首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of aging on muscular power development was investigated by determining the force-velocity relationship. The muscle cross-sectional area (CSA) was estimated by the thickness of the elbow flexors. The subjects were 19 elderly males aged 69.1+/-3.7 years old (G-70 group), 15 middle-aged males aged 50.9+/-3.5 years old (G-50), and 19 young males aged 21.2+/-1.3 years old (G-20). The G-70 group had the slowest shortening velocities under various load conditions, resulting in the lowest force-velocity relationship. The maximum values for force (Fmax), velocity (Vmax), power (Pmax), dynamic constants (a, b), and the a/Fmax ratio were determined using Hill's equation. The a/Fmax ratio determines the degree of concavity in the force-velocity curve. The a/Fmax ratio was greatest in G-70, followed by those in G-50 and G-20, while the maximum values for force (Fmax), velocity (Vmax), and power (Pmax) were significantly lower in G-70 than in the other groups. Fmax and Pmax per CSA were lowest in G-70, and Vmax per unit muscle length was also lowest in G-70 as compared to the other age groups. The ratio of G-70/G-20 was greatest in Pmax (69.6%), followed by Fmax (75.3%) and Vmax (83.4%). However, there were no significant differences in CSA among the 3 age groups. Our findings suggest that muscle force and shortening velocity may decline gradually in the process of aging attributed to declining muscle function rather than CSA.  相似文献   

2.
Cross-bridge elasticity in single smooth muscle cells   总被引:7,自引:5,他引:2       下载免费PDF全文
In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross-bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge.  相似文献   

3.
The relations between force, shortening velocity and sarcomere length (F-V-SL) during cardiac contraction, underlie Starling's Law of the Heart. F-V-SL were investigated in isolated, intact and skinned trabeculae and myocytes from rat heart. SL and V were measured with laser diffraction techniques; F was measured with a silicon strain gauge. The "ascending" F-SL relation appeared to result from both length dependent sensitivity of the contractile system to activator calcium ions and the presence of restoring forces (Fr), residing in the collagen skeleton of the muscle. Fr increased exponentially with decreasing SL below slack length to 25% of maximal twitch force (Ft) at SL = 1.60 microns. V was inversely proportional to the load and attained a maximum at zero load (Vo). Vo increased with factors that increased F: [Ca++], SL, and time during the twitch. Vo reached a maximum and remained constant (13.5 microns/s) when F attained or exceeded 50% of its maximum value. Viscous force in the passive muscle increased with V to a maximum of 4% of Ft at V = 40 microns/s. The relation between Vo and these factors could be predicted by a model of contraction in which the measured visco-elastic properties of myocardium were incorporated, while the truly unloaded maximal velocity of sarcomere shortening was assumed to be independent of the level of activation of the contractile filaments. A model of the cardiac cycle which explains the relation between Frank's and Starling's laws is presented.  相似文献   

4.
E Homsher  J Lacktis    M Regnier 《Biophysical journal》1997,72(4):1780-1791
When inorganic phosphate (Pi) is photogenerated from caged Pi during isometric contractions of glycerinated rabbit psoas muscle fibers, the released Pi binds to cross-bridges and reverses the working stroke of cross-bridges. The consequent force decline, the Pi-transient, is exponential and probes the kinetics of the power-stroke and Pi release. During muscle shortening, the fraction of attached cross-bridges and the average strain on them decreases (Ford, L. E., A.F. Huxley, and R.M. Simmons, 1977. Tension responses to sudden length change in stimulated frog muscle fibers near slack length. J. Physiol. (Lond.). 269:441-515; Ford, L. E., A. F. Huxley, and R.M. Simmons, 1985. Tension transients during steady state shortening of frog muscle fibers. J. Physiol. (Lond.). 361:131-150. To learn to what extent the Pi transient is strain dependent, muscle fibers were activated and shortened or lengthened at a fixed velocity during the photogeneration of Pi. The Pi transients observed during changes in muscle length showed three primary characteristics: 1) during shortening the Pi transient rate, Kpi, increased and its amplitude decreased with shortening velocity; Kpi increased linearly with velocity to > 110 s-1 at 0.3 muscle lengths per second (ML/s). 2) At a specific shortening velocity, increases in [Pi] produce increases in Kpi that are nonlinear with [Pi] and approach an asymptote. 3) During forced lengthening Kpi and the amplitude of the Pi transient are little different from the isometric contractions. These data can be approximated by a strain-dependent three-state cross-bridge model. The results show that the power stroke's rate is strain-dependent, and are consistent with biochemical studies indicating that the rate-limiting step at low strains is a transition from a weakly to a strongly bound cross-bridge state.  相似文献   

