首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a novel approach for acetabular alignment during the implant of a prosthetic hip joint in a natural pelvis. The alignment instrument uses selective anatomic bony landmarks on the pelvis, which are accessible in surgery, to guide the placement of the acetabular component in the appropriate orientation. A closed form solution, involving both a forward and reverse analysis, is presented to relate the parameters of the device with the abduction and anteversion angles. Using mathematical models, this device should allow the surgeon to place the acetabular component with an orientation between 10.9 degrees and 19.1 degrees anteversion and 35.7 degrees and 44.3 degrees abduction with 95% confidence in a male/left specimen for the commonly accepted target of 15 degrees anteversion and 40 degrees abduction. This device is currently being used successfully by one of the authors in THR surgery.  相似文献   

2.
The basic stress pathway above the acetabular dome is important for the maintenance of implant stability in press-fit acetabular reconstruction of total hip arthroplasty. However, information on the basic stress pathway and its impact factors remains unclear. The objective of this study was to investigate the effects of the orientations and positions of the acetabular component on the basic stress pathway. The basic stress pathway above the acetabular dome was defined as two parts: 3D basic trabecular bone stress distribution and quantified basic cortical bone stress level, using two subject-specific finite element normal hip models. The effects were then analysed by generating 32 reconstructed acetabular cases with different cup abduction and anteversion angles within a range of 35–50° and 10–25°, respectively, and 12 cases with different hip centre heights within a range of 0–15 mm above the acetabular dome. The 3D trabecular stress distribution decreased remarkably in all cases, while the 80% of the basic cortical bone stress level was maintained in cases when the acetabular component was positioned at 10° or 15° anteversion and 40° or 45° abduction angles. The basic stress pathway above the acetabular dome was disturbed when the superior displacement of the hip centre exceeded 5 mm above the anatomical hip centre. Positioning the acetabular component correctly contributes to maintain the stress balance between the acetabular cup and the bone during acetabular reconstruction, thus helping restore the normal hip biomechanics and preserve the stability of the implants.  相似文献   

3.
Misalignment and soft-tissue imbalance in total knee arthroplasty (TKA) can cause discomfort, pain, inadequate motion and instability that may require revision surgery. Balancing can be defined as equal collateral ligament tensions or equal medial and lateral compartmental forces during the flexion range. Our goal was to study the effects on balancing of linear femoral component misplacements (proximal, distal, anterior, posterior); and different component rotations in mechanical alignment compared to kinematic alignment throughout the flexion path. A test rig was constructed such that the position of a standard femoral component could be adjusted to simulate the linear and rotational positions. With the knee in neutral reference values of the collateral tensions were adjusted to give anatomic contact force patterns, measured with an instrumented tibial trial. The deviations in the forces for each femoral component position were then determined. Compartmental forces were significantly influenced by 2 mm linear errors in the femoral component placement. However, the errors were least for a distal error, equivalent to undercutting the distal femur. The largest errors mainly increase the lateral condyle force, occurred for proximal and posterior component errors. There were only small contact force differences between kinematic and mechanical alignment. Based on these results, surgeons should avoid overcutting the distal femur and undercutting the posterior femur. However, the 2–3 degrees varus slope of the joint line as in kinematic alignment did not have much effect on balancing, so mechanical or kinematic alignment were equivalent.  相似文献   

4.
The present investigation focuses on total hip replacement using ceramic acetabular components. The relationship between the position of the cup and the range of motion (ROM) was investigated. A limited range of motion may cause impingement, which is defined as contact between the femoral neck and the rim of the acetabular cup. Impingement may result in wear, chipping, fracture or dislocation of the femoral head. Joint movements were simulated in a three-dimensional CAD program. The results obtained underscore the importance of correct positioning and design of the cup for achieving a ROM as close to the physiological situation as possible. With ceramic cups, the inclination angle should not be more than 45 degrees, and the antetorsion angle between 10 and 15 degrees. If the cup is too vertical, the risk of dislocation and fracture of the ceramic increases. If, on the other hand, the angle of inclination is too small, flexion and abduction will be greatly limited. The study shows that acetabular components with non-recessed ceramic inserts should not be used. Slight recession of the insert helps to avoid impingement. The ROM is reduced and the risk of impingement appreciably increased when mushroom-shaped femoral heads (XL heads) or ceramic inserts protected by a polyethylene ring are used.  相似文献   

