首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of a mouse mastocytoma microsomal fraction with UDP-[3H]GlcA and UDP-GlcNAc yielded proteoglycans containing non-sulphated polysaccharide chains. Similar incubations performed in the presence of sulphate donor 3'-phosphoadenosine 5'-phosphosulphate (PAPS) produced both sulphated and non-sulphated proteoglycans, which were separated by chromatography on DEAE-cellulose Analysis by gel chromatography of single polysaccharide chains, released from the proteoglycans by alkali treatment, showed that the non-sulphated chains produced during incubation for 5 min or 25 min, either in the absence or in the presence of PAPS, were of fairly small molecular size, with an average peak Mr of approx. 10 x 10(3)-15 x 10(3). In contrast, the sulphated chains exceeded Mr 100 x 10(3) Pulse-chase experiments suggested that sulphated chains were capable of further elongation. These results indicate that sulphation promotes, by so far unknown mechanisms, further chain elongation. Sulphated proteoglycan (retarded on DEAE-cellulose chromatography) isolated after similar incubation of the microsomal fraction for 1 min only was found to contain a mixture of sulphated and virtually non-sulphated polysaccharide chains. However, when [35S]PAPS was included in the incubations, some 35S was found to be associated, essentially as N-sulphate groups, also with the latter type of chains, preferentially the high-Mr fraction. These results are interpreted in terms of a biosynthetic model by which the heparin proteoglycan is generated through transient interactions of macromolecular intermediates with distinctly separate complexes of membranebound enzymes.  相似文献   

2.
Rat skin heparin proteoglycan labelled biosynthetically with 35S was fractionated on a column of antithrombin-Sepharose into fractions with varying degrees of affinity for antithrombin. These were treated with NaOH to release heparin chains (Mr 60,000-100,000), by beta-elimination or incubated with serum to produce fragments of the same order of size as commercial heparin (Mr 5000-30,000), by endoglycosidase cleavage. Chains and fragments were then fractionated on antithrombin-Sepharose. The various fractions were deaminated with HNO2 at pH 1.5 followed by reduction with NaB3H4. Approx 90% of the incorporated 3H was associated with disaccharides. These were fractionated by high-performance ion-exchange chromatography. A unique minor component corresponding to the sequence glucuronosyl-N-sulphoglucosaminyl (3,6-di-O-sulphate) in the polysaccharide was found only in fractions with high affinity for antithrombin. The glucosamine residue linked to C-4 of this glucuronosyl unit was predominantly (or exclusively) N-sulphated rather than N-acetylated, pointing to a structural difference between the antithrombin-binding region of rat heparin and that of pig mucosal heparin. Calculations based on the distribution of the glucosaminyl 3-O-sulphate group showed that approximately two-thirds of the total antithrombin-binding regions present in the unfractionated material were accommodated by only 20% of the proteoglycan molecules, and by 10% of the polysaccharide chains. While most of the proteoglycan molecules thus lacked such regions (and hence affinity for antithrombin) a minor proportion of the polysaccharide chains contained on the average three binding regions per molecule. These findings support by direct chemical analysis an earlier proposal, based on anticoagulant activities of similar rat skin heparin fractions, that the distribution of antithrombin-binding sites in intact heparin proteoglycans is markedly non-random.  相似文献   

3.
Chick lens epithelial cells were cultured on plastic and type IV collagen substrata, and the confluent cultures were labeled continuously with [35S]sulfate for 20 h. Intact lenses were also labeled in the same way. 35S-Proteoglycans isolated from those cultures were compared for their molecular sizes and glycosaminoglycan compositions. The results have shown that: 1) Proteoglycans synthesized by cells on type IV collagen were significantly smaller than those by cells on plastic. 2) Proteoglycans of intact lens showed a broad distribution of molecular size and contained a high proportion of chondroitin sulfate in the medium fraction compared to those of the two cell cultures. In order to explain such differences between proteoglycans from cultures, label-chase experiments with [35S]sulfate were done for proteoglycans synthesized. 35S-Proteoglycans isolated at each chase time 0, 2.5, and 17 h) were compared and the following results were found: 1) The cell layers of both "plastic" and "type IV collagen" cultures contained glycosaminoglycan species predominantly at each chase time rather than proteoglycans. 2) Changes in the glycosaminoglycan compositions of medium fractions of cell cultures were observed during the chase period; in medium of the "plastic" culture, proteoheparan sulfate increased with chase time, whereas in medium of the "type IV collagen" culture, chondroitin sulfate glycosaminoglycan (not proteoglycan) increased with chase time. 3) In intact lens culture, lens capsule fraction at every chase time contained a proteoglycan unique in molecular size, which was not found in cell culture fractions. 4) All fractions from intact lens cultures contained a higher content of chondroitin sulfate at every chase time than the respective fractions from cell cultures. These results suggest that adhesion of the cells to type IV collagen or lens capsule influences the degradation and secretion of proteoglycans. In addition, they can account partially for the above-described differences in molecular sizes and glycosaminoglycan compositions between 35S-proteoglycans from various cultures continuously labeled with [35S]sulfate.  相似文献   

