首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

3.
Unlike other beta-class eukaryotic DNA polymerases, the enzyme purified from the Novikoff hepatoma is inhibited by both sulfhydryl blocking agents N-ethylmaleimide (NEM) and p-hydroxymercuribenzoate (pHMB). The degree of sensitivity varies depending on the enzyme purity, pH of the reaction, and the presence of sulfhydryl reducing agents. Novikoff beta-polymerase activity is unaffected by the presence of 2-mercaptoethanol (2-Me) or dithiothreitol (DTT); however, the combination of 2-mercaptoethanol and NEM or pHMB acts to reverse the inhibition of the sulfhydryl blocking agent. The reversal of inhibition involves more than just a titration of NEM with 2-mercaptoethanol since a) the combination of these two reagents actually stimulates the DNA polymerase, and b) dithiothreitol did not reverse the inhibition. Binding of the polymerase to DNA did not affect the enzyme sensitivity to NEM.  相似文献   

4.
5.
Neocarzinostatin (NCS), an antitumor protein antibiotic that causes strand scissions of DNA both in vitro and in vivo, is shown to lower the template activity of DNA for DNA polymerase Iin vitro. There is a correlation between the extent of strand scission and the degree of inhibition, maximal inhibition of the polymerase reaction being obtained under conditions promoting maximal strand scission. These effects can be related to the concentrations of NCS and of 2-mercaptoethanol and are maximized by pretreatment of the DNA with drug. Results from polymerase assays in which the amount of drug-treated DNA template was varied at a constant level of the enzyme suggest that the sites associated with NCS-induced breaks are nonfunctional in DNA synthesis but bind DNA polymerase I. The binding of the enzyme to the inactive sites is further confirmed using [203 Hg] polymerase. It is shown that the lowering of the template activity of DNA by NCS under conditions of strand scission is due to the generation of a large number of inactive sites that block, competitively, the binding of DNA polymerase to the active sites on the template. Furthermore, the inhibition of DNA synthesis, which depends on the extent of strand breakage and on the relative amounts of template and enzyme, can be reversed by increasing the levels of template or polymerase. The finding that DNA synthesis directed by poly [d(A-T)] is much more sensitive to NCS than that primed by poly [d(G-C)] suggests that the drug preferentially interacts at regions containing adenine and/or thymine residues.  相似文献   

6.
Bleomycin is an important anti-tumor agent which works primarily through it's degradation of DNA template. Using synthetic single (poly[dA]-oligo-[dT]) and double stranded (poly[dA-dT]) templates, we noted significant inhibition when the BLM resistant homopolymer was used. Furthermore, when each of the components of the DNA polymerase assay were treated with bleomycin separately, followed by removal of bleomycin, significant inhibition (35%) of the enzyme was observed. The limited inhibition of DNA polymerase by BLM was attributed to residual activity of the enzyme-inhibitor complex.  相似文献   

7.
Purified DNA polymerase beta of calf thymus can utilize poly(rA).oligo(dT) as efficiently as poly(dA).oligo(dT) or activated DNA as a template primer. The poly(rA).oligo(dT)-dependent activity of DNA polymerase beta was found to differ markedly from the DNA-dependent activity of the same enzyme (with either activated calf thymus DNA or poly(dA).(dT)10) in the following respects. 1) Poly(rA)-dependent activity was strongly inhibited by natural DNA from various sources or synthetic deoxypolymer duplexes at very low concentrations (less than 0.5 microgram/ml) at which the DNA-dependent activity was affected to a much smaller extent, if at all. 2) Poly(rA)-dependent activity was inhibited by N-ethylmaleimide more strongly than DNA-dependent activity measured at 37 degrees C, while it was resistant to this reagent at 26 degrees C. 3) The curves of the activity versus substrate concentration were sigmoidal in the poly(rA)-dependent reaction but hyperbolic in the activated DNA-dependent reaction. A kinetic study suggested that the association of beta-enzyme protomers may be required to copy the poly(rA) strand.  相似文献   