5.
A subject-specific three-dimensional finite element (FE) pelvic bone model has been developed and applied to the study of bone–cement interfacial response in cemented acetabular replacements. The pelvic bone model was developed from CT scan images of a cadaveric pelvis and validated against the experiment data obtained from the same specimen at a simulated single-legged stance. The model was then implanted with a cemented acetabular cup at selected positions to simulate some typical implant conditions due to the misplacement of the cup as well as a standard cup condition. For comparison purposes, a simplified FE model with homogeneous trabecular bone material properties was also generated and similar implant conditions were examined.The results from the homogeneous model are found to underestimate significantly both the peak von Mises stress and the area of the highly stressed region in the cement near the bone–cement interface, compared with those from the subject-specific model. Non-uniform cement thickness and non-standard cup orientation seem to elevate the highly stressed region as well as the peak stress near the bone–cement interface.  相似文献   

6.
Valgus or varus malpositioning of the tibial component of a total knee implant may cause increased propensity for loosening or implant wear and eventually may lead to revision surgery. The aim of this study was to determine the effect of valgus/varus malalignment on tibio-femoral mechanics during surgical trial reduction and simulated gait loading. In seven cadaver legs, posterior cruciate sparing total knee replacements were implanted and tibial inserts representing a neutral alignment and 3 degrees and 5 degrees varus and valgus alignments were sequentially inserted. Each knee with each insert was loaded in a manner representative of a trial reduction performed during knee surgery and loaded in a physiological knee simulator. Simulated gait performed on the simulator demonstrated that internal/external and adduction/abduction rotations showed statistical changes with some of the angled inserts at different points in the walking cycle. Neither medial/lateral nor anterior/posterior translations changed statistically during simulated walking. The pressure distribution and total load in the medial and lateral compartments of the tibial component changed significantly with as little as a 3 degrees variation in angulation when loaded in a manner representative of a trial reduction or with a knee simulator. These results support the need for precise surgical reconstruction of the mechanical axis of the knee and proper alignment of the tibial component. These results further demonstrate that tibial contact pressures measured during a trial reduction method may be predictive of contact mechanics at the higher loading seen in the knee simulator.  相似文献   

7.
ObjectiveMost of the studies about trapeziometacarpal joint assume that it exhibits only two independent degrees of freedom, but the experimental or theoretical support for considering a two-degrees of freedom model is not always clear.Materials and methodsTherefore, an in vitro kinematic study has been designed to demonstrate, from experimental data, that only two of the trapeziometacarpal degrees of freedom (i.e., flexion/extension and adduction/abduction) are non-null and independent. Several movements of maximal amplitude in flexion, abduction and circumduction have been realized and the relative position and orientation of the segment coordinate system embedded on the first metacarpal with respect to that embedded on the trapezium have been collected using electromagnetic sensors. The trapeziometacarpal rotations have been described using a joint coordinate system and the joint displacements have been evaluated on the axes of this coordinate system.ResultsThe root mean square (RMS) values of the joint displacement components have been found small enough to assume that the trapeziometacarpal joint has no translation degrees of freedom. A paraboloid coupling equation has been found between the internal/external rotation angle and the two other, flexion/extension and adduction/abduction, angles.ConclusionThus, this study demonstrates that the trapeziometacarpal joint has only two independent rotational degrees of freedom, and further, the described methodology could also be used to determine the coupling laws between degrees of freedom of various joints.  相似文献   

8.
After total hip replacement (THR) impingement of the implant components causes shear stresses at the acetabular implant-bone interface. In the current study the finite element method (FEM) was applied to analyse the shear stresses at a fully bonded implant-bone interface assuming total ingrowth of the cup. The FE model of a press-fit acetabular component and the proximal part of the femoral component incorporates non-linear material and large sliding contact. The model was loaded with a superior-medial joint load of 435 N simulating a two-legged stance. Starting at initial impingement, the femoral component was medially rotated by 20 degrees . The peak tilting shear stress of -2.6 MPa at the impingement site takes effect towards the pole of the cup. The torsional shear stress at the impingement site is zero. On each side of the impingement site, there are extrema of torsional shear stress reaching -1.8 and 1.8 MPa, respectively. The global peak shear stress during impingement may indicate a possible starting point for cup loosening. The pattern of the torsional shear stresses suggests that besides the symmetric lever-out, an additional asymmetrical tilting of the cup occurs that can be explained by the orientation of the applied joint load.  相似文献   

