首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of isotopically light carbonates in association with fine-grained magnetite is considered to be primarily due to the reduction of Fe(III) by Fe(III)-reducing bacteria in the environment. Here, we report on magnetite formation by biooxidation of Fe(II) coupled to denitrification. This metabolism offers an alternative environmental source of biogenic magnetite.  相似文献   

2.
Magnetite formation during the reduction of nanoparticulate hematite by Shewanella putrefaciens 200R is investigated in media of variable composition, at circumneutral pH and with lactate as electron donor. The relative rates of production of dissolved Fe(II) and Fe(III), aqueous speciation, plus chemical gradients control whether or not magnetite forms in the experiments. High bicarbonate concentrations result in the precipitation of magnetite, presumably by enhancing the non-reductive dissolution of hematite, hence causing the simultaneous production of soluble Fe(III) and Fe(II) in the incubations. Magnetite formation is inhibited when hematite dissolution is slowed down by adsorption of oxyanions (phosphate and sulfate) at the mineral surface, when the reduction of soluble Fe(III) is enhanced by increasing the cell density or adding an electron shuttle (AQS), or when aqueous Fe(II) is complexed by ferrozine. In experiments where hematite suspensions with and without bacteria are separated by a dialysis membrane, magnetite formation occurs mainly in the cell-free portion of the reaction system. Most likely, precipitation of magnetite is favored in the cell-free suspension because of a higher soluble Fe(III) to Fe(II) ratio. The formation of magnetite in the absence of cells further implies that its nucleation is not catalyzed by the bacterial surfaces.  相似文献   

3.
康博伦  袁媛  王珊  刘洪艳 《微生物学通报》2021,48(10):3497-3505
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。  相似文献   

4.
The hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was found to be capable of lithoautotrophic growth on medium containing molecular hydrogen, sulfate, and amorphous Fe(III) oxide. During the growth of this microorganism, amorphous Fe(III) oxide was transformed into black strongly magnetic sediment rich in magnetite, as shown by Mossbauer studies. Experiments involving inhibition of microbial sulfate reduction and abiotic controls revealed that magnetite production resulted from chemical reactions proceeding at elevated temperatures (83 degrees C) between molecular hydrogen, amorphous Fe(III) oxide, and sulfide formed enzymatically in the course of dissimilatory sulfate reduction. It follows that magnetite production in this system can be characterized as biologically mediated mineralization. This is the first report of magnetite formation as a result of activity of sulfate-reducing microorganisms.  相似文献   

5.
Slobodkin  A. I.  Chistyakova  N. I.  Rusakov  V. S. 《Microbiology》2004,73(4):469-473
The hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus was found to be capable of lithoautotrophic growth on medium containing molecular hydrogen, sulfate, and amorphous Fe(III) oxide. During the growth of this microorganism, amorphous Fe(III) oxide was transformed into black strongly magnetic precipitate rich in magnetite, as shown by Moessbauer studies. Experiments involving inhibition of microbial sulfate reduction and abiotic controls revealed that magnetite production resulted from chemical reactions proceeding at elevated temperatures (83°C) between molecular hydrogen, amorphous Fe(III) oxide, and sulfide formed enzymatically in the course of dissimilatory sulfate reduction. It follows that magnetite production in this system can be characterized as biologically mediated mineralization. This is the first report on magnetite formation as a result of activity of sulfate-reducing microorganisms.  相似文献   

6.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO2 at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO2 and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 μM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

7.
Six sustainable enrichment cultures of thermophilic H2-oxidizing microorganisms utilizing Fe(III) as an electron acceptor were obtained from geothermally heated environments located on two continents (America, Eurasia) and on islands in the Northern (Iceland) and Southern (Fiji) hemispheres, demonstrating the wide distribution of these microorganisms. The main products of amorphic Fe(III) oxide reduction were magnetite and siderite. The observed temperature range for Fe(III) reduction in growing cultures was from 55°C to 87°C, extending the known limits for growth of Fe(III)-reducing microorganisms producing extracellular magnetite to nearly 90°C. Received: August 13, 1996 / Accepted: January 17, 1997  相似文献   

