首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
晚生型外生菌根真菌通常出现在森林演替的后期,是成熟林中的优势外生菌根真菌类群.对四川都江堰一片亚热带针阔混交林中的菌根真菌地上群落进行调查,并应用二元逻辑回归分析对晚生型外生菌根真菌的主要类群,即鹅膏菌科、牛肝菌科和红菇科,与周围(5 m×5 m样方)树种组成的关系进行研究.还应用次级变量分析方法对主要外生菌根真菌类群的空间格局进行了分析.结果表明,非外生菌根树种及某些外生菌根树种对特定类群菌根真菌子实体的出现有抑制作用,而不同类群外生菌根真菌在克隆生长上的差异并不是子实体空间分布的决定因素.我们认为,当研究自然林中外生菌根子实体的空间分布时,除了宿主植物的分布,也应考虑非宿主植物的分布以及菌根真菌相互作用的影响.  相似文献   

2.
Ectomycorrhizal networks may facilitate the establishment and survival of seedlings regenerating under the canopies of tropical forests and are often invoked as a potential contributor to monodominance. We identified ectomycorrhizal fungi in a monodominant Gilbertiodendron dewevrei (Fabaceae) rain forest in Cameroon, using sporocarps and ectomycorrhizae of three age categories (seedlings, intermediate trees, and large trees) and tentatively revealed nutrient transfer through ectomycorrhizal networks by measuring spontaneous isotopic (13C and 15N) abundances in seedlings. Sporocarp surveys revealed fewer ectomycorrhizal fungal taxa (59 species from 1030 sporocarps) than molecular barcoding of ectomycorrhizal roots (75 operational taxonomic units from 828 ectomycorrhizae). Our observations suggest that ectomycorrhizal fungal diversity is similar to that in other mixed tropical forests and provide the first report of the TuberHelvella lineage in a tropical forest. Despite some differences, all age categories of G. dewevrei had overlapping ectomycorrhizal fungal communities, with families belonging to Thelephoraceae, Russulaceae, Sebacinaceae, Boletaceae, and Clavulinaceae. Of the 49 operational taxonomic units shared by the three age categories (65.3% of the ectomycorrhizal fungal community), 19 were the most abundant on root tips of all categories (38.7% of the shared taxa), supporting the likelihood of ectomycorrhizal networks. However, we obtained no evidence for nutrient transfer from trees to seedlings. We discuss the composition of the ectomycorrhizal fungal community among the G. dewevrei age categories and the possible role of common ectomycorrhizal networks in this rain forest.  相似文献   

3.
In natural forests, hundreds of fungal species colonize plant roots. The preference or specificity for partners in these symbiotic relationships is a key to understanding how the community structures of root‐associated fungi and their host plants influence each other. In an oak‐dominated forest in Japan, we investigated the root‐associated fungal community based on a pyrosequencing analysis of the roots of 33 plant species. Of the 387 fungal taxa observed, 153 (39.5%) were identified on at least two plant species. Although many mycorrhizal and root‐endophytic fungi are shared between the plant species, the five most common plant species in the community had specificity in their association with fungal taxa. Likewise, fungi displayed remarkable variation in their association specificity for plants even within the same phylogenetic or ecological groups. For example, some fungi in the ectomycorrhizal family Russulaceae were detected almost exclusively on specific oak (Quercus) species, whereas other Russulaceae fungi were found even on “non‐ectomycorrhizal” plants (e.g., Lyonia and Ilex). Putatively endophytic ascomycetes in the orders Helotiales and Chaetothyriales also displayed variation in their association specificity and many of them were shared among plant species as major symbionts. These results suggest that the entire structure of belowground plant–fungal associations is described neither by the random sharing of hosts/symbionts nor by complete compartmentalization by mycorrhizal type. Rather, the colonization of multiple types of mycorrhizal fungi on the same plant species and the prevalence of diverse root‐endophytic fungi may be important features of belowground linkage between plant and fungal communities.  相似文献   

