied between individuals but were similar during REM sleep and QS tests for each subject. The mean coefficient of variability of the ventilatory response was 35% (range 15-77%) during QS and 120% (range 32-220%) during REM sleep. PtcO2 fluctuations during tests [6.0 +/- 3.0 (SD) Torr, range 1-13 Torr] were not correlated with ventilatory response. Overall the ventilatory response was significantly lower in REM sleep than in QS (12.2 +/- 3.0 vs. 38.7 +/- 3.0 ml.min-1.Torr-1.kg-1, P less than 0.001; 2-way analysis of variance) due to a small (nonsignificant) fall in the tidal volume response and a significant fall in breathing rate. In 12 REM sleep tests there was no significant ventilatory response; mean inspiratory flow increased significantly during 8 of these 12 tests. We conclude that there is a significant decrease in the ventilatory response of the newborn to CO2 rebreathing during REM sleep compared with QS.  相似文献   

6.
Physiological profile of world-class high-altitude climbers   总被引:1,自引:0,他引:1  
The functional characteristics of six world-class high-altitude mountaineers were assessed 2-12 mo after the last high-altitude climb. Each climber on one or several occasions had reached altitudes of 8,500 m or above without supplementary O2. Static and dynamic lung volumes and right and left echocardiographic measurements were found to be within normal limits of sedentary controls (SC). Muscle fiber distribution was 70% type I, 22% type IIa, and 7% type IIb. Mean muscle fiber cross-sectional area was significantly smaller than that of SC (-15%) and of long-distance runners (LDR, -51%). The number of capillaries per unit cross-sectional area was significantly greater than that of SC (+ 40%). Total mitochondrial volume was not significantly different from that of SC, but its subsarcolemmal component was equal to that of LDR. Average maximal O2 consumption was 60 +/- 6 ml X kg-1 X min-1, which is between the values of SC and LDR. Average maximal anaerobic power was 28 +/- 2.5 W X kg-1, which is equal to that of SC and 40% lower that that of competitive high jumpers. All subjects were characterized by resting hyperventilation both in normoxia and in moderate (inspired O2 partial pressure = 77 Torr) hypoxia resulting in higher oxyhemoglobin saturation levels in hypoxia. The ventilatory response to four tidal volumes of pure O2 was similar to that of SC. It is concluded that elite high-altitude climbers do not have physiological adaptations to high altitude that justify their unique performance.  相似文献   

7.
Adenosine infusion (100 micrograms X kg-1 X min-1) in humans stimulates ventilation but also causes abdominal and chest discomfort. To exclude the effects of symptoms and to differentiate between a central and peripheral site of action, we measured the effect of adenosine infused at a level (70-80 micrograms X kg-1 X min-1) below the threshold for symptoms. Resting ventilation (VE) and progressive ventilatory responses to isocapnic hypoxia and hyperoxic hypercapnia were measured in six normal men. Compared with a control saline infusion given single blind on the same day, adenosine stimulated VE [mean increase: 1.3 +/- 0.8 (SD) l/min; P less than 0.02], lowered resting end-tidal PCO2 (PETCO2) (mean fall: -3.9 +/- 0.9 Torr), and increased heart rate (mean increase: 16.1 +/- 8.1 beats/min) without changing systemic blood pressure. Adenosine increased the hypoxic ventilatory response (control: -0.68 +/- 0.4 l X min-1 X %SaO2-1, where %SaO2 is percent of arterial O2 saturation; adenosine: -2.40 +/- 1.2 l X min-1 X %SaO2-1; P less than 0.01) measured at a mean PETCO2 of 38.3 +/- 0.6 Torr but did not alter the hypercapnic response. This differential effect suggests that adenosine may stimulate ventilation by a peripheral rather than a central action and therefore may be involved in the mechanism of peripheral chemoreception.  相似文献   