8.
Biomineralization processes have traditionally been grouped into two distinct modes; biologically induced mineralization (BIM) and biologically controlled mineralization (BCM). In BIM, microbes cause mineral formation by sorbing solutes onto their cell surfaces or extruded organic polymers and/or releasing reactive metabolites which alter the saturation state of the solution proximal to the cell or polymer surface. Such mineral products appear to have no specific recognized functions. On the other hand, in BCM microbes exert a great degree of chemical and genetic control over the nucleation and growth of mineral particles, presumably because the biominerals produced serve some physiological function. Interestingly, there are examples where the same biomineral is produced by both modes in the same sedimentary environment. For example, the magnetic mineral magnetite (Fe 3 O 4 ) is generated extracellularly in the bulk pore waters of sediments by various Fe(III)-reducing bacteria under anaerobic conditions, while some other anaerobic and microaerophilic bacteria and possibly protists form magnetite intracellularly within preformed vesicles. Differences in precipitation mechanisms might be caused by enzymatic activity at specific sites on the surface of the cell. Whereas one type of microbe might facilitate the transport of dissolved Fe(III) into the cell, another type will express its reductive enzymes and cause the reduction of Fe(III) external to the cell. Still other microbes might induce magnetite formation indirectly through the oxidation of Fe(II), followed by the reaction of dissolved Fe(II) with hydrolyzed Fe(III). The biomineralization of magnetite has significant effect on environmental iron cycling, the magnetization of sediments and thus the geologic record, and on the use of biomarkers as microbial fossils.  相似文献   

9.
The dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens reduced and precipitated Tc(VII) by two mechanisms. Washed cell suspensions coupled the oxidation of hydrogen to enzymatic reduction of Tc(VII) to Tc(IV), leading to the precipitation of TcO(2) at the periphery of the cell. An indirect, Fe(II)-mediated mechanism was also identified. Acetate, although not utilized efficiently as an electron donor for direct cell-mediated reduction of technetium, supported the reduction of Fe(III), and the Fe(II) formed was able to transfer electrons abiotically to Tc(VII). Tc(VII) reduction was comparatively inefficient via this indirect mechanism when soluble Fe(III) citrate was supplied to the cultures but was enhanced in the presence of solid Fe(III) oxide. The rate of Tc(VII) reduction was optimal, however, when Fe(III) oxide reduction was stimulated by the addition of the humic analog and electron shuttle anthaquinone-2,6-disulfonate, leading to the rapid formation of the Fe(II)-bearing mineral magnetite. Under these conditions, Tc(VII) was reduced and precipitated abiotically on the nanocrystals of biogenic magnetite as TcO(2) and was removed from solution to concentrations below the limit of detection by scintillation counting. Cultures of Fe(III)-reducing bacteria enriched from radionuclide-contaminated sediment using Fe(III) oxide as an electron acceptor in the presence of 25 microM Tc(VII) contained a single Geobacter sp. detected by 16S ribosomal DNA analysis and were also able to reduce and precipitate the radionuclide via biogenic magnetite. Fe(III) reduction was stimulated in aquifer material, resulting in the formation of Fe(II)-containing minerals that were able to reduce and precipitate Tc(VII). These results suggest that Fe(III)-reducing bacteria may play an important role in immobilizing technetium in sediments via direct and indirect mechanisms.  相似文献   

10.
4-chloronitrobenzene (4-Cl-NB) was rapidly reduced to 4-chloroaniline with half-lives of minutes in a dissimilatory Fe(III)-reducing enrichment culture. The initial pseudo-first-order rate constants at 25°C ranged from 0.11 to 0.19 per minute. The linear Arrhenius correlation in a temperature range of 6 to 85°C and the unchanged reactivity after pasteurization indicated that the nitroreduction occurred abiotically. A fine-grained black solid which was identified as poorly crystalline magnetite (Fe3O4) by X-ray diffraction accumulated in the enrichments. Magnetite produced by the Fe(III)-reducing bacterium Geobacter metallireducens GS-15 and synthetic magnetite also reduced 4-Cl-NB. These results suggest that the reduction of 4-Cl-NB by the enrichment material was a surface-mediated reaction by dissimilatory formed Fe(II) associated with magnetite.  相似文献   