4.
The basement membrane heparan sulfate proteoglycan produced by the Englebreth-Holm-Swarm (EHS) tumor and by glomeruli were compared by immunological methods. Antibodies to the EHS proteoglycan immunoprecipitated a single precursor protein (Mr = 400,000) from [35S]methionine-pulsed glomeruli, the same size produced by EHS cells. These antibodies detected both heparan sulfate proteoglycans and glycoproteins in extracts of unlabeled glomeruli and glomerular basement membrane. The proteoglycans contained core proteins of varying size (Mr = 150,000 to 400,000) with a Mr = 250,000 species being predominant. The glycoproteins are fragments of the core protein which lack heparan sulfate side chains. Antibodies to glomerular basement membrane proteoglycan immunoprecipitated the precursor protein (Mr = 400,000) synthesized by EHS cells and also reacted with most of the proteolytic fragments of the EHS proteoglycan. This antibody did not, however, react with the P44 fragment, a peptide situated at one end of the EHS proteoglycan core protein. These data suggest that the glomerular basement membrane proteoglycan is synthesized from a large precursor protein which undergoes specific proteolytic processing.  相似文献   

5.
The structure, biosynthesis, and metabolism of proteoglycans in the HL-60 human promyelocytes were studied by metabolic labeling in culture with [35S]sulfate, [3H]glucosamine, [3H]serine, and [3H]leucine. These cells synthesize a single predominant species of intracellular proteoglycan with an approximate molecular weight of 100,000. The cells contain about 1 microgram of proteoglycan/million cells. The proteoglycan is turned over within the cells in two apparent pools with half-lives of about 0.6 and 27 h, respectively. The fast pool represents secretion into medium in an apparently intact form, whereas the slow pool represents intracellular degradation to free chondroitin sulfate chains and smaller fragments. The proteoglycan contains a protein core with an apparent Mr on gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of about 20,000-30,000. To the core protein are attached an average of six or seven chondroitin sulfate chains, each with an Mr of about 10,000. The chondroitin sulfate chains contain approximately 85% 4-sulfated and approximately 15% nonsulfated disaccharides. The chondroitin sulfate attachment region of the core protein is essentially resistant to trypsin and elastase, whereas the remainder of the protein core is readily degraded by proteases. The size of the chondroitin sulfate attachment region peptide generated by trypsin was estimated to be approximately 5 kDa. Based on the molecular size, distribution of amino acids, protease susceptibility, and the extent of O-glycosylation, we propose that the intracellular proteoglycan characterized in this study is the translation product of a proteoglycan gene reported to be present in these cells (Stevens, R.L., Avraham, S., Gartner, M.C., Bruns, G.A., Austen, K.E., and Weis, J.H. (1988) J. Biol. Chem. 263, 7287-7291).  相似文献   