5.
In single smooth muscle cells, shortening velocity slows continuously during the course of an isotonic (fixed force) contraction (Warshaw, D.M. 1987. J. Gen. Physiol. 89:771-789). To distinguish among several possible explanations for this slowing, single smooth muscle cells were isolated from the gastric muscularis of the toad (Bufo marinus) and attached to an ultrasensitive force transducer and a length displacement device. Cells were stimulated electrically and produced maximum stress of 144 mN/mm2. Cell force was then reduced to and maintained at preset fractions of maximum, and cell shortening was allowed to occur. Cell stiffness, a measure of relative numbers of attached crossbridges, was measured during isotonic shortening by imposing 50-Hz sinusoidal force oscillations. Continuous slowing of shortening velocity was observed during isotonic shortening at all force levels. This slowing was not related to the time after the onset of stimulation or due to reduced isometric force generating capacity. Stiffness did not change significantly over the course of an isotonic shortening response, suggesting that the observed slowing was not the result of reduced numbers of cycling crossbridges. Furthermore, isotonic shortening velocity was better described as a function of the extent of shortening than as a function of the time after the onset of the release. Therefore, we propose that slowing during isotonic shortening in single isolated smooth muscle cells is the result of an internal load that opposes shortening and increases as cell length decreases.  相似文献   

6.
To explore the molecular mechanisms responsible for the variation in smooth muscle contractile kinetics, the influence of MgATP, MgADP, and inorganic phosphate (P(i)) on force and shortening velocity in thiophosphorylated "fast" (taenia coli: maximal shortening velocity Vmax = 0.11 ML/s) and "slow" (aorta: Vmax = 0.015 ML/s) smooth muscle from the guinea pig were compared. P(i) inhibited active force with minor effects on the V(max). In the taenia coli, 20 mM P(i) inhibited force by 25%. In the aorta, the effect was markedly less (< 10%), suggesting differences between fast and slow smooth muscles in the binding of P(i) or in the relative population of P(i) binding states during cycling. Lowering of MgATP reduced force and V(max). The aorta was less sensitive to reduction in MgATP (Km for Vmax: 80 microM) than the taenia coli (Km for Vmax: 350 microM). Thus, velocity is controlled by steps preceding the ATP binding and cross-bridge dissociation, and a weaker binding of ATP is not responsible for the lower V(max) in the slow muscle. MgADP inhibited force and V(max). Saturating concentrations of ADP did not completely inhibit maximal shortening velocity. The effect of ADP on Vmax was observed at lower concentrations in the aorta compared with the taenia coli, suggesting that the ADP binding to phosphorylated and cycling cross-bridges is stronger in slow compared with fast smooth muscle.  相似文献   

7.
Relations between force-velocity characteristics of the multijoint movement of the lower limbs and vertical jump performance were investigated. A total of 67 untrained subjects (age: 19.54 +/- 2.38 years; height: 166.88 +/- 8.53 cm; body mass: 59.14 +/- 10.82 kg, mean +/- SD) performed isometric and isotonic knee-hip extension movements on a servo-controlled dynamometer, and the force-velocity relations were determined. Also, vertical jump (VJ) performance was measured with a jump gauge. The force-velocity relation was described with a linear function so that the maximum isometric force (Fmax) and the maximum unloaded velocity (Vmax) for the knee-hip extension movement were estimated by extrapolation. Maximum isometric force coincided with maximum isometric force, F(0) (F(0)/Fmax = 1.03 +/- 0.24). Maximum isometric force, Vmax, and maximum power output (Pmax) were positively correlated with VJ (r = 0.48, 0.68, and 0.76, respectively; p < 0.001). However, when Fmax, Vmax, and Pmax were normalized with body mass (BM), leg length (LL), and BM, respectively, no correlation was seen between Fmax/BM and VJ (r = 0.24, p > 0.05), and significant correlations were seen between Vmax/LL and VJ (r = 0.56, p < 0.001) and between Pmax/BM and VJ (r = 0.65, p < 0.001). On the other hand, Fmax and Vmax (r = 0.12, p > 0.05) and Fmax/BM and Vmax/LL (r = 0.05, p > 0.05) were not significantly correlated, indicating that Fmax and Vmax were independent variables. The present estimates of Fmax, Vmax, and Pmax can be useful for evaluating the actual performance of multijoint movement of the lower limbs. It is suggested that, although in untrained individuals the speed of movement might be a more important determinant of jump performance, jump performance ability has a potential to improve with increases in strength of the lower limb.  相似文献   

