首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to ambient particulate matter has been reported to be associated with increased rates of lung cancer. Previously we showed that total suspended particulate matter (PM) induces oxidative DNA damage in epithelial lung cells. The aim of the present study was to further investigate the mechanism of PM-induced DNA damage, in which soluble iron-mediated hydroxyl radical (OH) formation is thought to play a crucial role. Using electron spin resonance (ESR) we showed that PM suspensions as well as their particle-free, water-soluble fractions can generate OH in the presence of hydrogen peroxide (H2O2), an effect which was abrogated by both deferoxamine and catalase. In addition, PM was also found to induce the OH-specific DNA lesion 8-hydroxydeoxyguanosine (8-OHdG) in the presence of H2O2 as assessed by dot-blot analysis of calf thymus DNA using an 8-OHdG antibody. In human alveolar epithelial cells (A549), both PM suspensions and the particle-free soluble fraction elicited formation of DNA strand breaks (comet-assay). Unlike the acellular DNA assays, in epithelial cells the DNA-damaging capacity of the particle suspensions appeared to be stronger than that of their corresponding particle-free filtrates. In conclusion, our findings demonstrate that the water-soluble fraction of PM elicits DNA damage via transition metal-dependent OH formation, implicating an important role of H2O2. Moreover, our data indicate that direct 'particle' effects contribute to the genotoxic hazard of ambient particulate matter in lung target cells.  相似文献   

2.
An association between exposure to ambient particulate matter (PM) and increased incidence of mortality and morbidity due to lung cancer and cardiovascular diseases has been demonstrated by recent epidemiological studies. Reactive oxygen species (ROS), especially hydroxyl radicals, generated by PM, have been suggested by many studies as an important factor in the oxidative damage of DNA by PM. The purpose of this study was to characterize quantitatively hydroxyl radical generation by various transition metals in the presence of H2O2 in aqueous buffer solution (pH 7.4) and hydroxylation of 2'-deoxyguanosine (dG) to 8-hydroxy-2'-deoxyguanosine (8-OHdG) under similar conditions. The order of metals' redox reactivity and hydroxyl radical production was Fe(II), V(IV), Cu(I), Cr(III), Ni(II), Co(II), Pb(II), Cd(II). Then, we investigated the generation of hydroxyl radicals in the presence of H2O2 by various airborne PM samples, such as total suspended particulate (TSP), PM10, PM2.5 (PM with aerodynamic diameter 10 and 2.5 μm), diesel exhaust particles (DEP), gasoline exhaust particles (GEP) and woodsmoke soot under the same conditions. When suspensions of PMs were incubated with H2O2 and dG at pH 7.4, all particles induced hydroxylation of dG and formation of 8-OHdG in a dose-dependent increase. Our findings demonstrated that PM's hydroxyl radical (HO√) generating ability and subsequent dG hydroxylation is associated with the concentration of water-soluble metals, especially Fe and V and other redox or ionizable transition metals and not their total metal content, or insoluble metal oxides, via a Fenton-driven reaction of H2O2 with metals. Additionally, we observed, by Electron paramagnetic resonance (EPR), that PM suspensions in the presence of H2O2 generated radical species with dG, which were spin-trapped by 2-methyl-2-nitroso-propane (MNP).  相似文献   