6.
Rat glomerular heparan sulfate (HS) and dermatan sulfate (DS) proteoglycan synthesis was studied in vitro and in vivo. Incorporation of [35S]sulfate into macromolecules was linear over 16 h in vitro, and DS was the predominant glycosaminoglycan (GAG), while HS dominated in vivo incubations. Proteoglycans were found in the bottom 2/5 (high density) CsCl gradient fractions and eluted as two overlapping peaks from DEAE-Sephacel columns. The proportion of low density 35S-glycoproteins and 35S-proteoglycans increased with time. Two high buoyant density HS proteoglycans were extracted from glomeruli and eluted in DEAE peak I. The first, HS-tIA, had an Mr of 130 X 10(3) with Mr 12.5 X 10(3) GAG chains. This proteoglycan was released from the tissue by trypsin and was partially displaced by heparin treatment. In addition, it was rapidly released into the medium of label-chase experiments after which it migrated slightly more rapidly than HS-tIA in gels, with HS chains similar in length to its tissue counterpart. The second, HS-tIB, had an Mr of 8.6 X 10(3) with little or no attached protein. This proteoglycan was characterized as intracellular as it resisted release by trypsin treatment or heparin extraction in medium and was not detected in the medium of label-chase experiments. Two tissue DS proteoglycans were characterized. The first, DS-tIA, co-purified with HS-tIA and was the predominant proteoglycan synthesized during 4-h in vitro incubations. Like HS-tIA, it was rapidly released into medium and displaced from cell surfaces or tissue "receptors" by heparin or trypsin treatments. A second, Sepharose CL-6B-excluded DS proteoglycan from DEAE peak II, DS-tII, accumulated in tissue over 16 h in vitro. This proteoglycan was self-associating and contained clusters of iduronic acid residues along its Mr 26 X 10(3) DS chains. It resisted extraction from the tissue with heparin, trypsin, and detergent. No DS-tII was detected in the incubation medium. Instead, medium proteoglycans eluted as single Sepharose CL-6B-included peaks. DS chains from medium proteoglycans were shorter (Mr 18 X 10(3)) and had more regularly spaced iduronic acid residues than GAGs from DS-tII. The length and sulfation patterns of DS-mII GAG were similar to GAG from DS-tIA. Thus, glomeruli rapidly synthesized and released Sepharose CL-6B-included heparin-displaceable DS and HS proteoglycans while retaining a Sepharose CL-6B-excluded self-associating DS proteoglycan and an intracellular HS.  相似文献   

7.
The effect of porcine endothelial-cell-conditioned medium on proteoglycan synthesis by pig aorta smooth muscle cells was studied under serum-free conditions. Maximal stimulation of [35S]-sulfate incorporation (50%) into medium-secreted and cell layer proteoglycans was observed after 20 min and 4 h incubation, respectively. This stimulation can be explained neither by increased secretion nor by oversulfation of medium-secreted [35S]-labeled proteoglycans. Those [35S]-proteoglycans secreted (for 24 h) in the presence of endothelial cell-conditioned medium were characterized by a higher hydrodynamic size than those secreted in the presence of control medium, without modification of glycosaminoglycan chain length. Agreement between the stimulation of incorporation of [35S]-sulfate into glycanic chains (50.1%) and [14C]-serine residues associated with glycosaminoglycans (49.9%) involved an increase in the number of glycanic chains linked to protein cores. The lesser stimulation of [14C]-serine incorporation into secreted proteins (18%) suggested that stimulation of glycosaminoglycan synthesis was not the direct consequence of enhanced protein synthesis. Proteoglycan synthesis was studied in the presence of para-nitrophenyl-beta-D-xyloside. Fractionation of medium-secreted [35S]-proteoglycans and xyloside-initiated glycosaminoglycans revealed that stimulation of [35S]-glycosaminoglycan protein core acceptor for glycanic chain initiation. Our results suggest that the factor(s) secreted by endothelial cells are able to modify smooth muscle cell proteoglycan synthesis by stimulating the first step of protein core glycosylation. This stimulation was accompanied by an increase in proteoglycan hydrodynamic size.  相似文献   

8.
Heparan sulfate proteoglycan from the Engelbreth-Holm-Swarm mouse tumor was previously separated into two forms: a high density form (Form HD) and low density form (Form LD). In this study, the two forms were radiolabeled either metabolically with [35S]sulfate or [3H]serine or chemically with 125I. Pulse-chase experiments with [35S]sulfate showed no clear precursor-product relationship between the two forms. Analyses of the labeled proteoglycan samples with heparitinase and chondroitinase ABC indicated that Form LD is a large proteoglycan containing heparan sulfate chains attached to a single core molecule (Mr = 450,000), whereas Form HD is a mixture of small proteoglycans with four different size core molecules (Mr = 34,000, 29,000, 27,000, and 21,000), most, if not all, of which bear both heparan sulfate (Mr = 60,000) and chondroitin sulfate (Mr = 17,000) chains. Glycosaminoglycan-enriched fragments obtained from Form HD by V8 protease digestion were also shown to contain both heparitinase-susceptible chains and chondroitinase ABC-susceptible chains. Tryptic peptide maps of 125I-labeled Form HD and the glycosaminoglycan-enriched fragments derived therefrom were quite different from the corresponding maps for Form LD.  相似文献   