8.
Shen, X., M. F. Wu, R. S. Tepper, and S. J. Gunst. Mechanisms for the mechanical response ofairway smooth muscle to length oscillation. J. Appl.Physiol. 83(3): 731-738, 1997.Airway smoothmuscle tone in vitro is profoundly affected by oscillations in musclelength, suggesting that the effects of lung volume changes on airwaytone result from direct effects of stretch on the airway smooth muscle.We analyzed the effect of length oscillation on active force andlength-force hysteresis in canine tracheal smooth muscle at differentoscillation rates and amplitudes during contraction with acetylcholine.During the shortening phase of the length oscillation cycle, the activeforce generated by the smooth muscle decreased markedly below theisometric force but returned to isometric force as the muscle waslengthened. Results indicate that at rates comparable to those duringtidal breathing, active shortening and yielding of contractile elementscontributes to the modulation of force during length oscillation;however, the depression of force during shortening cannot be accountedfor by cross-bridge properties, shortening-induced cross-bridgedeactivation, or active relaxation. We conclude that the depression ofcontractility may be a function of the plasticity of the cellularorganization of contractile filaments, which enables contractileelement length to be reset in relation to smooth muscle cell length asa result of smooth muscle stretch.

  相似文献   

9.
We hypothesized that differences in actin filament length could influence force fluctuation-induced relengthening (FFIR) of contracted airway smooth muscle and tested this hypothesis as follows. One-hundred micromolar ACh-stimulated canine tracheal smooth muscle (TSM) strips set at optimal reference length (Lref) were allowed to shorten against 32% maximal isometric force (Fmax) steady preload, after which force oscillations of +/-16% Fmax were superimposed. Strips relengthened during force oscillations. We measured hysteresivity and calculated FFIR as the difference between muscle length before and after 20-min imposed force oscillations. Strips were relaxed by ACh removal and treated for 1 h with 30 nM latrunculin B (sequesters G-actin and promotes depolymerization) or 500 nM jasplakinolide (stabilizes actin filaments and opposes depolymerization). A second isotonic contraction protocol was then performed; FFIR and hysteresivity were again measured. Latrunculin B increased FFIR by 92.2 +/- 27.6% Lref and hysteresivity by 31.8 +/- 13.5% vs. pretreatment values. In contrast, jasplakinolide had little influence on relengthening by itself; neither FFIR nor hysteresivity was significantly affected. However, when jasplakinolide-treated tissues were then incubated with latrunculin B in the continued presence of jasplakinolide for 1 more h and a third contraction protocol performed, latrunculin B no longer substantially enhanced TSM relengthening. In TSM treated with latrunculin B + jasplakinolide, FFIR increased by only 3.03 +/- 5.2% Lref and hysteresivity by 4.14 +/- 4.9% compared with its first (pre-jasplakinolide or latrunculin B) value. These results suggest that actin filament length, in part, determines the relengthening of contracted airway smooth muscle.  相似文献   