3.
A range of epidemiological studies in the 1990s showed that exposure to ambient particulate matter (PM) is associated with adverse health effects in the respiratory system and increased morbidity and mortality rates. Oxidative stress has emerged as a pivotal mechanism that underlies the toxic pulmonary effects of PM. A key question from a variety of studies was whether the adverse health effects of PM are mediated by the carbonaceous particles of their reactive chemical compounds adsorbed into the particles. Experimental evidence showed that PM contains redox-active transition metals, redox cycling quinoids and polycyclic aromatic hydrocarbons (PAHs) which act synergistically to produce reactive oxygen species (ROS). Fine PM has the ability to penetrate deep into the respiratory tree where it overcomes the antioxidant defences in the fluid lining of the lungs by the oxidative action of ROS. From a previous study [Valavanidis A, Salika A, Theodoropoulou A. Generation of hydroxyl radicals by urban suspended particulate air matter. The role of iron ions. Atmospher Environ 2000; 34 : 2379-2386], we established that ferrous ions in PM play an important role in the generation of hydroxyl radicals in the presence of hydrogen peroxide (H2O2). In the present study, we investigated the synergistic effect of transition metals and persistent quinoid and semiquinone radicals for the generation of ROS without the presence of H2O2. We experimented with airborne particulate matter, such as TSPs (total suspended particulates), fresh automobile exhaust particles (diesel, DEP and gasoline, GEP) and fresh wood smoke soot. Using electron paramagnetic resonance (EPR), we examined the quantities of persistent free radicals, characteristic of a mixture of quinoid radicals with different structures and a carbonaceous core of carbon-centred radicals. We extracted, separated and analysed the quinoid compounds by EPR at alkaline solution (pH 9.5) and by TLC. Also, we studied the direct production of superoxide anion and the damaging hydroxyl radical in aqueous and in DMSO suspensions of PM without H2O2. From these results, it is suggested that the cytotoxic and carcinogenic potential of PM can be partly the result of redox cycling of persistent quinoid radicals, which generate large amounts of ROS. In the second phase, the water-soluble fraction of PM elicits DNA damage via reactive transition metal-dependent formation of hydroxyl radicals, implicating an important role for hydrogen peroxide. Together, these data indicate the importance of mechanisms involving redox cycling of quinones and Fenton-type reactions by transition metals in the generation of ROS. These results are supported by recent studies indicating cytotoxic effects, especially mitochondrial damage, by PM extracts and differential mechanisms of cell killing by redox cycling quinones.  相似文献   

4.
Electron spin resonance (ESR) and high-performance liquid chromatography (HPLC) techniques were utilized to investigate the effect of deferoxamine on free radical generation in the reaction of Cr(V) with H2O2 and organic hydroperoxides. ESR measurements demonstrated that deferoxamine can efficiently reduce the concentration of the Cr(V) intermediate as formed in the reduction of Cr(VI) by NAD(P)H or a flavoenzyme glutathione reductase/NADH. ESR spin trapping studies showed that deferoxamine also inhibits Cr(V)-mediated .OH radical generation from H2O2, as well as Cr(V)-mediated alkyl and alkoxy radical formation from t-butyl hydroperoxide and cumene hydroperoxide. HPLC measurements showed that .OH radicals generated by the Cr(VI)/flavoenzyme/NAD(P)H enzymatic system react with 2'-deoxyguanine to form 8-hydroxy-2'-deoxyguanine (8-OHdG), a DNA damage marker. Deferoxamine effectly inhibited the formation of 8-OHdG also.  相似文献   

5.
Ambient air particulate matter 2.5 (PM2.5) contains many harmful components that can enter the circulatory system and produce reactive oxygen species (ROS) in body. Oxidative stress and DNA damage induced by ROS may affect any cellular macromolecule and lead to DNA double-strand breaks (DSBs). Flavonoids, widely distributed in some herbs and berries, have been proved having anti-oxidative or anti-cancer efficacy. In this study, we investigated whether Flavone, a kind of flavonoids, can protect human bronchial epithelial cells (HBE) from DSBs caused by PM2.5 and how this function is probably implemented. We found that cells exposed to PM2.5 obviously induced viability inhibition, DNA damage and part of apoptosis. However, Flavone treatment prior to PM2.5 apparently improved cell viability, and mitigated the formation of 8-hydroxy-2-deoxyguanosine, the expression of DNA damage-relative protein and cell apoptosis. Our studies demonstrated that PM2.5 induced oxidative DSBs while Flavone ameliorated the DNA damage and increased cell viability probably through influencing DNA repair mechanism of cells.  相似文献   