9.
Peritoneal macrophages from nude mice were found to be functionally similar to 'activated' macrophages from normal mice. The objective of the present study was to characterize the proteoglycans synthesized and secreted in vitro by peritoneal macrophages isolated from nude and normal Balb/c mice and to investigate the relationship between macrophage 'activation' and changes in the proteoglycan patterns. Macrophages obtained by peritoneal lavage were seeded in Petri dishes. After 2 h incubation at 37 degrees C, the adherent cells (macrophages) were exposed to [35S]sulphate for the biosynthetic labelling of proteoglycans. After incubation, the cell and medium fractions were collected and analysed for proteoglycans and glycosaminoglycans. The glycosaminoglycans were identified and characterized by a combination of agarose gel electrophoresis and enzymatic degradation with specific mucopolysaccharidases. It was shown that 3/4 of the total 35S-labelled glycosaminoglycans were in the extracellular compartment after 24-48 h. The macrophages synthesized dermatan sulphate (68%), chondroitin sulphate (7%) and heparan sulphate (25%). Both cell and medium fractions of normal and nude mouse macrophages contained glycosaminoglycans with the same ratios, although the nude mouse macrophages synthesized 2-fold less glycosaminoglycans than the normal mouse macrophages. Lower levels of 35S-proteoglycans were also obtained from in vitro 'activated' macrophages, but the ratios of dermatan sulphate:chondroitin sulphate: heparan sulphate were altered in these cells as compared to the control. Furthermore, all the 35S-macromolecules found in the extracellular compartment of nude and normal control cells were of proteoglycan nature, in contrast to the medium fractions of 'activated' macrophages, which contain both intact proteoglycans and 'free' glycosaminoglycan chains. These results indicate that, at least as regards the proteoglycans and glycosaminoglycans, the nude mouse macrophages are not identical to the 'activated' macrophages from normal mice.  相似文献   

10.
Previous work (Yanagishita, M., and Hascall, V. C. (1984) J. Biol. Chem. 259, 10270-10283) has indicated that heparan sulfate (HS) proteoglycans in rat ovarian granulosa cells are degraded by two kinetically distinct pathways. Pathway 1 degrades proteoglycans rapidly with a t 1/2 approximately 25 min without generating appreciable degradative intermediates. Pathway 2 degrades proteoglycans more slowly with a t 1/2 approximately 4 h, generating distinct degradative intermediates: single HS chains of Mr = approximately 10,000 and approximately 5,000. Effects of leupeptin, an inhibitor of thiol proteases, on the intracellular degradation of proteoglycans in the rat ovarian granulosa cell culture were examined using various chase protocols after labeling cells with [35S]sulfate. The presence of leupeptin at 100 micrograms/ml in the culture medium inhibited the intracellular degradation of proteoglycans by approximately 80% during a 7-h chase period after a 20-h labeling. Leupeptin affected neither the cellular content nor the in vitro activities of beta-hexosaminidase and arylsulfatase. Structural analyses of heparan sulfate species in leupeptin-treated cells demonstrated that the drug inhibited the degradation of HS proteoglycans at two distinct points. First, degradation of the core protein was partially inhibited and delayed before the start of glycosaminoglycan degradation. This resulted in the accumulation of degradative intermediates with partially degraded core proteins bearing intact glycosaminoglycan chains. This establishes the initial sequence for HS proteoglycan degradation, with proteolysis preceding endoglycosidase digestion, and suggests that these two degradation steps may occur in physically separate compartments. Second, the final depolymerization of HS fragments through pathway 2 was totally inhibited, resulting in the continuous accumulation of Mr = 5,000 HS chains. This is not due to the direct inhibition of the lysosomal exoglycosidase and sulfatase enzymes responsible for the complete depolymerization of HS chains, since pathway 1, while slowed, continued to completely depolymerize the HS chains in the presence of leupeptin. The results suggest that the intracellular compartment which completely degrades heparan sulfate chains is separate from those containing partially, endoglycosidically processed heparan sulfate chains and that leupeptin interfered with the translocation of glycosaminoglycans to the final degradation site.  相似文献   