8.
Characterization of human poly(ADP-ribose) polymerase with autoantibodies   总被引:7,自引:0,他引:7  
The addition of poly(ADP-ribose) chains to nuclear proteins has been reported to affect DNA repair and DNA synthesis in mammalian cells. The enzyme that mediates this reaction, poly(ADP-ribose) polymerase, requires DNA for catalytic activity and is activated by DNA with strand breaks. Because the catalytic activity of poly(ADP-ribose) polymerase does not necessarily reflect enzyme quantity, little is known about the total cellular poly(ADP-ribose) polymerase content and the rate of its synthesis and degradation. In the present experiments, specific human autoantibodies to poly(ADP-ribose) polymerase and a sensitive immunoblotting technique were used to determine the cellular content of poly(ADP-ribose) polymerase in human lymphocytes. Resting peripheral blood lymphocytes contained 0.5 X 10(6) enzyme copies per cell. After stimulation of the cells by phytohemagglutinin, the poly(ADP-ribose) polymerase content increased before DNA synthesis. During balanced growth, the T lymphoblastoid cell line CEM contained approximately 2 X 10(6) poly(ADP-ribose) polymerase molecules per cell. This value did not vary by more than 2-fold during the cell growth cycle. Similarly, mRNA encoding poly(ADP-ribose) polymerase was detectable throughout S phase. Poly(ADP-ribose) polymerase turned over at a rate equivalent to the average of total cellular proteins. Neither the cellular content nor the turnover rate of poly(ADP-ribose) polymerase changed after the introduction of DNA strand breaks by gamma irradiation. These results show that in lymphoblasts poly(ADP-ribose) polymerase is an abundant nuclear protein that turns over relatively slowly and suggest that most of the enzyme may exist in a catalytically inactive state.  相似文献   

9.
DNA polymerase gamma from purified nuclei of EMT-6 cells (mice) seems to be identical to the mitochondrial DNA polymerase from the same source following several criteria. These two enzyme activities are strongly inhibited by ethidium bromide and acriflavin, while proflavin, acridine orange, daunomycin and chloroquine inhibition is less pronounced. In the case of DNA polymerases alpha and beta very little inhibition by ethidium bromide was observed. Intercalation of this dye in a poly dA-dT 12-18 template-primer was studied spectrophotometrically under conditions similar to those in the in vitro DNA polymerase assay. The polymerase assay. The inhibition by this drug of the mitochondrial DNA polymerase gamma activity was shown to be competitive at varying concentrations of TTP while the inhibition was of the non-competitive type at different concentrations of poly dA-dT 12-18. We conclude that the drug, most probably in the intercalated form, is able to interact with the active site (s) of mitochondrial DNA polymerase.  相似文献   

10.
The mode of action by aphidicolin on DNA polymerase alpha from the nuclear fraction of sea-urchin blastulae was studied. The inhibition of DNA polymerase alpha by aphidicolin was uncompetive with activated DNA and competitive with the four deoxynucleoside triphosphates using activated DNA as a template-primer. For truncated (residual or limited) DNA synthesis with only three deoxynucleoside triphosphates, aphidicolin inhibited the residual synthesis more strongly in the absence of dCTP than in the absence of each of the other three deoxynucleoside triphosphates. The inhibition was reversed with excess dCTP but not with the other three deoxynucleoside triphosphates. That is, aphidicolin inhibited DNA polymerase alpha by competing with dCTP with a Ki value of 0.5 microgram/ml and by not competing with the other three deoxynucleoside triphosphates. dTMP incorporation with the activated DNA was more sensitive to aphidicolin than dGMP or dTMP incorporation with poly(dC). (dG)12-18 or poly(dA) . (dT)12-18. Similar results were obtained for DNA polymerase alpha (B form) from mouse myeloma MOPC 104E.  相似文献   

11.
A slight DNA topoisomerase I activity was detected in highly purified poly(ADP-Rib)polymerase prepared from calf thymus. This copurified activity was found to be suppressed under conditions where the poly(ADP-ribosylation) reaction occurs in the presence of NAD. Purified topoisomerase I from calf thymus was shown to be ADP-ribosylated by poly(ADP-Rib) polymerase purified from the same tissue. Poly(ADP-ribosylation) of topoisomerase I produces an inhibition of the enzymatic activity in parallel to the extent of ADP-ribosylation. The fact that a slight poly(ADP-Rib) polymerase activity was also found to copurify with a topoisomerase I preparation and that topoisomerase I activity can be modified by ADP-ribosylation, may suggest a spatial and functional correlation of these two enzymes in chromatin.  相似文献   