8.
The ventilatory response to exercise below ventilatory threshold (VTh) increases with aging, whereas above VTh the ventilatory response declines only slightly. We wondered whether this same ventilatory response would be observed in older runners. We also wondered whether their ventilatory response to exercise while breathing He-O(2) or inspired CO(2) would be different. To investigate, we studied 12 seniors (63 +/- 4 yr; 10 men, 2 women) who exercised regularly (5 +/- 1 days/wk, 29 +/- 11 mi/wk, 16 +/- 6 yr). Each subject performed graded cycle ergometry to exhaustion on 3 separate days, breathing either room air, 3% inspired CO(2), or a heliox mixture (79% He and 21% O(2)). The ventilatory response to exercise below VTh was 0.35 +/- 0.06 l x min(-1) x W(-1) and above VTh was 0.66 +/- 0.10 l x min(-1) x W(-1). He-O(2) breathing increased (P < 0.05) the ventilatory response to exercise both below (0.40 +/- 0.12 l x min(-1) x W(-1)) and above VTh (0.81 +/- 0.10 l x min(-1) x W(-1)). Inspired CO(2) increased (P < 0.001) the ventilatory response to exercise only below VTh (0.44 +/- 0.10 l x min(-1) x W(-1)). The ventilatory responses to exercise with room air, He-O(2), and CO(2) breathing of these fit runners were similar to those observed earlier in older sedentary individuals. These data suggest that the ventilatory response to exercise of these senior runners is adequate to support their greater exercise capacity and that exercise training does not alter the ventilatory response to exercise with He-O(2) or inspired CO(2) breathing.  相似文献   

9.
Ventilatory response to graded external dead space (0.5, 1.0, 2.0, and 2.5 liters) with hyperoxia and CO2 steady-state inhalation (3, 5, 7, and 8% CO2 in O2) was studied before and after 4% lidocaine aerosol inhalation in nine healthy males. The mean ventilatory response (delta VE/delta PETCO2, where VE is minute ventilation and PETCO2 is end-tidal PCO2) to graded dead space before airway anesthesia was 10.2 +/- 4.6 (SD) l.min-1.Torr-1, which was significantly greater than the steady-state CO2 response (1.4 +/- 0.6 l.min-1.Torr-1, P less than 0.001). Dead-space loading produced greater oscillation in airway PCO2 than did CO2 gas loading. After airway anesthesia, ventilatory response to graded dead space decreased significantly, to 2.1 +/- 0.6 l.min-1.Torr-1 (P less than 0.01) but was still greater than that to CO2. The response to CO2 did not significantly differ (1.3 +/- 0.5 l.min-1.Torr-1). Tidal volume, mean inspiratory flow, respiratory frequency, inspiratory time, and expiratory time during dead-space breathing were also depressed after airway anesthesia, particularly during large dead-space loading. On the other hand, during CO2 inhalation, these respiratory variables did not significantly differ before and after airway anesthesia. These results suggest that in conscious humans vagal airway receptors play a role in the ventilatory response to graded dead space and control of the breathing pattern during dead-space loading by detecting the oscillation in airway PCO2. These receptors do not appear to contribute to the ventilatory response to inhaled CO2.  相似文献   

10.
The effect of substance P (SP), administered both intravenously and by inhalation, has been studied in normal and asthmatic humans. Intravenous infusion of SP (0.2-3.3 pmol X kg-1 X min-1) achieving a plasma concentration of SP between 5 and 25 pM produced vasodilatation (mean +/- SD), maximal increase in skin temperature (0.9 +/- 0.3 degree C) (P less than 0.05), and fall in diastolic blood pressure (8.5 +/- 2.9 mmHg) (P less than 0.05) associated with an increase in heart rate (15 +/- 10 beats/min) (P less than 0.05). All subjects had a fall in Vp30 (airflow at 70% of forced vital capacity measured from total lung capacity after a forced partial expiratory flow maneuver) at low infusion rate (P less than 0.05) and a significant rise at the highest infusion rate (P less than 0.05). Ventilation at rest and when stimulated by transient hypoxia increased (mean increase in resting ventilation 0.73 +/- 0.4 l/min and mean percent increase in transient ventilatory hypoxic response 41 +/- 27%). There was a small nonsignificant increase in plasma norepinephrine but no change in epinephrine or histamine. Inhaled SP, up to 0.7 mumol, caused a small nonsignificant fall in airway function in asthmatic subjects. SP has demonstrable effects on vascular smooth muscle and control of ventilation but at the doses studied had little effect on airway function.  相似文献   