11.
A biochemical analysis has been carried out of metabolically labelled proteoglycans and glycosaminoglycans synthesized by a haemopoietic multipotential stem cell line, FDCP-mix. The only proteoglycan identified in these multipotential cells was a homogeneous component that contained chondroitin 4-sulphate chains (Mr approximately 10,000) arranged in close proximity in a proteinase-resistant domain of the protein core. Small quantities of free chondroitin 4-sulphate were also detected. Following a 48 h incubation with Na2 35SO4 the majority of the 35S-radiolabelled proteoglycans (approximately 80%) were associated with the cells, mainly in an intracellular compartment, and the remaining 20% were in the culture medium. Pulse-chase studies demonstrated two turnover pathways for the newly synthesized cellular proteoglycans. In the minor pathway, the proteoglycans were secreted rapidly into the medium without any discernable structural modification. In the major pathway the proteoglycans seemed to be transferred into a storage compartment from which the intact macromolecules were not secreted. Eventually, these proteoglycans were degraded to yield free polysaccharide chains and these chains were then released into the medium, but only at a relatively slow rate. There was very little intracellular degradation of chondroitin sulphate chains. The pathway to polysaccharide secretion was a slow stepwise process with a time-lag of about 5 h between proteoglycan synthesis and the appearance of free chondroitin sulphate and a second time-lag, also of about 5 h, before these chains began to be secreted. The existence of separate secretory pathways for proteoglycans and chondroitin sulphate chains is an interesting characteristic that seems to distinguish proteoglycan metabolism in primitive multipotent stem cells from related metabolic processes in mature haemopoietic cells.  相似文献   

12.
Proteoglycans in normal and neoplastic monocytes   总被引:3,自引:0,他引:3  
35S proteoglycans produced by normal and neoplastic (U-937) monocytes after a 20-h pulse with [35S]sulfate in vitro have been isolated and compared. Both cell types produce exclusively chondroitin sulfate proteoglycan (CSPG), which are released into the medium and are not contained within the cells. The neoplastic cell-derived molecules were much larger in molecular size, due to the substitution of galactosaminoglycan chains, with an approximate Mr of 60,000. The corresponding chains in monocyte CSPG had an Mr of approx. 20,000. The latter chains were also found to be more sulfated than their neoplastic counterparts.  相似文献   

13.
Human basophils were obtained from three donors with myelogenous leukemia. Proteoglycans were labeled by using [35S]sulfate as precursor and were extracted in 1 M NaCl with protease inhibitors to preserve their native structure. [35S]proteoglycans filtered on Sepharose 4B with an average m.w. similar to that of a rat heparin proteoglycan that has an estimated m.w. of 750,000. The [35S]glycosaminoglycan side chains filtered with an average m.w. slightly smaller than a 60,000-m.w. glycosaminoglycan marker. The [35S]glycosaminoglycans were resistant to heparinase and susceptible to degradation by chondroitin AC lyase and chondroitin ABC lyase. The intact [35S]glycosaminoglycans chromatographed on DEAE Sepharose as a single peak eluting just before an internal heparin marker. These findings indicate that the [35S]glycosaminoglycans were made up only of chondroitin sulfates. No heparin was identified. The chondroitin sulfate disaccharides that resulted from the action of chondroitin ABC lyase on the basophil glycosaminoglycans consisted of 92% delta Di-4S, 6% delta Di-6S, and 2% disulfated disaccharides. The [35S]chondroitin sulfate proteoglycans were susceptible to cleavage with proteases and could be shown to be released intact from basophils during degranulation initiated by the calcium ionophore A23187. The basophil proteoglycans and glycosaminoglycans were capable of binding histamine in water, but not in phosphate-buffered saline, and had no anticoagulant activity.  相似文献   

14.
Processing of macromolecular heparin by heparanase   总被引:2,自引:0,他引:2  
Heparanase is an endo-glucuronidase expressed in a variety of tissues and cells that selectively cleaves extracellular and cell-surface heparan sulfate. Here we propose that this enzyme is involved also in the processing of serglycin heparin proteoglycan in mouse mast cells. In this process, newly synthesized heparin chains (60-100 kDa) are degraded to fragments (10-20 kDa) similar in size to commercially available heparin (Jacobsson, K. G., and Lindahl, U. (1987) Biochem. J. 246, 409-415). A fraction of these fragments contains the specific pentasaccharide sequence required for high affinity binding to antithrombin implicated with anticoagulant activity. Rat skin heparin, which escapes processing in vivo, was used as a substrate in reaction with recombinant human heparanase. An incubation product of commercial heparin size retained the specific pentasaccharide sequence, although oligosaccharides (3-4 kDa) containing this sequence could be degraded by the same enzyme. Commercial heparin was found to be a powerful inhibitor (I50 approximately 20 nM expressed as disaccharide unit, approximately 0.7 nM polysaccharide) of heparanase action toward antithrombin-binding oligosaccharides. Cells derived from a serglycin-processing mouse mastocytoma expressed a protein highly similar to other mammalian heparanases. These findings strongly suggest that the intracellular processing of the heparin proteoglycan polysaccharide chains is catalyzed by heparanase, which primarily cleaves target structures distinct from the antithrombin-binding sequence.  相似文献   