9.
The impact of anatomical variation and surgical error on excessive wear and loosening of the acetabular component of large diameter metal-on-metal hip arthroplasties was measured using a multi-factorial analysis through 112 different simulations. Each surgical scenario was subject to eight different daily loading activities using finite element analysis. Excessive wear appears to be predominantly dependent on cup orientation, with inclination error having a higher influence than version error, according to the study findings. Acetabular cup loosening, as inferred from initial implant stability, appears to depend predominantly on factors concerning the area of cup-bone contact, specifically the level of cup seating achieved and the individual patient's anatomy. The extent of press fit obtained at time of surgery did not appear to influence either mechanism of failure in this study.  相似文献   

10.
The acromial tracker is used to measure scapular rotations during dynamic movements. The method has low accuracy in high elevations and is sensitive to its attachment location on the acromion. The aim of this study was to investigate the effect of the attachment position and shoulder orientation during calibration on the tracker accuracy. The tracker was attached to one of three positions: near the anterior edge of the acromion process, just above the acromial angle and the meeting point between the acromion and the scapular spine. The scapula locator was used to track the scapula during bilateral abduction simultaneously. The locator was used to calibrate the tracker at: no abduction, 30°, 60°, 90° and 120° humerothoracic abduction. ANOVA tests compared RMS errors for different attachment positions and calibration angles. The results showed that attaching the device at the meeting point between the acromion and the scapular spine gave the smallest errors and it was best to calibrate the device at 60° for elevations ≤90°, at 120° for elevations >90° and at 90°or 120° for the full range of abduction. The accuracy of the tracker is significantly improved if attached appropriately and calibrated for the range of movement being measured.  相似文献   

11.
The influence of an artificial leg length discrepancy (= ALLD) on stride times, pelvic rotations and activity of the intrinsic lumbar back muscles (= ILBM) was investigated for 20 subjects. An ALLD was created by shoes with a raised sole. Walking with an ALLD produced an increase of the swing phase time and a decrease of the stance phase time for both feet. The influence of an ALLD on pelvic rotations in the sagittal and frontal plane and on ILBM-activity was small. Changes in pelvic rotations in the sagittal plane were too small to observe. The mean pelvic rotation angle in the frontal plane was changed 1.52 degrees when walking with an ALLD of 40 mm (6.9 degrees while standing with an ALLD of 40 mm with extended knees). Only small changes were found in activity time due to an ALLD (not in EMG-amplitude). The activity time of the ILBM around heel strike of the raised limb was increased and unilaterally shifted from toe off in the direction of heel strike with the raised limb.  相似文献   

12.
Rationale and Objectives. To reduce tibio-femoral misalignment, the polyethylene bearing-component of a new knee prosthesis was allowed limited motion on the underlying metallic component. The object of the work presented here was to develop a suitable radiographic technique for quantifying the in-vivo position of the bearing. By collecting these data at discrete flexion angles, the functional operation of the prosthesis could be determined. Methods. The known geometries between landmarks on the two components were used to produce algorithms for reconstructing their spatial positions from a single radiograph. A custom-designed computer program utilized these algorithms to determine the relative translation and rotation of the polyethylene component. Results. This technique produced typical errors of 0.54 mm translation and 0.56 degrees rotation between the polyethylene component and the underlying metallic component. Conclusions. A practical method has been developed for assessing mobile-bearing motion, in vivo. This method can be applied to other prosthetic devices, or combinations of components, once the requirement for identifiable landmarks has been addressed. Clinical Relevance. Skeletal and soft-tissue changes in the pathological knee may produce abnormal rotations and translations in the transverse tibial plane. This technique is intended both to validate the design philosophy of a mobile-bearing prosthesis and to provide additional data on any pathological motions, which will have implications for future prosthetic designs.  相似文献   