10.
Increased total peripheral resistance is the cardinal haemodynamic disorder in essential hypertension. This could be secondary to alterations in the mechanical properties of vascular smooth muscle. Adequate study has not been made of the force-velocity (F-V) relationship in hypertensive arterial smooth muscle. Increased shortening in arterial smooth muscle would result in greater narrowing of arteries. The objectives of this investigation were to see if there is (i) increased shortening or increased maximum change in muscle length (delta Lmax where L stands for muscle length), (ii) an increased maximum velocity of shortening (Vmax) measured in l omicron per second where l omicron is the optimal muscle length for tension development, and (iii) a difference in maximum isometric tension (P omicron) developed in spontaneously hypertensive rat (SHR; N = 6) compared with normotensive Wistar Kyoto rat (WKY;N = 5) caudal artery strips. An electromagnetic muscle lever was employed in recording force-velocity data. Analysis of these data revealed the following: (a) the SHR mean P omicron of 6.21 +/- 1.01 N/cm2 was not different from the mean WKY P omicron of 6.97 +/- 1.64 N/cm2 (p greater than 0.05); (b) the SHR preparations showed greater shortening for all loads imposed; (c) the SHR Vmax of 0.016 l omicron/s was greater than the WKY Vmax of 0.013 l omicron/s (p less than 0.05). This study provides evidence that while hypertensive arterial smooth muscle is not able to produce more force than normotensive arterial smooth muscle, it is capable of faster and greater shortening. The latter could result in increased narrowing of hypertensive arteries and increased blood pressure.  相似文献   

11.
We have observed striking differences in the mechanical properties of airway smooth muscle preparations among different species. In this study, we provide a novel analysis on the influence of tissue elastance on smooth muscle shortening using previously published data from our laboratory. We have found that isolated human airways exhibit substantial passive tension in contrast to airways from the dog and pig, which exhibit little passive tension (<5% of maximal active force versus approximately 60% for human bronchi). In the dog and pig, airway preparations shorten up to 70% from Lmax (the length at which maximal active force occurs), whereas human airways shorten by only approximately 12% from Lmax. Isolated airways from the rabbit exhibit relatively low passive tension (approximately 22% Fmax) and shorten by 60% from Lmax. Morphologic evaluation of airway cross sections revealed that 25-35% of the airway wall is muscle in canine, porcine, and rabbit airways in contrast to approximately 9% in human airway preparations. We postulate that the large passive tension needed to stretch the muscle to Lmax reflects the high connective tissue content surrounding the smooth muscle, which limits shortening during smooth muscle contraction by imposing an elastic load, as well as by causing radial constraint.  相似文献   

12.
Nonmuscle myosin can generate force and shortening in smooth muscle, as revealed by studies of the urinary bladder from mice lacking smooth muscle myosin heavy chain (SM-MHC) but expressing the nonmuscle myosin heavy chains A and B (NM-MHC A and B; Morano, I., G.X. Chai, L.G. Baltas, V. Lamounier-Zepter, G. Lutsch, M. Kott, H. Haase, and M. Bader. 2000. Nat. Cell Biol. 2:371-375). Intracellular calcium was measured in urinary bladders from SM-MHC-deficient and SM-MHC-expressing mice in relaxed and contracted states. Similar intracellular [Ca2+] transients were observed in the two types of preparations, although the contraction of SM-MHC-deficient bladders was slow and lacked an initial peak in force. The difference in contraction kinetics thus do not reflect differences in calcium handling. Thick filaments were identified with electron microscopy in smooth muscle cells of SM-MHC-deficient bladders, showing that NM-MHC can form filaments in smooth muscle cells. Maximal shortening velocity of maximally activated, skinned smooth muscle preparations from SM-MHC-deficient mice was significantly lower and more sensitive to increased MgADP compared with velocity of SM-MHC-expressing preparations. Active force was significantly lower and less inhibited by increased inorganic phosphate. In conclusion, large differences in nucleotide and phosphate binding exist between smooth and nonmuscle myosins. High ADP binding and low phosphate dependence of nonmuscle myosin would influence both velocity of actin translocation and force generation to promote slow motility and economical force maintenance of the cell.  相似文献   