11.
This study investigated the effects of intensity and duration of exercise on lymphocyte proliferation as a measure of immunologic function in men of defined fitness. Three fitness groups--low [maximal O2 uptake (VO2max) = 44.9 +/- 1.5 ml O2.kg-1.min-1 and sedentary], moderate (VO2max = 55.2 +/- 1.6 ml O2.kg-1.min-1 and recreationally active), and high (VO2max = 63.3 +/- 1.8 ml O2.kg-1.min-1 and endurance trained)--and a mixed control group (VO2max = 52.4 +/- 2.3 ml O2.kg-1.min-1) participated in the study. Subjects completed four randomly ordered cycle ergometer rides: ride 1, 30 min at 65% VO2max; ride 2, 60 min at 30% VO2max; ride 3, 60 min at 75% VO2max; and ride 4, 120 min at 65% VO2max. Blood samples were obtained at various times before and after the exercise sessions. Lymphocyte responses to the T cell mitogen concanavalin A were determined at each sample time through the incorporation of radiolabeled thymidine [( 3H]TdR). Despite differences in resting levels of [3H]TdR uptake, a consistent depression in mitogenesis was present 2 h after an exercise bout in all fitness groups. The magnitude of the reduction in T cell mitogenesis was not affected by an increase in exercise duration. A trend toward greater reduction was present in the highly fit group when exercise intensity was increased. The reduction in lymphocyte proliferation to the concanavalin A mitogen after exercise was a short-term phenomenon with recovery to resting (preexercise) values 24 h after cessation of the work bout. These data suggest that single sessions of submaximal exercise transiently reduce lymphocyte function in men and that this effect occurs irrespective of subject fitness level.  相似文献   

12.
To determine whether voluntary exercise would lower resting blood pressure in spontaneously hypertensive rats (SHR) and stroke-prone spontaneously hypertensive rats (SP-SHR), two separate but interrelated investigations were undertaken. The studies were initiated when the animals were 28-35 days of age and after they were assigned to either activity or sedentary cages. The activity cages were connected to transducers and recorders that allowed the monitoring and calculation of frequency, duration, and running speed. The SHR group ran 3-7 km/day intermittently for 12 wk at high speeds (48-68 m/min), which resulted in heart rates in excess of 500 beats/min. When the SHR exercised, they seldom exceeded 33 revolutions/bout (37 m) with the majority being less than 22 revolutions/bout. This type of exercise training significantly lowered, but did not normalize, resting blood pressure by approximately 20 mmHg [nontrained (NT) = 185 +/- 5; trained (T) = 163 +/- 5 mmHg] while increasing maximum O2 consumption (VO2max) (NT = 78 +/- 2.6; T = 95 +/- 2.2 ml X min-1 X kg-1) and endurance run time (NT = 62 +/- 9.0; T = 286 +/- 15.0 min), respectively. Although SP-SHR exhibited comparable patterns of voluntary activity, the effects were not similar. First, after approximately 5 wk of consuming a special Japanese rat chow and a 1% NaCl drinking solution, cerebrovascular lesions occurred and deaths ultimately resulted in both exercising and sedentary groups. Second, although there was statistical evidence for a training effect (higher VO2max, longer VO2 test run times), voluntary exercise had no advantage in either male or female runners in lowering resting blood pressures or in improving their life-spans. Whereas voluntary activity wheel exercise or moderate forced treadmill exercise will lower resting blood pressures in young SHR populations, similar generalizations cannot be made with young SP-SHR rats.  相似文献   