15.
The characteristics of cell-associated proteoglycans were studied and compared with those from the medium in suspension cultures of calf articular-cartilage chondrocytes. By including hyaluronic acid or proteoglycan in the medium during [35S]sulphate labelling the proportion of cell-surface-associated proteoglycans could be decreased from 34% to about 15% of all incorporated label. A pulse-chase experiment indicated that this decrease was probably due to blocking of the reassociation with the cells of proteoglycans exported to the medium. Three peaks of [35S]sulphate-labelled proteoglycans from cell extracts and two from the medium were isolated by gel chromatography on Sephacryl S-500. These were characterized by agarose/polyacrylamide-gel electrophoresis, by SDS/polyacrylamide-gel electrophoresis of core proteins, by glycosaminoglycan composition and chain size as well as by distribution of glycosaminoglycans in proteolytic fragments. The results showed that associated with the cells were (a) large proteoglycans, typical for cartilage, apparently bound to hyaluronic acid at the cell surface, (b) an intermediate-size proteoglycan with chondroitin sulphate side chains (this proteoglycan, which had a large core protein, was only found associated with the cells and is apparently not related to the large proteoglycans), (c) a small proteoglycan with dermatan sulphate side chains with a low degree of epimerization, and (d) a somewhat smaller proteoglycan containing heparan sulphate side chains. The medium contained a large aggregating proteoglycan of similar nature to the large cell-associated proteoglycan and small proteoglycans with dermatan sulphate side chains with a higher degree of epimerization than those of the cells, i.e. containing some 20% iduronic acid.  相似文献   

16.
Biosynthesis of heparin. Effects of n-butyrate on cultured mast cells   总被引:7,自引:0,他引:7  
Murine mastocytoma cells were incubated in vitro with inorganic [35S]sulfate, in the absence or presence of 2.5 mM n-butyrate, and labeled heparin was isolated. The polysaccharide produced in the presence of butyrate showed a lower charge density on anion exchange chromatography than did the control material and a 3-fold increased proportion (54 versus 17% for the control) of components with high affinity for antithrombin. Structural analysis of heparin labeled with [3H] glucosamine in the presence of butyrate showed that approximately 35% of the glucosamine units were N-acetylated, as compared to approximately 10% in the control material; the nonacetylated glucosamine residues were N-sulfated. The presence of butyrate thus leads to an inhibition of the N-deacetylation/N-sulfation process in heparin biosynthesis, along with an augmented formation of molecules with high affinity for antithrombin. Preincubation of the mastocytoma cells with butyrate was required for manifestation of either effect; when the preincubation period was reduced from 24 to 10 h the effects of butyrate were no longer observed. Assays for microsomal N-acetylheparosan deacetylase activity failed to show any significant inhibition of the enzyme at butyrate concentrations well above those found to affect heparin biosynthesis in intact mastocytoma cells. Moreover, a polysaccharide formed on incubating mastocytoma microsomal fraction with UDP-[3H]glucuronic acid, UDP-N-acetylglucosamine, and 3'-phosphoadenylylsulfate in the presence of 5 mM butyrate showed the same N-acetyl/N-sulfate ratio as did the corresponding control polysaccharide, produced in the absence of butyrate. These findings suggest that the effect of butyrate on heparin biosynthesis depends on the integrity of the cell.  相似文献   

