首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian X and Y chromosomes share little homology and are largely unsynapsed during normal meiosis. This asynapsis triggers inactivation of X- and Y-linked genes, or meiotic sex chromosome inactivation (MSCI). Whether MSCI is essential for male meiosis is unclear. Pachytene arrest and apoptosis is observed in mouse mutants in which MSCI fails, e.g., Brca1(-/-), H2afx(-/-), Sycp1(-/-), and Msh5(-/-). However, these also harbor defects in synapsis and/or recombination and as such may activate a putative pachytene checkpoint. Here we present evidence that MSCI failure is sufficient to cause pachytene arrest. XYY males exhibit Y-Y synapsis and Y chromosomal escape from MSCI without accompanying synapsis/recombination defects. We find that XYY males, like synapsis/recombination mutants, display pachytene arrest and that this can be circumvented by preventing Y-Y synapsis and associated Y gene expression. Pachytene expression of individual Y genes inserted as transgenes on autosomes shows that expression of the Zfy 1/2 paralogs in XY males is sufficient to phenocopy the pachytene arrest phenotype; insertion of Zfy 1/2 on the X chromosome where they are subject to MSCI prevents this response. Our findings show that MSCI is essential for male meiosis and, as such, provide insight into the differential severity of meiotic mutations' effects on male and female meiosis.  相似文献   

2.
Endogenous retroviruses (ERVs) result from germ line infections by exogenous retroviruses. They can proliferate within the genome of their host species until they are either inactivated by mutation or removed by recombinational deletion. ERVs belong to a diverse group of mobile genetic elements collectively termed transposable elements (TEs). Numerous studies have attempted to elucidate the factors determining the genomic distribution and persistence of TEs. Here we show that, within humans, gene density and not recombination rate correlates with fixation of endogenous retroviruses, whereas the local recombination rate determines their persistence in a full-length state. Recombination does not appear to influence fixation either via the ectopic exchange model or by indirect models based on the efficacy of selection. We propose a model linking rates of meiotic recombination to the probability of recombinational deletion to explain the effect of recombination rate on persistence. Chromosomes 19 and Y are exceptions, possessing more elements than other regions, and we suggest this is due to low gene density and elevated rates of human ERV integration in males for chromosome Y and segmental duplication for chromosome 19.  相似文献   

3.
Nine newly described single-copy and lowcopy-number genomic DNA sequences isolated from a flow-sorted human Y chromosome library were mapped to regions of the human Y chromosome and were hybridized to Southern blots of male and female great ape genomic DNAs (Gorilla gorilla, Pan troglodytes, Pongo pygmaeus). Eight of the nine sequences mapped to the euchromatic Y long arm (Yq) in humans, and the ninth mapped to the short arm or pericentromeric region. All nine of the newly identified sequences and two additional human Yq sequences hybridized to restriction fragments in male but not female genomic DNA from the great apes, indicating Y chromosome localization. Seven of these 11 human Yq sequences hybridized to similarly-sized restriction endonuclease fragments in all the great ape species analyzed. The five human sequences that mapped to the most distal subregion of Yq (deletion of which region is associated with spermatogenic failure in humans) were hybridized to Southern blots generated by pulsed-field gel electrophoresis. These sequences define a region of approximately 1 Mb on human Yq in which HpaII tiny fragment (HTF) islands appear to be absent. The conservation of these human Yq sequences on great ape Y chromosomes indicates a greater stability in this region of the Y than has been previously described for most anonymous human Y chromosomal sequences. The stability of these sequences on great ape Y chromosomes seems remarkable given that this region of the Y does not undergo meiotic recombination and the sequences do not appear to encode genes for which positive selection might occur. Correspondence to: B. Steele Allen  相似文献   

4.
We combine data from published marker genotyping of three sets of S. latifolia Y chromosome deletion mutants with changed sex phenotypes and add genotypes for several new genic markers to refine the deletion map of the Y chromosome and compare it with the X chromosome genetic map. We conclude that the Y chromosome of this species has been derived through multiple rearrangements of the ancestral gene arrangement and that none of the rearrangements so far detected was involved in stopping X-Y recombination. Different Y genotypes may also differ in their gene content and possibly arrangements, suggesting that mapping the Y-linked sex-determining genes will be difficult, even if many further genic markers are obtained. Even in determining the map of Y chromosome markers to discover all the rearrangements, physical mapping by FISH or other experiments will be essential. Future deletion mapping work should ensure that markers are studied in the parents of deletion mutants and should probably include additional deletions that were not ascertained by causing mutant sex phenotypes.  相似文献   