6.
Reactive oxygen species (ROS) released by neutrophils have been suggested to play an important role in cancer development. Since the mechanisms underlying this effect in the respiratory tract are still unclear, we evaluated DNA damage induced by neutrophils in respiratory tract epithelial cells in vitro and in vivo. For in vitro studies, rat lung epithelial cells (RLE) were co-incubated with activated neutrophils, neutrophil-conditioned medium, or hydrogen peroxide. For in vivo studies, we considered the human nose as a target organ, comparing neutrophilic inflammation in the nasal lavage fluid with the oxidative DNA lesion 8-hydroxydeoxyguanosine (8-OHdG) in epithelial cells obtained by nasal brush. Our in vitro data show that human neutrophils are able to induce both 8-OHdG and strand breaks in DNA from RLE cells. Our data also suggest that DNA damage induced by neutrophils is inhibited when neutrophil-derived H2O2 is consumed by myeloperoxidase. In contrast, in the nose no association between neutrophil numbers and 8-OHdG was found. Therefore, it remains unclear whether neutrophils pose a direct genotoxic risk for the respiratory tract epithelium during inflammation, andmore in vivo studies are needed to elucidate the possible association between neutrophils and genotoxicity in the lung.  相似文献   

7.
Oxidative stress-induced DNA damage by particulate air pollution   总被引:14,自引:0,他引:14  
Risom L  Møller P  Loft S 《Mutation research》2005,592(1-2):119-137
Exposure to ambient air particulate matter (PM) is associated with pulmonary and cardiovascular diseases and cancer. The mechanisms of PM-induced health effects are believed to involve inflammation and oxidative stress. The oxidative stress mediated by PM may arise from direct generation of reactive oxygen species from the surface of particles, soluble compounds such as transition metals or organic compounds, altered function of mitochondria or NADPH-oxidase, and activation of inflammatory cells capable of generating ROS and reactive nitrogen species. Resulting oxidative DNA damage may be implicated in cancer risk and may serve as marker for oxidative stress relevant for other ailments caused by particulate air pollution. There is overwhelming evidence from animal experimental models, cell culture experiments, and cell free systems that exposure to diesel exhaust and diesel exhaust particles causes oxidative DNA damage. Similarly, various preparations of ambient air PM induce oxidative DNA damage in in vitro systems, whereas in vivo studies are scarce. Studies with various model/surrogate particle preparations, such as carbon black, suggest that the surface area is the most important determinant of effect for ultrafine particles (diameter less than 100 nm), whereas chemical composition may be more important for larger particles. The knowledge concerning mechanisms of action of PM has prompted the use of markers of oxidative stress and DNA damage for human biomonitoring in relation to ambient air. By means of personal monitoring and biomarkers a few studies have attempted to characterize individual exposure, explore mechanisms and identify significant sources to size fractions of ambient air PM with respect to relevant biological effects. In these studies guanine oxidation in DNA has been correlated with exposure to PM(2.5) and ultrafine particles outdoor and indoor. Oxidative stress-induced DNA damage appears to an important mechanism of action of urban particulate air pollution. Related biomarkers and personal monitoring may be useful tools for risk characterization.  相似文献   

8.
Background:  Reactive oxygen species (ROS) and reactive nitrogen species (RNS) can play an important role in cellular injury and carcinogenesis of gastric epithelial cells infected with Helicobacter pylori . 8-OH-deoxy guanosine (8-OHdG) and 8-nitroguanine (8-NG) are markers for ROS- and RNS-mediated DNA oxidation, respectively. In this study, RNS-mediated DNA damage in gastric mucosa was observed directly using a newly developed antibody to 8-NG to clarify how H. pylori infection causes nitrative DNA damage to gastric epithelial cells.
Methods:  Immunohistochemistry with anti-8-OHdG and anti-8-NG antibodies was performed on gastric tissue samples from 45 patients (25 men and 20 women) with H. pylori -positive gastritis and 19 patients (11 men and 8 women) exhibiting successful H. pylori eradication. Histologic factors for gastric mucosal inflammation were graded according to the guidelines of the Updated Sydney system.
Results:  In corpus mucosa, 8-OHdG and 8-NG production were significantly associated with the degree of glandular atrophy, infiltration of chronic inflammatory cells and intestinal metaplasia in the glandular epithelial cells. Successful H. pylori eradication resulted in a significant reduction of chronic inflammatory cell infiltration and neutrophilic activity. Mean 8-OHdG production was lower after H. pylori eradication in both corpus and antral mucosa ( p  = .022 and .049, respectively). However, the reduction in 8-NG exhibited was more pronounced than the reduction of 8-OhdG ( p  = .004 and .007, respectively).
Conclusions:  Helicobacter pylori infection can induce inflammatory cells infiltration, which evokes DNA damage of gastric epithelial cells through ROS and RNS production. 8-NG might be a more sensitive biomarker than 8-OHdG for H. pylori -induced DNA damage in gastric mucosa.  相似文献   