11.
A combination of scanning transmission X‐ray microscopy and X‐ray magnetic circular dichroism was used to spatially resolve the distribution of different carbon and iron species associated with Shewanella oneidensis MR‐1 cells. S. oneidensis MR‐1 couples the reduction of Fe(III)‐oxyhydroxides to the oxidation of organic matter in order to conserve energy for growth. Several potential mechanisms may be used by S. oneidensis MR‐1 to facilitate Fe(III)‐reduction. These include direct contact between the cell and mineral surface, secretion of either exogenous electron shuttles or Fe‐chelating agents and the production of conductive ‘nanowires’. In this study, the protein/lipid signature of the bacterial cells was associated with areas of magnetite (Fe3O4), the product of dissimilatory Fe(III) reduction, which was oversaturated with Fe(II) (compared to stoichiometric magnetite). However, areas of the sample rich in polysaccharides, most likely associated with extracellular polymeric matrix and not in direct contact with the cell surface, were undersaturated with Fe(II), forming maghemite‐like (γ‐Fe2O3) phases compared to stoichiometric magnetite. The reduced form of magnetite will be much more effective in environmental remediation such as the immobilisation of toxic metals. These findings suggest a dominant role for surface contact‐mediated electron transfer in this study and also the inhomogeneity of magnetite species on the submicron scale present in microbial reactions. This study also illustrates the applicability of this new synchrotron‐based technique for high‐resolution characterisation of the microbe–mineral interface, which is pivotal in controlling the chemistry of the Earth’s critical zone.  相似文献   

12.
Degeneration of biogenic superparamagnetic magnetite   总被引:2,自引:0,他引:2  
Magnetite crystals precipitated as a consequence of Fe(III) reduction by Shewanella algae BrY after 265 h incubation and 5-year anaerobic storage were investigated with transmission electron microscopy, Mössbauer spectroscopy and X-ray diffraction. The magnetite crystals were typically superparamagnetic with an approximate size of 13 nm. The lattice constants of the 265 h and 5-year crystals are 8.4164Å and 8.3774Å, respectively. The Mössbauer spectra indicated that the 265 h magnetite had excess Fe(II) in its crystal-chemistry (Fe3+1.990Fe2+1.015O4) but the 5-year magnetite was Fe(II)-deficient in stoichiometry (Fe3+2.388Fe2+0.419O4). Such crystal-chemical changes may be indicative of the degeneration of superparamagnetic magnetite through the aqueous oxidization of Fe(II) anaerobically, and the concomitant oxidation of the organic phases (fatty acid methyl esters) that were present during the initial formation of the magnetite. The observation of a corona structure on the aged magnetite corroborates the anaerobic oxidation of Fe(II) on the outer layers of magnetite crystals. These results suggest that there may be a possible link between the enzymatic activity of the bacteria and the stability of Fe(II)-excess magnetite, which may help explain why stable nano-magnetite grains are seldom preserved in natural environments.  相似文献   