5.
The multicopy region on the long arm of the mouse Y chromosome contains four known genes. There are evidences that deletions in this region lead to decrease of sperm quality in mutant mice. Male mice completely lacking this region are infertile. Here we report results obtained by using the computer assisted semen analysis system (CASA), describing the movement parameters of spermatozoa from mutant males with partial deletion on the long arm of the Y chromosome (B10. BR-Y(del)). First we have determined that genes necessary for spermiogenesis and located in this region are still active in mutants, than we have compared the sperm movement of mutants and control animals. This analysis revealed that the Yq deletion affects: velocity parameters (VAP, VCL, VSL), parameters describing sperm head activity during movement (ALH and BCF) and linearity (LIN) of movement. Our findings indicate that sperm movement is controlled by genes located in the long arm of the Y chromosome.  相似文献   

6.
Using sequence-tagged sites we have performed deletion mapping of the Y chromosome in sex-reversed female patients with a Y chromosome and gonadoblastoma. The GBY gene (gonadoblastoma locus on the Y chromosome) was sublocalized to a small region near the centromere of the Y chromosome. We estimate the size of the GBY critical region to be approximately 1-2 Mb. Our analysis also indicates that copies of two dispersed Y-linked gene families, TSPY (testis-specific protein, Y-encoded) and YRRM (Y-chromosome RNA recognition motif) are present in all patients and that copies of TSPY but not YRRM fall within the GBY critical region as formally defined by deletion mapping. Two tumor samples showed expression of both genes and in one patient this expression was limited to a unilateral gonadoblastoma but absent in the contralateral streak gonad. Although our results do not directly implicate TSPY or YRRM in the etiology of the tumor, they raise the issue of whether there is one GBY gene in the critical region or possibly multiple GBY loci dispersed on the Y chromosome.  相似文献   

7.
Screening of Y chromosome microdeletion which contains AZF regions in 71 turkish azoospermic men: In 71 Turkish men Y chromosome microdeletions have been studied before intracytoplasmic sperm injection (ICSI). DNA samples were amplified with 18 STS primers of the azoospermia factor (AZF) region on the Y chromosome by using multiplex polymerase chain reaction (PCR). Microdeletions were detected in 4 azoospermic men (5.6 %); one with a deletion in the AZFb region, while the 3 others had a large deletion extending over multiple chromosomal regions (AZFb+c+d and AZFa+b+c+d). In the patients with microdeletion, no spermatogenetic activity could be detected in testis biopsies. This result confirms the idea that Y chromosome microdeletion analysis is important in investigating the possibility of finding sperm in testicular sperm extraction (TESE). Therefore, we point out the importance of genetic testing and counselling regarding Y chromosome microdeletion for couples requesting ICSI.  相似文献   

8.
Deletion of the entire AZFc locus on the human Y chromosome leads to male infertility. The functional roles of the individual gene families mapped to AZFc are, however, still poorly understood, since the analysis of the region is complicated by its repeated structure. We have therefore used single-nucleotide variants (SNVs) across approximately 3 Mb of the AZFc sequence to identify 17 AZFc haplotypes and have examined them for deletion of individual AZFc gene copies. We found five individuals who lacked SNVs from a large segment of DNA containing the DAZ3/DAZ4 and BPY2.2/BPY2.3 gene doublets in distal AZFc. Southern blot analyses showed that the lack of these SNVs was due to deletion of the underlying DNA segment. Typing 118 binary Y markers showed that all five individuals belonged to Y haplogroup N, and 15 of 15 independently ascertained men in haplogroup N carried a similar deletion. Haplogroup N is known to be common and widespread in Europe and Asia, and there is no indication of reduced fertility in men with this Y chromosome. We therefore conclude that a common variant of the human Y chromosome lacks the DAZ3/DAZ4 and BPY2.2/BPY2.3 doublets in distal AZFc and thus that these genes cannot be required for male fertility; the gene content of the AZFc locus is likely to be genetically redundant. Furthermore, the observed deletions cannot be derived from the GenBank reference sequence by a single recombination event; an origin by homologous recombination from such a sequence organization must be preceded by an inversion event. These data confirm the expectation that the human Y chromosome sequence and gene complement may differ substantially between individuals and more variations are to be expected in different Y chromosomal haplogroups.  相似文献   

9.
A genomic DNA clone named CRI-S232 reveals an array of highly polymorphic restriction fragments on the X chromosome as well as a set of non-polymorphic fragments on the Y chromosome. Every individual has multiple bands, highly variable in length, in every restriction enzyme digest tested. One set of bands is found in all males, and co-segregates with the Y chromosome in families. These sequences have been regionally localized by deletion mapping to the long arm of the Y chromosome. Segregation analysis in families shows that all of the remaining fragments co-segregate as a single locus on the X chromosome, each haplotype consisting of three or more polymorphic fragments. This locus (designated DXS278) is linked to several markers on Xp, the closest being dic56 (DXS143) at a distance of 2 cM. Although it is outside the pseudoautosomal region, the S232 X chromosome locus shows linkage to pseudoautosomal markers in female meiosis. In determining the X chromosome S232 haplotypes of 138 offspring among 19 families, we observed three non-parental haplotypes. Two were recombinant haplotypes, consistent with a cross-over among the S232-hybridizing fragments in maternal meiosis. The third was a mutant haplotype arising on a paternal X chromosome. The locus identified by CRI-S232 may therefore be a recombination and mutation hotspot.  相似文献   