4.
 Thirty-six isolates from 27 species of native ectomycorrhizal fungi collected in northern Spain were tested for ectomycorrhiza formation with Pseudotsuga menziesii seedlings in pure culture syntheses. Thirteen of those species were also tested for ectomycorrhiza formation with six other species of conifers (two native and four introduced) to compare their colonization potential. Twenty-three fungal isolates from 18 species formed ectomycorrhizas with Pseudotsuga menziesii. The colonization level of the root system varied markedly among the different fungal species. Eight fungi colonized over 50% of the short roots. Nine fungi did not form ectomycorrhizas even though some of them were collected in pure stands of Pseudotsuga menziesii. Laccaria laccata, Lyophyllum decastes, Pisolithus tinctorius, and Scleroderma citrinum formed abundant ectomycorrhizas on all the conifers tested. Lactarius deliciosus, Rhizopogon spp., and Suillus luteus showed the greatest host specificity. The success in the introduction of some exotic conifers for reforestation in northern Spain is discussed in relation to their compatibility with native ectomycorrhizal fungi. Accepted: 28 August 1995  相似文献   

5.
Gordon GJ  Gehring CA 《Mycorrhiza》2011,21(5):431-441
Recent studies using molecular analysis of ectomycorrhizas have revealed that ascomycete fungi, especially members of the order Pezizales, can be important members of ectomycorrhizal (EM) fungal communities. However, little is known about the ecology and taxonomy of many of these fungi. We used data collected during a wet and a dry period to test the hypothesis that pezizalean EM fungi associated with pinyon pine (Pinus edulis) responded positively to drought stress. We also assessed the phylogenetic relationships among six, unknown pezizalean EM fungi, common to our study sites, using rDNA sequences from the internal transcribed spacer and large subunit (LSU) regions of the ribosomal DNA. Sequences of these fungi were then compared to sequences from known taxa to allow finer-scale identification. Three major findings emerged. First, at two sites, pezizalean EM were 44–95% more abundant during a dry year than a wetter year, supporting the hypothesis that pezizalean EM fungi respond positively to dry conditions. Second, four of the six unknown pezizalean EM fungi associated with P. edulis separated from one another consistently regardless of site or year of collection, suggesting that they represented distinct taxa. Third, comparison with LSU sequences of known members of the Pezizales indicated that these four taxa grouped within the genus Geopora of the family Pyronemataceae. Our results provide further evidence of the importance of pezizalean fungi in the ectomycorrhizal symbiosis and demonstrate high local abundance of members of the genus Geopora in drought-stressed pinyon–juniper woodlands.  相似文献   

6.
内蒙古地区白桦外生菌根形态类型及分子鉴定   总被引:1,自引:0,他引:1  
樊永军  闫伟 《西北植物学报》2013,33(11):2209-2215
以内蒙古不同地区白桦外生菌根为材料,采用形态解剖学方法和分子生物学手段对与白桦共生的外生菌根真菌多样性进行全面的调查,并经对所测序列与GenBank和Database比对。结果显示:在内蒙古地区与白桦共生的外生菌根真菌共13种,其中担子菌7种,子囊菌4种,分别来自于丝膜菌属、丝盖伞属、蜡壳耳属、毛革菌属、滑菇属和空团菌属、块菌属、地怀菌属。其中,菌根类型T8和T11未能提出其总DNA,根据其外生菌根形态类型并参照Agerer体视显微镜菌根图谱和Haug菌根图谱进行比较,分类鉴定为荷顿氏疣柄牛肝菌和白桦外生菌根真菌一种。结果表明,内蒙古地区白桦外生菌根真菌多样性相对较高,且与利用地上子实体鉴定的外生菌根真菌种类有一定的区别。  相似文献   

7.
We investigated the diversity and community structure of ectomycorrhizal (EcM) fungi in Pinus thunbergii stands on the eastern coast of Korea. We established two 10 × 10-m plots in six forest stands and sampled soil blocks containing rootlets of mature P. thunbergii trees. EcM roots were classified into morphological groups, and the fungal taxa associated with each morphotype were identified by sequencing the nuclear rDNA internal transcribed spacer region. Cenococcum geophilum and the Atheliales, Clavulinaceae, Russulaceae and Thelephoraceae species were the main members of the EcM fungal community, which included a total of 68 observed fungal taxa. As a whole, the community consisted of a few dominant fungal taxa, such as C. geophilum (28.6% relative abundance), and a large number of rare fungal taxa that showed low abundances and local distributions. Colonization patterns at the local site scale and at the scale of the study plots greatly differed among the EcM fungal taxa; C. geophilum was distributed extensively and was dominant in several study sites, whereas a certain Lactarius sp. was distributed locally but dominated in a given study site. We conclude with a discussion of the relationship between colonization patterns of EcM fungi and soil and environmental conditions.  相似文献   