9.
Mechanism of oxidative DNA damage induced by carcinogenic 4-aminobiphenyl   总被引:5,自引:0,他引:5  
DNA adduct formation is thought to be a major cause of DNA damage by carcinogenic aromatic amines. We investigated the ability of an aromatic amine, 4-aminobiphenyl (4-ABP) and its N-hydroxy metabolite (4-ABP(NHOH)) to cause oxidative DNA damage, using (32)P-labeled human DNA fragments from the p53 tumor suppressor gene and the c-Ha-ras-1 protooncogene. 4-ABP(NHOH) was found to cause Cu(II)-mediated DNA damage, especially at thymine residues. Addition of the endogenous reductant NADH led to dramatic enhancement of this process. Catalase and bathocuproine, a Cu(I)-specific chelator, reduced the amount of DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). 4-ABP(NHOH) dose-dependently induced 8-hydroxy-2'-deoxyguanosine (8-OHdG) formation in the presence of Cu(ll) and NADH. 4-ABP(NHOH) conversion to nitrosobiphenyl, as measured by UV-visible spectroscopy, occurred rapidly in the presence of Cu(II), suggesting Cu(II)-mediated autoxidation. Increased amounts of 8-OHdG were found in HL-60 cells compared to the H(2)O(2)-resistant clone HP100 following 4-ABP(NHOH) treatment, further supporting the involvement of H(2)O(2). The present study demonstrates that an N-hydroxy derivative of 4-ABP induces oxidative DNA damage through H(2)O(2) in both a cell-free system and in cultured human cells. We conclude that, in addition to DNA adduct formation, oxidative DNA damage may play an important role in the carcinogenic process of 4-ABP.  相似文献   

10.
Zhang J  Ghio AJ  Gao M  Wei K  Rosen GD  Upadhyay D 《FEBS letters》2007,581(27):5315-5320
We hypothesized that the ambient air pollution particles (particulate matter; PM) induce cell cycle arrest in alveolar epithelial cells (AEC). Exposure of PM (25microg/cm(2)) to AEC induced cells cycle arrest in G1 phase, inhibited DNA synthesis, blocked cell proliferation and caused decrease in cyclin E, A, D1 and Cyclin E- cyclin-dependent kinase (CDK)-2 kinase activity after 4h. PM induced upregulation of CDK inhibitor, p21 protein and p21 activity in AEC. SiRNAp21 blocked PM-induced downregulation of cyclins and AEC G1 arrest. Accordingly, we provide the evidence that PM induces AEC G1 arrest by altered regulation of G1 cyclins and CDKs.  相似文献   

11.
12.
NNK诱发BEP2D细胞产生活性氧及其对DNA的损伤   总被引:4,自引:0,他引:4  
通过测定细胞内和细胞上清中活性氧(reactive oxygen species,ROS)水平,以及DNA 加合物——8-羟基脱氧鸟嘌呤核苷(8-hydroxydeoxyguanosine,OH8dG)含量,对烟草特异亚硝胺类化合物4-甲基亚硝胺-1(3-吡啶基)-1-丁酮(4-(m ethylnitrosam ino)-1-(3-pyridyl)-1-butanone,NNK)诱发人乳头状病毒永生化的人支气管上皮细胞(hum an papillom avirus-im m ortalized hum anbronchialepithelialcellline,BEP2D)产生的ROS及其对DNA 的氧化损伤进行研究,并观察纳米硒的保护作用.结果表明,BEP2D 细胞经不同浓度的NNK 作用后,细胞内和细胞上清中ROS以及OH8dG含量均显著增加,并有较好的剂量效应关系.1 μm ol·L- 1纳米硒(nanoselenuim ,NS)能明显抑制NNK 诱发BEP2D细胞产生的ROS及OH8dG 水平.揭示NNK 能造成细胞的氧化损伤,而NS对NNK 所致细胞的氧化损伤有保护作用.  相似文献   