13.
The influence of phosphate on the competitive formation of magnetite and lepidocrocite and the properties of magnetite prepared from mixtures of Fe(II) and Fe(III) salts were studied. Products were prepared at 90 °C and pH 12.5 (series 1), 50 °C and pH 7 (series 2) and 20 °C and pH 8 (series 3). The P/Fe atomic ratio in the initial solution ranged from 0 to 3% and the pH was kept at the desired value with NaOH or KOH. Air was used as oxidant in series 2 and 3. All products, which were characterized by X-ray diffraction, transmission electron microscopy, chemical analysis and IR spectroscopy, contained a phase intermediate between magnetite and maghemite (referred to as magnetite in this paper). The products of series 1 consisted only of magnetite at all P/Fe ratios, whereas both magnetite and lepidocrocite formed in series 2 and 3 above a certain P/Fe ratio. On increasing the P/Fe ratio in the initial solution, the magnetite crystals became smaller and more oxidized (i.e. closer to maghemite) and the lepidocrocite/magnetite ratio increased. The P associated with magnetite was partly in the form of occluded P, i.e. non-surface-adsorbed phosphate. IR spectra suggested this P to be structural and occurring as low-symmetry PO4 units. Because abiogenic magnetites produced in various environments incorporate structural P but some well-characterized biogenic magnetites seem to contain no P or be formed in P-poor environments, we hypothesize that natural magnetites containing occluded P are unlikely to be biogenic. However, more studies are needed to discard the presence of P in biogenic magnetites.  相似文献   

14.
It has recently been noted that a diversity of hyperthermophilic microorganisms have the ability to reduce Fe(III) with hydrogen as the electron donor, but the reduction of Fe(III) or other metals by these organisms has not been previously examined in detail. When Pyrobaculum islandicum was grown at 100 degrees C in a medium with hydrogen as the electron donor and Fe(III)-citrate as the electron acceptor, the increase in cell numbers of P. islandicum per mole of Fe(III) reduced was found to be ca. 10-fold higher than previously reported. Poorly crystalline Fe(III) oxide could also serve as the electron acceptor for growth on hydrogen. The stoichiometry of hydrogen uptake and Fe(III) oxide reduction was consistent with the oxidation of 1 mol of hydrogen resulting in the reduction of 2 mol of Fe(III). The poorly crystalline Fe(III) oxide was reduced to extracellular magnetite. P. islandicum could not effectively reduce the crystalline Fe(III) oxide minerals goethite and hematite. In addition to using hydrogen as an electron donor for Fe(III) reduction, P. islandicum grew via Fe(III) reduction in media in which peptone and yeast extract served as potential electron donors. The closely related species P. aerophilum grew via Fe(III) reduction in a similar complex medium. Cell suspensions of P. islandicum reduced the following metals with hydrogen as the electron donor: U(VI), Tc(VII), Cr(VI), Co(III), and Mn(IV). The reduction of these metals was dependent upon the presence of cells and hydrogen. The metalloids arsenate and selenate were not reduced. U(VI) was reduced to the insoluble U(IV) mineral uraninite, which was extracellular. Tc(VII) was reduced to insoluble Tc(IV) or Tc(V). Cr(VI) was reduced to the less toxic, less soluble Cr(III). Co(III) was reduced to Co(II). Mn(IV) was reduced to Mn(II) with the formation of manganese carbonate. These results demonstrate that biological reduction may contribute to the speciation of metals in hydrothermal environments and could account for such phenomena as magnetite accumulation and the formation of uranium deposits at ca. 100 degrees C. Reduction of toxic metals with hyperthermophilic microorganisms or their enzymes might be applied to the remediation of metal-contaminated waters or waste streams.  相似文献   

15.
In order to gain insight into the significance of biotic metal reduction and mineral formation in hyperthermophilic environments, metal mineralization as a result of the dissimilatory reduction of poorly crystalline Fe(III) oxide, and U(VI) reduction at 100 °C by Pyrobaculum islandicum was investigated. When P. islandicum was grown in a medium with poorly crystalline Fe(III) oxide as an electron acceptor and hydrogen as an electron donor, the Fe(III) oxide was reduced to an extracellular, ultrafine-grained magnetite with characteristics similar to that found in some hot environments and that was previously thought to be of abiotic origin. Furthermore, cell suspensions of P. islandicum rapidly reduced the soluble and oxidized form of uranium, U(VI), to extracellular precipitates of the highly insoluble U(IV) mineral, uraninite (UO2). The reduction of U(VI) was dependent on the presence of hydrogen as the electron donor. These findings suggest that microbes may play a key role in metal deposition in hyperthermophilic environments and provide a plausible explanation for such phenomena as magnetite accumulation and formation of uranium deposits at ca . 100 °C.  相似文献   