17.
1. Chondroitin sulphate was isolated from different regions of rat costal cartilage after extensive proteolysis of the tissues. The molecular weight, determined by gel chromatography, of the polysaccharide obtained from an actively growing region (lateral zone) near the osteochondral junction was higher than that of the polysaccharide isolated from the remaining portion of the costal cartilage (medial zone). 2. In both types of cartilage the molecular weight of chondroitin sulphate, labelled with [(35)S]sulphate, remained unchanged in vivo over a period of 10 days, approximately corresponding to the half-life of the chondroitin sulphate proteoglycan. The molecular-weight distribution of chondroitin [(35)S]sulphate, labelled in vivo or in vitro, was invariably identical with that of the bulk polysaccharide from the same tissue. It is concluded that the observed regional variations in molecular-weight distribution were established at the time of polysaccharide biosynthesis. 3. In tissue culture more than half of the (35)S-labelled polysaccharide-proteins of the two tissues was released into the medium within 10 days of incubation. The released materials were of smaller molecular size than were the corresponding native proteoglycans. In contrast, the molecular-weight distribution of the chondroitin [(35)S]sulphate (single polysaccharide chains) remained constant throughout the incubation period. 4. A portion (about 20%) of the total radioactive material released from (35)S-labelled cartilage in tissue culture was identified as inorganic [(35)S]sulphate. No corresponding decrease in the degree of sulphation of the labelled polysaccharide could be detected. These findings suggest that a limited fraction of the proteoglycan molecules had been extensively desulphated. 5. It is suggested that the initial phase of degradation involves proteolytic cleavage of the proteoglycan, but the constituent polysaccharide chains remain intact. The partially degraded proteoglycan may be eliminated from the cartilage by diffusion into the circulatory system. An additional degradative process, which may occur intracellularly, includes desulphation of the polysaccharide, probably in conjunction with a more extensive breakdown of the polymer.  相似文献   

18.
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes.  相似文献   

19.
Human eosinophils were cultured for up to 7 days in enriched medium in the absence or presence of recombinant human interleukin (IL) 3, mouse IL 5, or recombinant human granulocyte/macrophage colony stimulating factor (GM-CSF) and then were radiolabeled with [35S]sulfate to characterize their cell-associated proteoglycans. Freshly isolated eosinophils that were not exposed to any of these cytokines synthesized Mr approximately 80,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 80,000 glycosaminoglycans. RNA blot analysis of total eosinophil RNA, probed with a cDNA that encodes a proteoglycan peptide core of the promyelocytic leukemia HL-60 cell, revealed that the mRNA which encodes the analogous molecule in eosinophils was approximately 1.3 kilobases, like that in HL-60 cells. When eosinophils were cultured for 1 day or longer in the presence of 10 pM IL 3, 1 pM IL 5, or 10 pM GM-CSF, the rates of [35S]sulfate incorporation were increased approximately 2-fold, and the cells synthesized Mr approximately 300,000 Pronase-resistant 35S-labeled proteoglycans which contained Mr approximately 30,000 35S-labeled glycosaminoglycans. Approximately 93% of the 35S-labeled glycosaminoglycans bound to the proteoglycans synthesized by noncytokine- and cytokine-treated eosinophils were susceptible to degradation by chondroitinase ABC. As assessed by high performance liquid chromatography, 6-16% of these chondroitinase ABC-generated 35S-labeled disaccharides were disulfated disaccharides derived from chondroitin sulfate E; the remainder were monosulfated disaccharides derived from chondroitin sulfate A. Utilizing GM-CSF as a model of the cytokines, it was demonstrated that the GM-CSF-treated cells synthesized larger glycosaminoglycans onto beta-D-xyloside than the noncytokine-treated cells. Thus, IL 3, IL 5, and GM-CSF induce human eosinophils to augment proteoglycan biosynthesis by increasing the size of the newly synthesized proteoglycans and their individual chondroitin sulfate chains.  相似文献   

20.
Heparin biosynthesis has been investigated with mouse mastocytoma in vitro. Minced tumour tissue catalysed the incorporation of [35S]sulphate and [3H]glucosamine into heparin and to a smaller extent into chondroitin sulphate. Addition of cycloheximide caused an inhibition (greater than 80%) of incorporation of each labelled precursor into both polysaccharides. Addition of benzyl beta-D-xyloside relieved the inhibition of incorporation into chondroitin sulphate and restored it to more than threefold that of the control incubation. The effect of beta-D-xyloside on incorporation into heparin was less marked although a consistent small increase of incorporation into this polysaccharide was observed. beta-D-Xyloside did, however, cause a marked incorporation of 35S and 3H labels into material of low molecular weight, which appeared to comprise heparin-like fragments. It is proposed that these fragments arise through a breakdown of the usual process of heparin biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号