13.
We investigated the effects of exercise training on the amount of aortic collagen and systolic blood pressure in spontaneously hypertensive rats (SHR). Ten-week old SHR were trained either by forced treadmill running (26.8 m X min-1 -1 h X day-1, five times a week, 0% incline) or by voluntary running in revolving wheels (7,800 m X day-1 at peak) for 8 weeks. Succinate dehydrogenase (SDH) activity measured as a marker of an endurance training effect was 13% higher (P less than 0.01) in the soleus of forced-exercised animals than in that of sedentary ones. (6.56 +/- 0.17 mumol X g-1 X min-1; mean +/- SEM), whereas SDH activity in that of voluntarily-exercised group was found to be at the same level as in sedentary animals. The systolic blood pressure after training increased by 26.4 in sedentary, 21.1 in voluntarily-exercised, and 33.9 mm Hg in forced-exercised rats, when compared with the value of each group at the beginning of the training program. A significant difference was observed in the increment of blood pressure only between the voluntarily- and forced-exercised groups (P less than 0.05). The amount of aortic collagen in voluntarily-trained rats (96.5 +/- 2.0 mg X g tissue-1, 39.8 +/- 0.7 mg X 100 mg protein-1) was significantly less than that in forced-trained rats (P less than 0.05). These results suggest that voluntary, mild exercise training may be more effective in the reduction of collagen accumulation in the aorta associated with the suppression of blood pressure increase than forced, vigorous exercise training in SHR.  相似文献   

14.
Compensation for inspiratory flow-resistive loading was compared during progressive hypercapnia and incremental exercise to determine the effect of changing the background ventilatory stimulus and to assess the influence of the interindividual variability of the unloaded CO2 response on evaluation of load compensation in normal subjects. During progressive hypercapnia, ventilatory response was incompletely defended with loading (mean unloaded delta VE/delta PCO2 = 3.02 +/- 2.29, loaded = 1.60 +/- 0.67 1.min-1.Torr-1 CO2, where VE is minute ventilation and PCO2 is CO2 partial pressure; P less than 0.01). Furthermore the degree of defense of ventilation with loading was inversely correlated with the magnitude of the unloaded CO2 response. During exercise, loading produced no depression in ventilatory response (mean delta VE/delta VCO2 unloaded = 20.5 +/- 1.9, loaded = 19.2 +/- 2.5 l.min-1.l-1.min-1 CO2 where VCO is CO2 production; P = NS), and no relationship was demonstrated between degree of defense of the exercise ventilatory response and the unloaded CO2 response. Differences in load compensation during CO2 rebreathing and exercise suggest the presence of independent ventilatory control mechanisms in these states. The type of background ventilatory stimulus should therefore be considered in load compensation assessment.  相似文献   

15.
Dynamic exercise training of the elderly increases maximal O2 uptake (VO2max); however, the effects of training on the ventilation threshold (VET) have not been studied. VET was identified as the final point before the ventilatory equivalent for O2 (VE/VO2) increased, without an increase in the ventilatory equivalent for CO2 (VE/VCO2). Inactive elderly males (mean age, 62 yr) were randomly assigned to a control (C, n = 44) or activity (A, n = 45) group. VO2max and VET were determined from an incremental treadmill test. Initial VO2max was not different between the C (2.34 +/- 0.42 l X min-1) and A (2.28 +/- 0.44 l X min-1) groups, nor was there a significant difference in the VO2 at the VET (C = 1.39 +/- 0.26 l X min-1; A = 1.31 +/- 0.23 l X min-1). The activity group trained for 30 min/day, 3 days/wk at an intensity of approximately 65-80% of VO2max. After 1 yr of training the activity group exhibited an 18% increase in VO2max (A = 2.70 +/- 0.54 l X min-1), but the change in VET was not significant (A = 1.39 +/- 0.28 l X min-1). There was no significant change in VO2max (C = 2.45 +/- 0.68 l X min-1) or VET (C = 1.38 +/- 0.31 l X min-1) in the control group. VET/VO2max declined significantly in the activity group (from 58 to 52% of VO2max). Change in VET/VO2max with training was not correlated with the initial VO2max value. We conclude that increases in aerobic capacity are more readily effected than alterations of the VET in elderly subjects.  相似文献   