13.
Oxidant-induced DNA damage by quartz in alveolar epithelial cells   总被引:2,自引:0,他引:2  
Respirable quartz has recently been classified as a human carcinogen. Although, studies with quartz using naked DNA as a target suggest that formation of oxyradicals by particles may play a role in the DNA-damaging properties of quartz, it is not known whether this pathway is important for DNA damage in the target cells for quartz carcinogenesis, i.e. alveolar epithelial cells. Therefore, we determined in vitro DNA damage by DQ12 quartz particles in rat and human and alveolar epithelial cells (RLE, A549) using the single cell gel electrophoresis/comet assay. The radical generation capacity of quartz was analysed by electron spin resonance (ESR) and by immunocytochemical analysis of the hydroxyl radical-specific DNA lesion 8-hydroxydeoxyguanosine (8-OHdG) in the epithelial cells. Quartz particles as well as the positive control hydrogen peroxide, caused a dose-dependent increase in DNA strand breaks in both cell lines. DNA damage by quartz was significantly reduced in the presence of the hydroxyl-radical scavengers mannitol or DMSO. The involvement of hydroxyl radicals was further established by ESR measurements and was also demonstrated by the ability of the quartz to induce formation of 8-OHdG. In conclusion, our data show that quartz elicits DNA damage in rat and human alveolar epithelial cells and indicate that these effects are driven by hydroxyl radical-generating properties of the particles.  相似文献   

14.
We examined the hypothesis that ambient particulate matter with a diameter of <10 microm (PM(10))-induced lung inflammation is amplified by latent adenovirus infection. Inflammatory mediator expression in response to PM(10) exposure was compared between adenovirus E1A-transfected A549 alveolar epithelial cells and cells transfected with control plasmid. Messenger RNA was measured by the RNase protection assay and protein by ELISA or immunocytochemistry. Intercellular adhesion molecule-1 and IL-8 mRNA and protein were increased in E1A-positive cells exposed to 500 microg/ml PM(10). Monocyte chemoattractant protein-1 mRNA and protein were unchanged in E1A-positive cells but increased in E1A-negative cells after 100 and 500 microg/ml PM(10) exposure. Electrophoretic mobility shift assays showed increased NF-kappaB and decreased specificity protein 1 nuclear binding in E1A-positive cells exposed to PM(10). These results indicate that E1A modulates cytokine and adhesion molecule expression in epithelial cells in a manner that could amplify PM(10)-induced lung inflammation. We suggest that this amplified inflammatory response may contribute to the pathogenesis of exacerbations of chronic obstructive pulmonary disease associated with exposure to particulate matter air pollution.  相似文献   