13.
Proper cup alignment is crucial in total hip arthroplasty for reducing impingement risks, dislocations and wear. The Lewinnek “safe zone” is often used in clinical routine. This safe zone does not consider functional aspects and dislocation can occur even when the cup is oriented within the safe zone. Functional safe zones based on the hip range of motion (ROM) were introduced but are not commonly used in clinical routine. The reason might be that these methods are time-consuming due to complex simulations. A relatively fast method based on analytical mathematical formulas was proposed, but it is difficult to consider arbitrary motion. This work introduces an efficient algorithm for calculating a patient-specific target zone based on the target ROM which can consider any set of motions. The method is based on matrix transformations and trigonometric formulas. The resulting target zone which contains all impingement-free cup orientations is dependent on the patient-specific pelvic tilt, the 3D angular neck and stem orientation within the femur, and the technical prosthesis ROM. This method could be integrated into computer-assisted preoperative planning and intra-operative navigation tools. As pelvic tilt and stem orientation influence the optimal cup orientation they need to be acquired from the patient to derive a patient-specific ROM-based target zone.  相似文献   

14.
Accuracy of an image-free cup navigation system--an anatomical study]   总被引:2,自引:0,他引:2  
The position of the acetabular cup is of decisive importance for the function of a total hip replacement (THR). Using the conventional surgical technique, correct placement of the cup often fails due to a lack of information about pelvic tilt. With CT-based and fluoroscopically-assisted navigation procedures the accuracy of implantation has been significantly improved. However, additional radiation exposure, high cost and the increased time requirement have hampered the acceptance of these techniques. The present anatomical study evaluates the accuracy of an alternative procedure--image-free navigation. This method requires little extra effort, does not substantially delay surgery, and needs no additional imaging. Press-fit cups were implanted in 10 human cadaveric hips with the help of the image-free navigation system, and the position of the cups was checked intraoperatively with a CT-based navigation system and postoperatively by computed tomography. All cups were implanted within the targeted safe zone with an average inclination of 44 degrees (range 40 degrees-48 degrees, SABW 2.7 degrees) and an average anteversion of 18 degrees (range 12-24 degrees, SABW 4.1 degrees). Analysis of accuracy of the image-free navigation software revealed only a small, clinically tolerable deviation in cup anteversion and cup inclination in comparison with the CT-based navigation system and the post operative CT scans. The evaluated image-free navigation system appears to be a practicable and reliable alternative to the computer-assisted implantation of acetabular cups in total hip arthroplasty.  相似文献   

15.
The reduced range of motion (ROM) resulting from total hip replacement (THR) leads to frequent prosthetic impingement, which may restrict activities of daily living and cause subluxation and dislocation. Therefore, to know the ROM of THR is very important in clinical situations and in the design of prostheses. THR involves a pure ball and socket joint. We created a mathematical formula to calculate the theoretical ROM of THR limited by the prosthetic impingement. The ROM of THR is governed by the following five factors, (1) The prosthetic ROM (oscillation angle: obtained from company data), (2) cup abduction (3) cup anterior opening, (4) the angle of the femoral neck component from the horizontal plane, and (5) the femoral neck anteversion. The last 4 factors are able to be obtained from anterior-posterior, axial X-rays and CT of the patient's THR. The objective was to create mathematical formulas that could accurately and quickly calculate the ROM of THR. By entering the five values into a computer programmed with the formulas, one could obtain the ROM for the THR. This reveals the effect on ROM of the oscillation angle and the interaction of ROM with cup abduction, anterior opening and neck anteversion. Furthermore this readily would enable a clinical evaluation of the possibility of postoperative dislocation and help in postoperative rehabilitation. The calculated numerical values of ROM by these mathematical formulas were successfully compared with the ROMs obtained from 3-dimensional computer graphics (3D-CG).  相似文献   

16.
A method has been developed for quantifying movement and wear of the acetabular component (cup) of total hip replacements (THR) from routine postoperative and review radiographs. The method uses both interactive and automatic computer image analysis techniques. Dimensions of the prosthesis are used to scale the measurements and so overcom variation in radiographic alignment. The application of the method is illustrated by retrospective investigations of cup migration and wear using review radiographs taken over a follow-up of at least 12 years.  相似文献   