16.
Decline in VO2max with aging in master athletes and sedentary men   总被引:1,自引:0,他引:1  
Fifteen well-trained master endurance athletes [62.0 +/- 2.3 (SE) yr] and 14 sedentary control subjects (61.4 +/- 1.4 yr) were reevaluated after an average follow-up period of approximately 8 yr to obtain information regarding the effects of physical activity on the age-related decline in maximal O2 uptake capacity (VO2max). The master athletes had been training for 10.2 +/- 2.9 yr before initial testing and continued to train during the follow-up period. The sedentary subjects' VO2max declined by an average of 3.3 ml.kg-1.min-1 (33.9 +/- 1.7 vs. 30.6 +/- 1.6, P less than 0.001) over the course of the study, a decline of 12% per decade. In these subjects maximal heart rate declined 8 beats/min (171 vs. 163) and maximal O2 pulse decreased from 0.20 to 0.18 ml.kg-1.beat (P less than 0.05). The master athletes' VO2 max decreased by an average of 2.2 ml.kg-1.min-1 (54.0 +/- 1.7 vs. 51.8 +/- 1.8, P less than 0.05), a 5.5% decline per decade. The master athletes' maximal heart rate was unchanged (171 +/- 3 beats/min) and their maximal O2 pulse decreased from 0.32 to 0.30 ml.kg-1.beat (P less than 0.05). These findings provide evidence that the age-related decrease in VO2max of master athletes who continue to engage in regular vigorous endurance exercise training is approximately one-half the rate of decline seen in age-matched sedentary subjects. Furthermore our results suggest that endurance exercise training may reduce the rate of decline in maximal heart rate that typically occurs as an individual ages.  相似文献   

17.
We assessed the time course of changes in eupneic arterial PCO(2) (Pa(CO(2))) and the ventilatory response to hyperoxic rebreathing after removal of the carotid bodies (CBX) in awake female dogs. Elimination of the ventilatory response to bolus intravenous injections of NaCN was used to confirm CBX status on each day of data collection. Relative to eupneic control (Pa(CO(2)) = 40 +/- 3 Torr), all seven dogs hypoventilated after CBX, reaching a maximum Pa(CO(2)) of 53 +/- 6 Torr by day 3 post-CBX. There was no significant recovery of eupneic Pa(CO(2)) over the ensuing 18 days. Relative to control, the hyperoxic CO(2) ventilatory (change in inspired minute ventilation/change in end-tidal PCO(2)) and tidal volume (change in tidal volume/ change in end-tidal PCO(2)) response slopes were decreased 40 +/- 15 and 35 +/- 20% by day 2 post-CBX. There was no recovery in the ventilatory or tidal volume response slopes to hyperoxic hypercapnia over the ensuing 19 days. We conclude that 1) the carotid bodies contribute approximately 40% of the eupneic drive to breathe and the ventilatory response to hyperoxic hypercapnia and 2) there is no recovery in the eupneic drive to breathe or the ventilatory response to hyperoxic hypercapnia after removal of the carotid chemoreceptors, indicating a lack of central or aortic chemoreceptor plasticity in the adult dog after CBX.  相似文献   