8.
Wiemken  V.  Ineichen  K.  Boller  T. 《Plant and Soil》2001,234(1):99-108
To study responses of forests to global change, model ecosystems consisting of beech and spruce trees were established in open top chambers. The ecosystems were exposed to four conditions for 4 years, each replicated four times: ambient and elevated CO2, and low and high nitrogen input. At the end of the trial, the trees were 6–8 years old. Each chamber contained two separate compartments with siliceous and calcareous soil. Here, we focus on the development of ectomycorrhizas in the topsoil layer. Ectomycorrhizal fungal biomass associated with the fine roots, estimated by using ergosterol content as a marker, was much higher in the siliceous compared to the richer calcareous soil. Also, in root-free soil samples, the level of ergosterol, indicative of the extraradical mycelium of ectomycorrhizal fungi as well as the mycelium of other fungi, was about six times higher in the siliceous than in the calcareous soil. Conditions of elevated atmospheric CO2 primarily affected ectomycorrhizas in the calcareous soil. Fungal biomass, calculated per soil volume of the top soil layer, increased significantly, as did the metabolic activity of the ectomycorrhizal fungi, measured as uptake of glucose and synthesis of trehalose. Conditions of nitrogen fertilization affected ectomycorrhizas in the siliceous, nutrient poor soil.  相似文献   

9.
Ectomycorrhizal plants and fungi are ubiquitous in mainland forests, but because of dispersal limitations are predicted to be less common on isolated islands. For instance, no native ectomycorrhizal plants or fungi have ever been reported from Hawaii, one of the most remote archipelagos on Earth. Members of the plant tribe Pisonieae are common on many islands, and prior evidence shows that some species associate with ectomycorrhizal fungi. However, until now, the Pisonieae species of Hawaii had yet to be examined for their mycorrhizal status. Here we sampled roots from members of the genus Pisonia growing on the Hawaiian islands of Oahu, Maui and Hawaii. We used molecular and microscopic techniques to categorize trees with respect to their mycorrhizal associations. We report that the Hawaiian endemic Pisonia sandwicensis forms ectomycorrhizas with at least five fungal operational taxonomic units (corresponding closely to species) belonging to four genera. We also report that this tree species is monophyletic with other ectomycorrhizal Pisonia species. We suggest that in light of the newly discovered Hawaiian ectomycorrhizal fungal community and other island ectomycorrhizal communities, dispersal limitations do not prevent the colonization of remote islands by at least some ectomycorrhizal fungi.  相似文献   

10.
Shorea (Dipterocarpaceae) is a large genus in which many closely related species often grow together in Southeast Asian lowland tropical rain forests. Many Shorea species share common pollinators, and earlier studies suggested occurrence of interspecific hybridization and introgression. Here, we show morphological and molecular evidence of hybridization between Shorea species. In the census of all the trees of Shorea curtisii, Shorea leprosula, and Shorea parvifolia (>30 cm dbh) within the 164-ha area of Bukit Timah Nature Reserve in Singapore, we found 21 morphologically recognizable hybrid individuals. All of the putative hybrids could be distinguished obviously from the parental species on the basis of vegetative characters. Population genetic analysis of DNA sequences of two nuclear (GapC and PgiC) and chloroplast (trnL-trnF) regions demonstrated that each of the three species had several species-specific mutations. The nuclear sequences of the putative hybrids were heterozygote at all the species-specific sites between two parental species. Hybrid between S. curtisii and S. leprosula was found most, while S. curtisii × S. parvifolia and S. leprosula × S. parvifolia hybrids were also found. Almost no shared polymorphism between populations of the parental species suggests rarity of introgression. The study indicated that natural hybridization between sympatric Shorea species should not be uncommon, but all of the hybrid individuals were F1, and the post-F1 hybrids were considerably rare.  相似文献   