15.
The biotransformation of butylated hydroxyanisole (BHA), a possible carcinogenic food antioxidant, includes o-demethylation to 2-tert-butyl(1,4)hydroquinone (TBHQ) which can subsequently be oxidized to 2-tert-butyl(1,4)paraquinone (TBQ). In this study, we have examined the capacity of Cu, a nuclei- and DNA-associated transition metal, to mediate the oxidation of TBHQ. In phosphate buffered saline (PBS), autooxidation of TBHQ to TBQ was not detectable, while Cu(II) at micromolar concentrations strongly catalyzed the oxidation of TBHQ to TBQ. Oxidation of TBHQ by Cu(II) was accompanied by the utilization of O(2) and the concomitant generation of H(2)O(2). Using electron spin resonance spectroscopy, it was observed that Cu(II) mediated the one electron oxidation of TBHQ to a semiquinone anion radical. The formation of a semiquinone anion radical, the utilization of O(2) and the generation of H(2)O(2) and TBQ could be completely blocked by bathocuproinedisulfonic acid (BCS) and reduced glutathione (GSH), two Cu(I)-chelators. 4-Pyridyl-1-oxide-N-tert-butylnitrone (POBN)-spin trapping experiments showed that the reaction of TBHQ with Cu(II) resulted in the generation of POBN-CH(3) and POBN-CH(OH)CH(3) adducts in the presence of dimethyl sulfoxide (DMSO) and ethanol, respectively, suggesting the formation of hydroxyl radical or a similar reactive intermediate. The formation of POBN-CH(3) adduct from the TBHQ/Cu(II)+DMSO could be completely inhibited by catalase, GSH or BCS, indicating that the hydroxyl radical or its equivalent is generated from the interaction of H(2)O(2) with Cu(I). Incubation of supercoiled phiX-174 plasmid DNA with the TBHQ/Cu(II) resulted in extensive DNA strand breaks, which could be prevented by catalase or BCS. Incubation of rat hepatocytes with TBHQ in PBS led to increased formation of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in nuclear DNA. The TBHQ-induced formation of 8-OHdG was markedly reduced in the presence of cell permeable Cu(I)-specific chelator, bathocuproine or neocuproine, suggesting that a Cu(II)/Cu(I) redox mechanism may also be involved in the induction of oxidative DNA damage by TBHQ in hepatocytes. Taken together, the above results conclusively demonstrate that the activation of TBHQ by Cu(II) results in the formation of TBQ, semiquinone anion radical and reactive oxygen species (ROS), and that the ROS formed may participate in oxidative DNA damage in both isolated DNA and intact cells. These reactions may contribute to the carcinogenicity as well as other biochemical activities observed with BHA in animals. To our knowledge this study provides the first evidence that endogenous cellular Cu may be capable of bioactivating TBHQ, leading to oxidative DNA damage in cultured cells.  相似文献   

16.
The objective of this study is to investigate if 8-methoxy-psoralen (8-MOP) plus ultraviolet A (UVA) radiation (PUVA) induces oxidative DNA damage. When calf thymus DNA was incubated with 8-MOP and irradiated with UVA (335-400 nm), the level of 8-hydroxy-2'-deoxyguanosine (8-OHdG) was substantially increased by approximately 6-fold. Formation of 8-OHdG proportionally correlated with both UVA fluence and 8-MOP concentrations. Human epidermoid carcinoma cells were incubated with 10 microg 8-MOP per milliliter, followed by irradiation of 25 kJ/m2 UVA. The level of 8-OHdG increased by nearly 3-fold in PUVA-treated cells compared to 8-MOP and UVA controls. The formation of 8-OHdG correlated with DNA fragmentation as determined by spectrofluorometry. To investigate the reactive oxygen species (ROS) involved in PUVA-induced oxidative DNA damage, less or more specific ROS quenchers were added to DNA solution prior to PUVA treatment. The results showed that only sodium azide and genistein significantly quenched PUVA-induced 8-OHdG, whereas catalase, superoxide dismutase, and mannitol exhibited no effect. The quencher study with cultured cells indicated that N-acetyl-cysteine and genistein protected oxidative DNA damage as well as DNA fragmentation by PUVA treatment. Our studies show that PUVA treatment is able to induce the formation of 8-OHdG in purified DNA and cultured cells and suggest that singlet oxygen is the principle reactive oxygen species involved in oxidative DNA damage by PUVA treatment.  相似文献   