13.
We studied the relationship between the force and velocity of microtubule sliding in demembranated sperm flagella of the sea urchin, Hemicentrotus pulcherrimus, under auxotonic conditions following a quick release of the tension between sliding microtubules. The shape of the force-velocity curve was independent of the concentration of Mg-ATP over the range of 3.7 to 350 microM and appeared either linear or was the reverse of the hyperbolic curve seen for muscle. The power, calculated as the product of velocity and force, passed through a peak at c. 0.7 Fmax (the maximal isometric force). Thus, the maximal power is attained at a larger relative load than in muscle. The sliding velocity at 0.1 Fmax showed a hyperbolic dependence on Mg-ATP concentration, with a Km of 210 microM and a Vmax of 19 micron.sec-1. The maximal force did not significantly change over the Mg-ATP concentration range of 3.7 to 350 microM. These results are discussed in terms of a crossbridge model similar to the one originally proposed by Huxley. It is suggested that the dynein crossbridge cycle is characterized by a relatively rapid rate of attachment and a relatively slow rate of detachment.  相似文献   

14.
The purpose of this study was to determine whether the maximum shortening velocity (Vmax) in Hill's mechanical model (A. V. Hill. Proc. R. Soc. London Ser. B. 126: 136-195, 1938) should be scaled with activation, measured as a fraction of the maximum isometric force (Fmax). By using the quick-release method, force-velocity (F-V) relationships of the wrist flexors were gathered at five different activation levels (20-100% of maximum at intervals of 20%) from four subjects. The F-V data at different activation levels can be fitted remarkably well with Hill's characteristic equation. In general, the shortening velocity decreases with activation. With the assumption of nonlinear relationships between Hill constants and activation level, a scaled Vmax model was developed. When the F-V curves for submaximal activation were forced to converge at the Vmax obtained with maximum activation (constant Vmax model), there were drastic changes in the shape of the curves. The differences in Vmax values generated by the scaled and constant Vmax models were statistically significant. These results suggest that, when a Hill-type model is used in musculoskeletal modeling, the Vmax should be scaled with activation.  相似文献   

15.
INTRODUCTION: When muscle is allowed to shorten during an active contraction, the maximum force that redevelops after shortening is smaller than the isometric force at the same muscle length without prior shortening. We studied the course of force redevelopment after shortening in smooth muscle to unravel the mechanism responsible for this deactivation. METHOD: In a first series of measurements the shortening velocity was varied resulting in different shortening amplitudes. In a second series, the duration of stimulation before shortening (shortening delay) was varied. In a third series, the stimulation was interrupted for a certain duration immediately after shortening. Force, muscle length and stimulation were continuously recorded. Time constants were calculated to describe the rate of force development before and after shortening. RESULTS: With increasing shortening amplitude and with increasing shortening delay, force redevelopment decreased. Redevelopment increased with an increase in the interruption time. After stimulus interruption force redeveloped mono-exponentially with a time constant similar to that of isometric contractions (approximately 3s). Without the interruption of stimulation, the redevelopment of force immediately after shortening was best described by two time constants; one similar to and one about 3-5 times faster than the isometric time constant. DISCUSSION: Force (re)development is caused by a cascade of events leading to the cycling of cross-bridges. In smooth muscle, isometric force development is described by a time constant of about 3s. Force redevelopment immediately after shortening involves a second process which takes place at a faster rate (time constant about 1s). We assume that this process is faster due to the immediate availability of cytoplasmic calcium released during active shortening. Deactivation presumably is caused by disorganization of filaments during shortening.  相似文献   

16.
Computer simulation of movement-generating cross-bridges.   总被引:2,自引:0,他引:2       下载免费PDF全文
A stochastic computational method was developed to study properties of cross-bridge models for muscle contraction, by following the time history of individual cross-bridge model of Andrew Huxley (1957) and a modified two-state model with more realistic behavior during steady stretching are used as examples. The method can readily compute steady-state force during shortening and stretching and force-transients following rapid changes in length. Computations of velocity with a steady load and of velocity transients are more sensitive to the randomness inherent in the stochastic method.  相似文献   