16.
It has recently been noted that a diversity of hyperthermophilic microorganisms have the ability to reduce Fe(III) with hydrogen as the electron donor, but the reduction of Fe(III) or other metals by these organisms has not been previously examined in detail. When Pyrobaculum islandicum was grown at 100°C in a medium with hydrogen as the electron donor and Fe(III)-citrate as the electron acceptor, the increase in cell numbers of P. islandicum per mole of Fe(III) reduced was found to be ca. 10-fold higher than previously reported. Poorly crystalline Fe(III) oxide could also serve as the electron acceptor for growth on hydrogen. The stoichiometry of hydrogen uptake and Fe(III) oxide reduction was consistent with the oxidation of 1 mol of hydrogen resulting in the reduction of 2 mol of Fe(III). The poorly crystalline Fe(III) oxide was reduced to extracellular magnetite. P. islandicum could not effectively reduce the crystalline Fe(III) oxide minerals goethite and hematite. In addition to using hydrogen as an electron donor for Fe(III) reduction, P. islandicum grew via Fe(III) reduction in media in which peptone and yeast extract served as potential electron donors. The closely related species P. aerophilum grew via Fe(III) reduction in a similar complex medium. Cell suspensions of P. islandicum reduced the following metals with hydrogen as the electron donor: U(VI), Tc(VII), Cr(VI), Co(III), and Mn(IV). The reduction of these metals was dependent upon the presence of cells and hydrogen. The metalloids arsenate and selenate were not reduced. U(VI) was reduced to the insoluble U(IV) mineral uraninite, which was extracellular. Tc(VII) was reduced to insoluble Tc(IV) or Tc(V). Cr(VI) was reduced to the less toxic, less soluble Cr(III). Co(III) was reduced to Co(II). Mn(IV) was reduced to Mn(II) with the formation of manganese carbonate. These results demonstrate that biological reduction may contribute to the speciation of metals in hydrothermal environments and could account for such phenomena as magnetite accumulation and the formation of uranium deposits at ca. 100°C. Reduction of toxic metals with hyperthermophilic microorganisms or their enzymes might be applied to the remediation of metal-contaminated waters or waste streams.  相似文献   

17.
A marine psychrotolerant, dissimilatory Fe(III)-reducing bacterium, Shewanella sp. strain PV-4, from the microbial mat at a hydrothermal vent of Loihi Seamount in the Pacific Ocean has been further characterized, with emphases on metal reduction and iron biomineralization. The strain is able to reduce metals such as Fe(III), Co(III), Cr(VI), Mn(IV), and U(VI) as electron acceptors while using lactate, formate, pyruvate, or hydrogen as an electron donor. Growth during iron reduction occurred over the pH range of 7.0 to 8.9, a sodium chloride range of 0.05 to 5%, and a temperature range of 0 to 37 degrees C, with an optimum growth temperature of 18 degrees C. Unlike mesophilic dissimilatory Fe(III)-reducing bacteria, which produce mostly superparamagnetic magnetite (<35 nm), this psychrotolerant bacterium produces well-formed single-domain magnetite (>35 nm) at temperatures from 18 to 37 degrees C. The genome size of this strain is about 4.5 Mb. Strain PV-4 is sensitive to a variety of commonly used antibiotics except ampicillin and can acquire exogenous DNA (plasmid pCM157) through conjugation.  相似文献   