17.
Carcinogenic urethane (ethyl carbamate) forms DNA adduct via epoxide, whereas carcinogenic methyl carbamate can not. To clarify a mechanism independent of DNA adduct formation, we examined DNA damage induced by N-hydroxyurethane, a urethane metabolite, using 32P-5'-end-labeled DNA fragments. N-hydroxyurethane induced Cu(II)-mediated DNA damage especially at thymine and cytosine residues. DNA damage was inhibited by both catalase and bathocuproine, suggesting a role for H(2)O(2) and Cu(I) in DNA damage. Free (*) OH scavengers did not inhibit the DNA damage, although methional did inhibit it. These results suggest that reactive species, such as the Cu(I)-hydroperoxo complex, cause DNA damage. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) was increased by N-hydroxyurethane in the presence of Cu(II). When treated with esterase, N-hydroxyurethane induced 8-oxodG formation to a similar extent as that induced by hydroxylamine. Enhancement of DNA cleavages by endonuclease IV suggests that hydroxylamine induced depurination. Furthermore, hydroxylamine induced a significant increase in 8-oxodG formation in HL-60 cells but not in its H(2)O(2)-resistant clone HP 100 cells. o-Phenanthroline significantly inhibited the 8-oxodG formation in HL-60 cells, confirming the involvement of metal ions in the 8-oxodG formation by hydroxylamine. Electron spin resonance spectroscopy, utilizing Fe[N-(dithiocarboxy)sarcosine](3), demonstrated that nitric oxide (NO) was generated from hydroxylamine and esterase-treated N-hydroxyurethane. It is concluded that urethane may induce carcinogenesis through oxidation and, to a lesser extent, depurination of DNA by its metabolites.  相似文献   

18.
Methylene blue plus light mediates 8-hydroxyguanine formation in DNA   总被引:14,自引:0,他引:14  
Exposure to methylene blue (MB) plus light mediates formation of large levels of 8-hydroxyguanine in DNA. The amount of 8-hydroxy-2'-deoxyguanosine (8-OHdG) present in DNA increased as the amount of MB concentration increased throughout the 2 to 200 microM range studied and was dependent on light exposure. As the time of light exposure increased so did the 8-OHdG content to levels of about 750 8-OHdG/10(5) deoxyguanosine after 15 min of light exposure when MB was at 20 microM. Even though previous research has demonstrated that hydroxyl free radicals formed from a variety of sources mediate 8-OHdG formation in DNA, inclusion of mannitol, superoxide dismutase, catalase, and desferal in the MB plus light experiments demonstrated that these scavengers of oxygen free radical intermediates or precursors caused either no change or an increase in the 8-OHdG content of DNA exposed to MB plus light. These results appear to rule out the direct role of oxygen free radical intermediates in the primary events involved in the MB plus light mediated formation of 8-OHdG in DNA. Oxygen was essential to cause MB plus light mediated 8-OHdG formation in DNA. It was noted that when the reaction was carried out where the deuterium oxide content had been increased to 100%, the amount of 8-OHdG formed in DNA increased about threefold over that observed when comparable reactions were carried out in pure H2O. Use of the singlet oxygen scavenger 2,5-dimethylfuran has yielded variable results on the MB plus light mediated formation of 8-OHdG in DNA. The data taken collectively clearly indicate that MB plus light mediates 8-OHdG formation in DNA. The D2O data and the requirement for oxygen suggest that singlet oxygen may be an intermediate.  相似文献   

19.
Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in "classical" apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.  相似文献   

20.
The interaction of chelators and reducing agents is of particular importance in understanding iron-associated pathology since catalytic iron undergoes cyclic reduction and oxidation in vivo. Therefore, we treated plasmid DNA with free or chelated Fe(III) in the presence of biological reductants, and simultaneously measured the number of single strand breaks (SSBs) and oxidative base modification (8-hydroxy-2'-deoxyguanosine; 8-OHdG) by quantitative gel electrophoresis and HPLC with electrochemical detection, respectively. Production of SSBs and 8-OHdG was linearly correlated suggesting that these two different lesions share a common chemical mechanism. The levels of both lesions were enhanced when Fe(III) was chelated to citrate or nitrilotriacetic acid. Reducing agents showed different potency in inducing DNA damage catalyzed by chelated iron (L-ascorbate > L-cysteine > H2O2). Chelation increased SSB formation by approximately 8-fold and 8-OHdG production by approximately 4-fold. The ratio of SSB/8-OHdG catalyzed by chelated iron, which is twice as high as by unchelated iron, indicates that chelation affects iron-catalyzed oxidative DNA damage in a specific way favoring strand breakage over base modification. Since iron is mostly chelated in biological systems, the production of genomic and mitochondrial DNA damage, particularly strand breaks, in diseases involving iron overload is likely to be higher than previously predicted from studies using unchelated iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号