11.
? Premise of the study: Woody species in the Rosaceae form ectomycorrhizal associations, but the fungal symbionts are unknown. The species of fungi determine whether host plants are isolated from other ectomycorrhizal species in the plant community or linked with other trees through mycorrhizal networks. In this study we identified the fungi that form ectomycorrhizas with Cercocarpus ledifolius (curl-leaf mountain mahogany). ? Methods: Soil samples were collected under canopies of C. ledifolius. Ectomycorrhizas were described by morphology and by DNA sequences of the ITS region. Host species were confirmed by rbcL sequences. ? Key results: Sixteen species of fungi were identified from ectomycorrhizas of Cercocarpus ledifolius. The ectomycorrhizal community was distinguished by the presence of a Geopora species situated in the G. arenicola clade and by the absence of Rhizopogon, suilloids, and Sebacinales. Of the species on C. ledifolius, two also occurred on trees of Quercus garryana var. breweri and four on Arctostaphylos sp. ? Conclusions: The presence of fungal species in common with other ectomycorrhizal hosts shows that C. ledifolius, Q. garryana var. breweri, and Arctostaphylos species could be linked by a mycorrhizal network, allowing them to exchange nutrients or to share inoculum for seedling roots and new fine roots. Single-host fungi limited to C. ledifolius may improve resource acquisition and reduce competition with other ectomycorrhizal hosts. The finding of a Geopora species as a frequent mycobiont of C. ledifolius suggests that this fungus might be appropriate for inoculating seedlings for habitat restoration.  相似文献   

12.
In the last two centuries, several species of Australian eucalypts (e.g. Eucalyptus camaldulensis and E.␣globulus) were introduced into the Iberian Peninsula for the production of paper pulp. The effects of the introduction of exotic root-symbitotic fungi together with the eucalypts have received little attention. During the past years, we have investigated the biology of ectomycorrhizal fungi in eucalypt plantations in the Iberian Peninsula. In the plantations studied, we found fruit bodies of several Australian ectomycorrhizal fungi and identified their ectomycorrhizas with DNA molecular markers. The most frequent species were Hydnangium carneum, Hymenogaster albus, Hysterangium inflatum, Labyrinthomyces donkii, Laccaria fraterna, Pisolithus albus, P. microcarpus, Rhulandiella berolinensis, Setchelliogaster rheophyllus, and Tricholoma eucalypticum. These fungi were likely brought from Australia together with the eucalypts, and they seem to have facilitated the establishment of eucalypt plantations and their naturalization. The dispersion of Australian fungal propagules may be facilitating the spread of eucalypts along watercourses in semiarid regions increasing the water lost. Because ectomycorrhizal fungi are obligate symbionts, their capacity to persist after eradication of eucalypt stands, and/or to extend beyond forest plantations, would rely on the possibility to find compatible native host trees, and to outcompete the native ectomycorrhizal fungi. Here we illustrate the case of the Australasian species Laccaria fraterna, which fruits in Mediterranean shrublands of ectomycorrhizal species of Cistus (rockroses). We need to know which other Australasian fungi extend to the native ecosystems, if we are to predict environmental␣risks associated with the introduction of Australasian ectomycorrhizal fungi into the Iberian Peninsula. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
Forest trees are involved in root symbioses with hundreds of species of ectomycorrhizal fungi which constitute functional guilds able to improve the water and mineral nutrition of host trees. In temperate ecosystems, water shortage is a main factor limiting tree vitality. To assess how soil water conditions affected the physiological state of beech (Fagus silvatica L.) ectomycorrhizal roots, we monitored glucose respiration of two ectomycorrhizal types (Lactarius sp. and Cenococcum geophilum) during two complete growing seasons. Five stands of contrasting soil conditions were chosen in north-eastern France. The top soil horizons were equipped with micropsychrometers for measuring water potential and temperature. Glucose respiration on individual ectomycorrhizas was measured in vitro by trapping [14C]-CO2 from radiolabelled glucose. For soil water potential <-0.2 MPa, the potential respiration activity of C. geophilumectomycorrhizas was significantly less altered than that of Lactariussp. ectomycorrhizas, indicating that C. geophilumis more likely than Lactariussp. to maintain the physiological integrity of beech roots facing drought stress.  相似文献   