10.
The human Y chromosome is unique in that it does not engage in pairing and crossing over during meiosis for most of its length. Y chromosome microdeletions, a frequent finding in infertile men, thus occur through intrachromosomal recombination, either within a single chromatid or between sister chromatids. A recently identified polymorphism associated with increased risk for spermatogenic failure, the gr/gr deletion, removes two of the four Deleted in Azoospermia (DAZ) genes in the AZFc region on the Y-chromosome long arm. We found the likely reciprocal duplication product of gr/gr deletion in 5 (6%) of 82 males using a novel DNA-blot hybridization strategy and confirmed the presence of six DAZ genes in three cases by FISH analysis. Additional polymorphisms identified within the DAZ repeat regions of the DAZ genes indicate that sister chromatid exchange plays a significant role in the genesis of deletions, duplications, and polymorphisms of the Y chromosome.  相似文献   

11.
The replication terminus region of the Escherichia coli chromosome encodes a locus, dif, that is required for normal chromosome segregation at cell division. dif is a substrate for site-specific recombination catalysed by the related chromosomally encoded recombinases XerC and XerD. It has been proposed that this recombination converts chromosome multimers formed by homologous recombination back to monomers in order that they can be segregated prior to cell division. Strains mutant in dif, xerC or xerD share a characteristic phenotype, containing a variable fraction of filamentous cells with aberrantly positioned and sized nucleoids. We show that the only DNA sequences required for wild-type dif function in the terminus region of the chromosome are contained within 33 bp known to bind XerC and XerD and that putative active site residues of the Xer recombinases are required for normal chromosome segregation. We have also shown that recombination by the loxP/Cre system of bacteriophage P1 will suppress the phenotype of a dif deletion strain when loxP is inserted in the terminus region. Suppression of the dif deletion phenotype did not occur when either dif/Xer or loxP/Cre recombination acted at other positions in the chromosome close to oriC or within lacZ, indicating that site-specific recombination must occur within the replication terminus region in order to allow normal chromosome segregation.  相似文献   

12.
Gene targeting is a technique of introducing a genetic trait at a predetermined site within a genome; it is also used to eliminate undesirable chromosomal regions from the relevant genome. Thus far, replacement-type recombination between two homologous regions separated by a large nonhomologous sequence has been hardly achieved probably due to the low frequency of homologous recombination in filamentous fungi. In this study, we report the successful and highly efficient deletion by replacement-type recombination of up to 470-kb regions of chromosome 8 and 200-kb region in chromosome 3, which includes a homologue of aflatoxin gene cluster, by nonhomologous end-joining deficient strains of Aspergillus oryzae. Our study results indicate that the deficiency of nonhomologous end-joining increases the distance of nonhomologous regions in replacement-type recombination, i.e., the possible deletion range in generation of large chromosomal deletion by one cycle of replacement-type recombination is increased in nonhomologous end-joining deficient strains.  相似文献   

13.
Summary Human immunoglobulin heavy chain constant region (IGHC) genes constitute a typical multigene family, usually comprising eleven genes on the telomere of chromosome 14 (14q32). In this region, deleted and duplicated haplotypes have been reported to exist with considerable frequency. Their origin is the result of either unequal crossing-over or looping out excision. In this paper, we report the characterization of a new type of deletion, involving the IGHG4 gene, in a subject who also carries a larger deletion of a previously described type on the second chromosome. Employment of several methods (polymerase chain reaction, standard Southern blot, pulsed field gel electrophoresis, serological techniques) to analyze these deleted haplotypes has resulted in a level of accuracy in their characterization that has not been achieved in previous cases. The site of recombination responsible for the IGHG4 deletion was restricted to a 2.5-kb region 3 of the G4 gene; this rules out any possible involvement of the S regions in the recombination process. The usefulness of the various techniques in the characterization of the deletions is also discussed, together with possible future applications in the field.  相似文献   

14.
Sex chromosomes are the Achilles' heel of male meiosis in mammals. Mis-segregation of the X and Y chromosomes leads to sex chromosome aneuploidies, with clinical outcomes such as infertility and Klinefelter syndrome. Successful meiotic divisions require that all chromosomes find their homologous partner and achieve recombination and pairing. Sex chromosomes in males of many species have only a small region of homology (the pseudoautosomal region, PAR) that enables pairing. Until recently, little was known about the dynamics of recombination and pairing within mammalian X and Y PARs. Here, we review our recent findings on PAR behavior in mouse meiosis. We uncovered unexpected differences between autosomal chromosomes and the X-Y chromosome pair, namely that PAR recombination and pairing occurs later, and is under different genetic control. These findings imply that spermatocytes have evolved distinct strategies that ensure successful X-Y recombination and chromosome segregation.  相似文献   