18.
Enhanced efficiency of lactate removal after endurance training   总被引:1,自引:0,他引:1  
The effects of endurance training (running 1 h/day at 40 m/min, 10% grade) on net lactate removal at various lactate concentrations were assessed in resting rats by use of constant exogenous lactate infusion (0, 69.3, 123.6, and 175.0 mumol.kg-1.min-1). No consistent difference in resting lactate concentrations, 1.17 +/- 0.09 mM, was observed between control and trained animals with no exogenous infusion of lactate. With increasing lactate infusion rates, control animals demonstrated a twofold greater increase in blood lactate concentration (range 1.2-11.4 mM) compared with trained animals (range 1.0-5.5 mM). This response resulted from a more rapid rise in net lactate removal with changes in blood lactate concentration for trained animals. The estimated maximal reaction velocity for net lactate removal in trained animals was 19% lower than in control animals; however, the Michaelis-Menten constant was greater than 66% lower in trained animals (4 mM) compared with controls (12 mM). Control animals also demonstrated a twofold greater increase in lactate concentration as a function of the tracer-estimated lactate turnover. The ratio of 14CO2 yield to lactate specific activity as a function of total tracer removal was not significantly different between groups, suggesting that the relative contributions of oxidation and gluconeogenesis to lactate removal were similar for both groups. At blood concentrations greater than 1 mM, trained animals achieve higher rates of lactate removal for any given lactate concentration.  相似文献   

19.
Exercise training causes a decline in basal and glucose-stimulated plasma insulin levels and improves glucose tolerance. Furthermore evidence has been presented for effects on both insulin receptors and postreceptor events. However, it is unclear how these changes affect the in vivo dose-response relationship between insulin levels and whole-body glucose utilization. The aim was to examine the effect of exercise training on this relationship and distinguish between changes in insulin sensitivity and responsiveness. Euglycemic clamps were performed in trained (ET, running 1 h/day for 7 wk), sedentary (CON), and sedentary food-restricted ( SFR ) rats. ET rats showed no increase in maximal net glucose utilization in response to insulin (ET 29.5 +/- 0.6 vs. CON 28.2 +/- 1.5 mg X kg-1 X min-1, NS), whereas insulin sensitivity was increased as indicated by the insulin concentration causing half-maximal stimulation (ED50) (49 +/- 20 for ET and 133 +/- 30 mU/l for CON). Thus 7 wk of moderate exercise training resulted in a significant shift of whole-body insulin sensitivity to place ED50 well within the physiological range of insulin concentrations. This would undoubtedly result in improved glucose disposal in the postprandial state and emphasizes the potential benefit of exercise in obesity and type II diabetes.  相似文献   

20.
Obesity is often associated with a reduced ventilatory response and a decreased maximal exercise capacity. GABA is a major inhibitory neurotransmitter in the mammalian central nervous system. Altered GABAergic mechanisms have been detected in obese Zucker rats and implicated in their hyperphagic response. Whether altered GABAergic mechanisms also contribute to regulate ventilation and influence exercise capacity in obese Zucker rats is unknown and formed the basis of the present study. Eight lean [317 +/- 18 (SD) g] and eight obese (450 +/- 27 g) Zucker rats were studied at 12 wk of age. Ventilation at rest and ventilation during hypoxic (10% O(2)) and hypercapnic (4% CO(2)) challenges were measured by the barometric method. Peak O(2) consumption (VO(2 peak)) in response to a progressive treadmill test to exhaustion was measured in a metabolic treadmill. Ventilation and VO(2 peak) were assessed after administration of equal volumes of DMSO (vehicle) and the GABA(A) receptor antagonist bicuculline (1 mg/kg). In lean animals, bicuculline administration had no effect on ventilation and VO(2 peak). In obese rats, bicuculline administration significantly (P < 0.05) increased resting ventilation (465 +/- 53 and 542 +/- 72 ml. kg(-1). min(-1) for control and bicuculline, respectively), ventilation during exposure to hypoxia (899 +/- 148 and 1,038 +/- 83 ml. kg(-1). min(-1) for control and bicuculline, respectively), and VO(2 peak) (62 +/- 3.7 and 67 +/- 3.5 ml. kg(-0.75). min(-1) for control and bicuculline, respectively). However, in obese Zucker rats, ventilation in response to hypercapnia did not change after bicuculline administration (608 +/- 96 vs. 580 +/- 69 ml. kg(-1). min(-1)). Our findings indicate that endogenous GABA depresses ventilation and limits exercise performance in obese Zucker rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号