14.
Monotropastrum humile is nearly lacking in chlorophyll and obtains its nutrients, including carbon sources, from associated mycorrhizal fungi. We analyzed the mycorrhizal fungal affinity and species diversity of M. humile var. humile mycorrhizae to clarify how the plant population survives in Japanese forest ecosystems. We classified 78 samples of adult M. humile var. humile individuals from Hokkaido, Honshu, and Kyusyu Islands into 37 root mycorrhizal morphotypes. Of these, we identified 24 types as Russula or Lactarius fungal taxa in the Russulaceae, Basidiomycetes, but we could not identify the remaining 13 types as to their genus in the Basidiomycetes. The number of fungal species on M. humile var. humile was the highest in the plant subfamily. The diversity of fungal species revealed its increased trends in natural forests at the stand level, fagaceous vegetation, and cool-temperate climate. The most frequently observed fungus colonized mainly samples collected from sub-alpine forests; the second most frequently observed fungus colonized samples collected from sub-alpine to warm-temperate forests. These results suggest that Japanese M. humile populations are associated with specific but diverse fungi that are common ectomycorrhizal symbionts of various forest canopy trees, indicating a tripartite mycorrhizal relationship in the forest ecosystem.  相似文献   

15.
 As many eucalypts in commercial plantations are poorly ectomycorrhizal there is a need to develop inoculation programs for forest nurseries. The use of fungal spores as inoculum is a viable proposition for low technology nurseries currently producing eucalypts for outplanting in developing countries. Forty-three collections of ectomycorrhizal fungi from southwestern Australia and two from China, representing 18 genera, were tested for their effectiveness as spore inoculum on Eucalyptus globulus Labill. seedlings. Seven-day-old seedlings were inoculated with 25 mg air-dry spores in a water suspension. Ectomycorrhizal development was assessed in soil cores 65 and 110 days after inoculation. By day 65, about 50% of the treatments had formed ectomycorrhizas. By day 110, inoculated seedlings were generally ectomycorrhizal, but in many cases the percentage of roots colonized was low (<10%). Species of Laccaria, Hydnangium, Descolea, Descomyces, Scleroderma and Pisolithus formed more ectomycorrhizas than the other fungi. Species of Russula, Boletus, Lactarius and Hysterangium did not form ectomycorrhizas. The dry weights of inoculated seedlings ranged from 90% to 225% of the uninoculated seedlings by day 110. Although plants with extensively colonized roots generally had increased seedling growth, the overall mycorrhizal colonization levels were poorly correlated to seedling growth. Species of Laccaria, Descolea, Scleroderma and Pisolithus are proposed as potential candidate fungi for nursery inoculation programs for eucalypts. Accepted: 7 May 1998  相似文献   

16.
Non-native tree species have been widely planted or have become naturalized in most forested landscapes. It is not clear if native trees species collectively differ in ectomycorrhizal fungal (EMF) diversity and communities from that of non-native tree species. Alternatively, EMF species community similarity may be more determined by host plant phylogeny than by whether the plant is native or non-native. We examined these unknowns by comparing two genera, native and non-native Quercus robur and Quercus rubra and native and non-native Pinus sylvestris and Pinus nigra in a 35-year-old common garden in Poland. Using molecular and morphological approaches, we identified EMF species from ectomycorrhizal root tips and sporocarps collected in the monoculture tree plots. A total of 69 EMF species were found, with 38 species collected only as sporocarps, 18 only as ectomycorrhizas, and 13 both as ectomycorrhizas and sporocarps. The EMF species observed were all native and commonly associated with a Holarctic range in distribution. We found that native Q. robur had ca. 120% higher total EMF species richness than the non-native Q. rubra, while native P. sylvestris had ca. 25% lower total EMF species richness than non-native P. nigra. Thus, across genera, there was no evidence that native species have higher EMF species diversity than exotic species. In addition, we found a higher similarity in EMF communities between the two Pinus species than between the two Quercus species. These results support the naturalization of non-native trees by means of mutualistic associations with cosmopolitan and novel fungi.  相似文献   

17.
The ectomycorrhizal fungal associations of Douglas fir ( Pseudotsuga menziesii D. Don) and bishop pine ( Pinus muricata D. Don) were investigated in a mixed forest stand. We identified fungi directly from field-collected ectomycorrhizal (ECM) root tips using PCR-based methods. Sixteen species of fungi were found, of which twelve associated with both hosts. Rhizopogon parksii Smith was specific to Douglas fir. Three other species colonized only one of the hosts, but were too infrequent to draw conclusions about specificity. Seventy-four percent of the biomass of ECM root tips sampled in the stand were colonized by members of the Thelephoraceae and Russulaceae. All 12 species of fungi that associated with both tree species did so within a 10×40 cm soil volume, suggesting that individual fungal genotypes linked the putatively competing tree hosts.  相似文献   