17.
In this paper a method is presented to calculate Euler's angles of rotation of a body segment during locomotion without a priori defining the location of the center of rotation, and without defining a local vertebral coordinate system. The method was applied to in vivo spinal kinematics. In this method, the orientation of each segment is identified by a set of three markers. The orientation of the axes of rotation is calculated based on the average position of the markers during one stride cycle. Some restrictions and assumptions should be made. The approach is viable only when the average orientation of the anatomical axes of rotation of each spinal segment during a stride cycle coincides with the three axes of the laboratory coordinate system. Furthermore, the rotations should be symmetrical with respect to both sides of the plane of symmetry of the spinal segment, and the subject should move parallel to one axis of the laboratory coordinate system. Since in experimental conditions these assumptions will only be met approximately, errors will be introduced in the calculated angles of rotation. The magnitude of the introduced errors was investigated in a computer simulation experiment. Since the maximal errors did not exceed 0.7° in a range of misalignments up to 10° between the two coordinate systems, the approach proved to be a valid method for the estimation of spinal kinematics.  相似文献   

18.

Background  

Contact pressure of UHMWPE acetabular cup has been shown to correlate with wear in total hip replacement (THR). The aim of the present study was to test the hypotheses that the cup geometry, abduction angle, thickness and clearance can modify the stresses in cemented polyethylene cups.  相似文献   

19.
After total hip arthroplasty, impingement of implant components may occur during every-day patient activities causing increased shear stresses at the acetabular implant-bone interface. In the literature, impingement related lever-out moments were noted for a number of acetabular components. But there is little information about pelvic load transfer. The aim of the current study was to measure the three-dimensional strain distribution at the macrostructured hemispherical interface and in the periphery of a standard acetabular press-fit cup in an experimental implant-bone substitute model. An experimental setup was developed to simulate impingement loading via a lever arm representing the femoral component and the lower limb. In one experimental setup 12 strain gauges were embedded at predefined positions in the periphery of the acetabular cup implant inside a tray, using polyurethane composite resin as a bone substitute material. By incremental rotation of the implant tray in steps of 10 and 30 deg, respectively, the strains were measured at evenly distributed positions. With the described method 288 genuine strain values were measured in the periphery of an embedded acetabular cup implant in one experimental setup. In two additional setups the strains were evaluated at different distances from the implant interface. Both in radial and meridional interface directions strain magnitudes reach their peak near the rim of the cup below the impingement site. Values of equatorial strains vary near zero and reach their peaks near the rim of the cup on either side and in some distance from the impingement site. Interestingly, the maximum of averaged radial strains does not occur, as expected, close to the interface but at an interface offset of 5.6 mm. With the described experimental setup it is now possible to measure and display the three-dimensional strain distribution in the interface and the periphery of an embedded acetabular cup implant. The current study provides the first experimental proof of the high local stresses gradients in the direct vicinity of the impingement site. The results of the current study help for a better understanding of the impingement mechanism and its impact on acetabular cup stability.  相似文献   

20.
Measurement of the relative motion between an implant and the surrounding bone over different time periods is valuable for assessing and comparing the component stability and predicting the potential future outcome. The RSA method, where small beads are implanted in the bone adjacent to the component, can measure implant-bone position to an accuracy of about 0.1 mm. However, the method involves special radiographic views and analytical software, not readily available. For purposes of component assessment on a more routine basis and for multi-centre trials, a method was developed where standard A-P and M-L radiographs were used. Computer software was written which estimated the out-of-plane rotations of the component relative to the plane of the film, and then carried out corrections to enhance the accuracy of calculation of the bead heights relative to the component. The theoretical errors were shown to be less than 0.04 mm for the expected range of out-of-plane rotations. When radiographs of components in simulated bones were taken at a range of rotations, the 95% confidence limits for axial displacement were found to be less than +0.3 mm, and for rotation in the plane to be 0.6 degrees. This indicated that the method was useful for studying knee components where the sinkage could reach a range of 0.5-2 mm in a 2 year period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号