18.
A facultative dissimilatory metal-reducing bacterium, Shewanella sp. strain HN-41, was used to produce magnetite nanoparticles from a precursor, poorly crystalline ironoxyhydroxide akaganeite (beta-FeOOH), by reducing Fe(III). The diameter of the biogenic magnetite nanoparticles ranged from 26 nm to 38 nm, characterized by dynamic light scattering spectrophotometry. The magnetite nanoparticles consisted of mostly uniformly shaped spheres, which were identified by electron microscopy. The magnetometry revealed the superparamagnetic property of the magnetic nanoparticles. The atomic structure of the biogenic magnetite, which was determined by extended X-ray absorption fine structure spectroscopic analysis, showed similar atomic structural parameters, such as atomic distances and coordinations, to typical magnetite mineral.  相似文献   

19.
Minerals that contain ferric iron, such as amorphous Fe(III) oxides (A), can inhibit methanogenesis by competitively accepting electrons. In contrast, ferric iron reduced products, such as magnetite (M), can function as electrical conductors to stimulate methanogenesis, however, the processes and effects of magnetite production and transformation in the methanogenic consortia are not yet known. Here we compare the effects on methanogenesis of amorphous Fe (III) oxides (A) and magnetite (M) with ethanol as the electron donor. RNA-based terminal restriction fragment length polymorphism with a clone library was used to analyse both bacterial and archaeal communities. Iron (III)-reducing bacteria including Geobacteraceae and methanogens such as Methanosarcina were enriched in iron oxide-supplemented enrichment cultures for two generations with ethanol as the electron donor. The enrichment cultures with A and non-Fe (N) dominated by the active bacteria belong to Veillonellaceae, and archaea belong to Methanoregulaceae and Methanobacteriaceae, Methanosarcinaceae (Methanosarcina mazei), respectively. While the enrichment cultures with M, dominated by the archaea belong to Methanosarcinaceae (Methanosarcina barkeri). The results also showed that methanogenesis was accelerated in the transferred cultures with ethanol as the electron donor during magnetite production from A reduction. Powder X-ray diffraction analysis indicated that magnetite was generated from microbial reduction of A and M was transformed into siderite and vivianite with ethanol as the electron donor. Our data showed the processes and effects of magnetite production and transformation in the methanogenic consortia, suggesting that significantly different effects of iron minerals on microbial methanogenesis in the iron-rich coastal riverine environment were present.  相似文献   

20.
Meeting reports     
This investigation documents the formation of Green Rust (GR) and immobilization of Ni 2+ in response to bacterial reduction of hydrous ferric oxide (HFO). In the absence of Ni 2+ , 79% of the total Fe(III) present as HFO was reduced; at 10 -3 and 10 -4 M Ni 2+ , 36% of the total Fe(III) was reduced, whereas 45 to 50% of the total Fe(III) was reduced at 10 -5 M Ni 2+ . The inhibitory effect of 10 -3 and 10 -4 M Ni 2+ on Fe(III)-reduction corresponded to a 50% decrease in number of viable cells relative to the Ni 2+ -free condition, and a 25% decrease at 10 -5 M Ni 2+ . A prominent GR peak at d = 10.9 nm was evident in X-ray diffraction patterns of postreduction residual solids from the cultures. Minor peaks arising for vivianite and magnetite were also present. In samples prepared for scanning electron microscopy, thin hexagonal plates of GR were easily distinguished as a solid phase transformation product of HFO. Small hexagonal sheets and fragments of larger GR plates were also observed in transmission electron microscopy whole mounts together with bacteria that were mineralized by surface precipitates of microcrystalline magnetite. Energy dispersive spectroscopy (EDS) confirmed that GR contained Fe and P, as well as Ni in those samples taken from the Ni 2+ -amended experiments. EDS detected neither P nor Ni in the magnetite precipitates associated with the bacterial cells. Dissolved Ni2 + concentrations decreased in an exponential fashion with respect to time in all experimental systems, corresponding to an overall first-order rate constant k of -0.030 day -1 . At the same time, a strong linear relationship (r 2 = 0.99) between the dissolved and solid phase Ni 2+ /Fe 2+ ratios over the entire period of the Fe(III)reduction experiments provided evidence that the solid-phase partitioning of Ni 2+ in GR extended from equilibrium solid-solution behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号