18.
Several forest understorey achlorophyllous plants, termed mycoheterotrophs (MHs), obtain C from their mycorrhizal fungi. The latter in turn form ectomycorrhizas with trees, the ultimate C source of the entire system. A similar nutritional strategy occurs in some green forest orchids, phylogenetically close to MH species, that gain their C via a combination of MH and photosynthesis (mixotrophy). In orchid evolution, mixotrophy evolved in shaded habitats and preceded MH nutrition. By generalizing and applying this to Ericaceae, we hypothesized that green forest species phylogenetically close to MHs are mixotrophic. Using stable C isotope analysis with fungi, autotrophic, mixotrophic and MH plants as comparisons, we found the first quantitative evidence for substantial fungi-mediated mixotrophy in the Pyroleae, common ericaceous shrubs from boreal forests close to the MH Monotropoideae. Orthilia secunda, Pyrola chlorantha, Pyrola rotundifolia and Chimaphila umbellata acquired between 10.3 and 67.5% of their C from fungi. High N and 15N contents also suggest that Pyroleae nutrition partly rely on fungi. Examination of root fungal internal transcribed spacer sequences at one site revealed that 39 species of mostly endophytic or ectomycorrhizal fungi, including abundant Tricholoma spp., were associated with O. secunda, P. chlorantha and C. umbellata. These fungi, particularly ectomycorrhizal associates, could thus link mixotrophic Pyroleae spp. to surrounding trees, allowing the C flows deduced from isotopic evidence. These data suggest that we need to reconsider ecological roles of understorey plants, which could influence the dynamics and composition of forest communities.  相似文献   

19.

Background

Mycoheterotrophic plants are considered to associate very specifically with fungi. Mycoheterotrophic orchids are mostly associated with ectomycorrhizal fungi in temperate regions, or with saprobes or parasites in tropical regions. Although most mycoheterotrophic orchids occur in the tropics, few studies have been devoted to them, and the main conclusions about their specificity have hitherto been drawn from their association with ectomycorrhizal fungi in temperate regions.

Results

We investigated three Asiatic Neottieae species from ectomycorrhizal forests in Thailand. We found that all were associated with ectomycorrhizal fungi, such as Thelephoraceae, Russulaceae and Sebacinales. Based on 13C enrichment of their biomass, they probably received their organic carbon from these fungi, as do mycoheterotrophic Neottieae from temperate regions. Moreover, 13C enrichment suggested that some nearby green orchids received part of their carbon from fungi too. Nevertheless, two of the three orchids presented a unique feature for mycoheterotrophic plants: they were not specifically associated with a narrow clade of fungi. Some orchid individuals were even associated with up to nine different fungi.

Conclusion

Our results demonstrate that some green and mycoheterotrophic orchids in tropical regions can receive carbon from ectomycorrhizal fungi, and thus from trees. Our results reveal the absence of specificity in two mycoheterotrophic orchid-fungus associations in tropical regions, in contrast to most previous studies of mycoheterotrophic plants, which have been mainly focused on temperate orchids.  相似文献   

20.
We analysed the ectomycorrhizal (ECM) fungal diversity in a Mediterranean old-growth Quercus ilex forest stand from Corsica (France), where Arbutus unedo was the only other ECM host. On a 6400 m2 stand, we investigated whether oak age and host species shaped below-ground ECM diversity. Ectomycorrhizas were collected under Q. ilex individuals of various ages (1 yr seedlings; 3-10 yr saplings; old trees) and A. unedo. They were typed by ITS-RFLP analysis and identified by match to RFLP patterns of fruitbodies, or by sequencing. A diversity of 140 taxa was found among 558 ectomycorrhizas, with many rare taxa. Cenococcum geophilum dominated (35% of ECMs), as well as Russulaceae, Cortinariaceae and Thelephoraceae. Fungal species richness was comparable above and below ground, but the two levels exhibited < 20% overlap in fungal species composition. Quercus ilex age did not strongly shape ECM diversity. The two ECM hosts, A. unedo and Q. ilex, tended to share few ECM species (< 15% of the ECM diversity). Implications for oak forest dynamics are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号