15.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

16.
In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis.  相似文献   

17.
In the medaka, Oryzias latipes, sex is determined chromosomally. The sex chromosomes differ from those of mammals in that the X and Y chromosomes are highly homologous. Using backcross panels for linkage analysis, we mapped 21 sequence tagged site (STS) markers on the sex chromosomes (linkage group 1). The genetic map of the sex chromosome was established using male and female meioses. The genetic length of the sex chromosome was shorter in male than in female meioses. The region where male recombination is suppressed is the region close to the sex-determining gene y, while female recombination was suppressed in both the telomeric regions. The restriction in recombination does not occur uniformly on the sex chromosome, as the genetic map distances of the markers are not proportional in male and female recombination. Thus, this observation seems to support the hypothesis that the heterogeneous sex chromosomes were derived from suppression of recombination between autosomal chromosomes. In two of the markers, Yc-2 and Casp6, which were expressed sequence-tagged (EST) sites, polymorphisms of both X and Y chromosomes were detected. The alleles of the X and Y chromosomes were also detected in O. curvinotus, a species related to the medaka. These markers could be used for genotyping the sex chromosomes in the medaka and other species, and could be used in other studies on sex chromosomes.  相似文献   

18.
The canonical model of sex‐chromosome evolution predicts that sex‐antagonistic (SA) genes play an instrumental role in the arrest of XY recombination and ensuing Y chromosome degeneration. Although this model might account for the highly differentiated sex chromosomes of birds and mammals, it does not fit the situation of many lineages of fish, amphibians or nonavian reptiles, where sex chromosomes are maintained homomorphic through occasional XY recombination and/or high turnover rates. Such situations call for alternative explanatory frameworks. A crucial issue at stake is the effect of XY recombination on the dynamics of SA genes and deleterious mutations. Using individual‐based simulations, we show that a complete arrest of XY recombination actually benefits females, not males. Male fitness is maximized at different XY recombination rates depending on SA selection, but never at zero XY recombination. This should consistently favour some level of XY recombination, which in turn generates a recombination load at sex‐linked SA genes. Hill–Robertson interferences with deleterious mutations also impede the differentiation of sex‐linked SA genes, to the point that males may actually fix feminized phenotypes when SA selection and XY recombination are low. We argue that sex chromosomes might not be a good localization for SA genes, and sex conflicts seem better solved through the differential expression of autosomal genes.  相似文献   

19.
The rate of mutation for nucleotide substitution is generally higher among males than among females, likely owing to the larger number of DNA replications in spermatogenesis than in oogenesis. For insertion and deletion (indel) mutations, data from a few human genetic disease loci indicate that the two sexes may mutate at similar rates, possibly because such mutations arise in connection with meiotic crossing over. To address origin- and sex-specific rates of indel mutation we have conducted the first large-scale molecular evolutionary analysis of indels in noncoding DNA sequences from sex chromosomes. The rates are similar on the X and Y chromosomes of primates but about twice as high on the avian Z chromosome as on the W chromosome. The fact that indels are not uncommon on the nonrecombining Y and W chromosomes excludes meiotic crossing over as the main cause of indel mutation. On the other hand, the similar rates on X and Y indicate that the number of DNA replications (higher for Y than for X) is also not the main factor. Our observations are therefore consistent with a role of both DNA replication and recombination in the generation of short insertion and deletion mutations. A significant excess of deletion compared to insertion events is observed on the avian W chromosome, consistent with gradual DNA loss on a nonrecombining chromosome.  相似文献   

20.
The Sxr (sex-reversed) region that carries a copy of the mouse Y chromosomal testis-determining gene can be attached to the distal end of either the Y or the X chromosome. During male meiosis, Sxr recombined freely between the X and Y chromosomes, with an estimated recombination frequency not significantly different from 50% in either direction. During female meiosis, Sxr recombined freely between the X chromosome to which it was attached and an X-autosome translocation. A male mouse carrying the original Sxra region on its Y chromosome, and the shorter Sxrb variant on the X, also showed 50% recombination between the sex chromosomes. Evidence of unequal crossing-over between the two Sxr regions was obtained: using five markers deleted from Sxrb, 3 variant Sxr regions were detected in 159 progeny (1.9%). Four other variants (one from the original cross and three from later generations) were presumed to have been derived from illegitimate pairing and crossing-over between Sxrb and the homologous region on the short arm of the Y chromosome. The generation of new variants throws light on the arrangement of gene loci and other markers within the short arm of the mouse Y chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号