17.
Force development in smooth muscle, as in skeletal muscle, is believed to reflect recruitment of force-generating myosin cross-bridges. However, little is known about the events underlying cross-bridge recruitment as the muscle cell approaches peak isometric force and then enters a period of tension maintenance. In the present studies on single smooth muscle cells isolated from the toad (Bufo marinus) stomach muscularis, active muscle stiffness, calculated from the force response to small sinusoidal length changes (0.5% cell length, 250 Hz), was utilized to estimate the relative number of attached cross-bridges. By comparing stiffness during initial force development to stiffness during force redevelopment immediately after a quick release imposed at peak force, we propose that the instantaneous active stiffness of the cell reflects both a linearly elastic cross-bridge element having 1.5 times the compliance of the cross-bridge in frog skeletal muscle and a series elastic component having an exponential length-force relationship. At the onset of force development, the ratio of stiffness to force was 2.5 times greater than at peak isometric force. These data suggest that, upon activation, cross-bridges attach in at least two states (i.e., low-force-producing and high-force-producing) and redistribute to a steady state distribution at peak isometric force. The possibility that the cross-bridge cycling rate was modulated with time was also investigated by analyzing the time course of tension recovery to small, rapid step length changes (0.5% cell length in 2.5 ms) imposed during initial force development, at peak force, and after 15 s of tension maintenance. The rate of tension recovery slowed continuously throughout force development following activation and slowed further as force was maintained. Our results suggest that the kinetics of force production in smooth muscle may involve a redistribution of cross-bridge populations between two attached states and that the average cycling rate of these cross-bridges becomes slower with time during contraction.  相似文献   

18.
It is believed that the contractile filaments in smooth muscle are organized into arrays of contractile units (similar to the sarcomeric structure in striated muscle), and that such an organization is crucial for transforming the mechanical activities of actomyosin interaction into cell shortening and force generation. Details of the filament organization, however, are still poorly understood. Several models of contractile filament architecture are discussed here. To account for the linear relationship observed between the force generated by a smooth muscle and the muscle length at the plateau of an isotonic contraction, a model of contractile unit is proposed. The model consists of 2 dense bodies with actin (thin) filaments attached, and a myosin (thick) filament lying between the parallel thin filaments. In addition, the thick filament is assumed to span the whole contractile unit length, from dense body to dense body, so that when the contractile unit shortens, the amount of overlap between the thick and thin filaments (i.e., the distance between the dense bodies) decreases in exact proportion to the amount of shortening. Assembly of the contractile units into functional contractile apparatus is assumed to involve a group of cells that form a mechanical syncytium. The contractile apparatus is assumed malleable in that the number of contractile units in series and in parallel can be altered to accommodate strains on the muscle and to maintain the muscle's optimal mechanical function.  相似文献   

19.
The longitudinal and circular muscle preparations from guinea pig stomach were compared in their property of shortening. The highest shortening speed was attained only for about 1 sec for longitudinal muscle and about 2 sec for circular muscle from the onset of stimulation in the course of tetanic contraction. Dynamic constants calculated from a force-velocity curve were almost independent of the muscle length, being set near its optimum length. Mean dynamic constants of the longitudinal muscle were: Vmax: 0.205 L/sec, b: 0.056 L/sec, a/Po: 0.292 and that of the circular muscle were: Vmax: 0.576 L/sec, b: 0.056 L/sec, a/Po: 0.107. The difference in Vmax of these muscles are discussed along with the difference in ultrastructure of the contractile filaments.  相似文献   

20.
Airway smooth muscle is able to adapt and maintain a nearly constant maximal force generation over a large length range. This implies that a fixed filament lattice such as that found in striated muscle may not exist in this tissue and that plastic remodeling of its contractile and cytoskeletal filaments may be involved in the process of length adaptation that optimizes contractile filament overlap. Here, we show that isometric force produced by airway smooth muscle is independent of muscle length over a twofold length change; cell cross-sectional area was inversely proportional to cell length, implying that the cell volume was conserved at different lengths; shortening velocity and myosin filament density varied similarly to length change: increased by 69.4% ± 5.7 (SE) and 76.0% ± 9.8, respectively, for a 100% increase in cell length. Muscle power output, ATPase rate, and myosin filament density also have the same dependence on muscle cell length: increased by 35.4% ± 6.7, 34.6% ± 3.4, and 35.6% ± 10.6, respectively, for a 50% increase in cell length. The data can be explained by a model in which additional contractile units containing myosin filaments are formed and placed in series with existing contractile units when the muscle is adapted at a longer length. muscle contraction; myosin filaments; ATPase activity; electron microscopy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号