12.
13.
The naturally synchronous plasmodia of myxomycetes synthesize poly(beta-l-malic acid), which carries out cell-specific functions. In Physarum polycephalum, poly(beta-l-malate) [the salt form of poly(beta-l-malic acid)] is highly concentrated in the nuclei, repressing DNA synthetic activity of DNA polymerases by the formation of reversible complexes. To test whether this inhibitory activity is cell-cycle-dependent, purified DNA polymerase alpha of P. polycephalum was added to the nuclear extract and the activity was measured by the incorporation of [3H]thymidine 5'-monophosphate into acid precipitable nick-activated salmon testis DNA. Maximum DNA synthesis by the reporter was measured in S-phase, equivalent to a minimum of inhibitory activity. To test for the activity of endogenous DNA polymerases, DNA synthesis was followed by the highly sensitive photoaffinity labeling technique. Labeling was observed in S-phase in agreement with the minimum of the inhibitory activity. The activity was constant throughout the cell cycle when the inhibition was neutralized by the addition of spermidine hydrochloride. Also, the concentration of poly(beta-l-malate) did not vary with the phase of the cell cycle [Schmidt, A., Windisch, C. & Holler, E. (1996) Nuclear accumulation and homeostasis of the unusual polymer poly(beta-l-malate) in plasmodia of Physarum polycephalum. Eur. J. Cell Biol. 70, 373-380]. To explain the variation in the cell cycle, a periodic competition for poly(beta-l-malate) between DNA polymerases and most likely certain histones was assumed. These effectors are synthesized in S-phase. By competition they displace DNA polymerase from the complex of poly(beta-l-malate). The free polymerases, which are no longer inhibited, engage in DNA synthesis. It is speculated that poly(beta-l-malate) is active in maintaining mitotic synchrony of plasmodia by playing the mediator between the periodic synthesis of certain proteins and the catalytic competence of DNA polymerases.  相似文献   

14.
A study of the inhibition of mouse cellular DNA polymerases by poly-nucleotides and their vinyl analogs is presented. Poly(dT)-directed poly(dA) synthesis by representatives of all three classes of cellular DNA polymerase could be completely inhibited by poly(9-vinyladenine), although higher concentrations were required in the case of the gamma class enzyme. Studies on the mechanism of the inhibition using the alpha class DNA polymerase and different templates showed that the enzyme activity was inhibited in all cases where base-pairing between the vinyl polymer and the template occurred; poly(9-vinyladenine) did not interfere with the replication of templates to which it does not bind. The inhibition occurred shortly after addition of poly(9-vinyladenine) to ongoing reactions, yet the enzyme was not displaced from the template - primer complex.  相似文献   

15.
Infection of WI-38 human fibroblasts with varicella-zoster virus led to the stimulation of host cell DNA polymerase synthesis and induction of a new virus-specific DNA polymerase. This virus-induced DNA polymerase was partially purified and separated from host cell enzymes by DEAE-cellulose and phosphocellulose column chromatographies. This virus-induced enzyme could be distinguished from host cell enzyme by its chromatographic behavior, template specificity, and its requirement of salt for maximal activity. The enzyme could efficiently use poly(dC).oligo(dG)12-18 as well as poly(dA).oligo(dT)12-18 as template-primers. It required Mg2+ for maximal polymerization activity and was sensitive to phosphonoacetic acid, to which host alpha- and beta-DNA polymerase were relatively resistant. In addition, this induced DNA polymerase activity was enhanced by adding 60 mM (NH4)2SO4 to the reaction mixture.  相似文献   

16.
17.
The mechanism of inhibition of DNA synthesis by 1-beta-D-arabinofuranosyl-ATP (ara-ATP) and the potentiation of this inhibition by 6-mercaptopurine ribonucleoside 5'-monophosphate (6-MPR-P) have been investigated with mammalian DNA polymerase delty by using poly(dA-dT) as the template. The inhibition of DNA synthesis by ara-ATP correlates with incorporation of ara-AMP into poly(dA-dT). Nearest-neighbor analysis indicates that ara-AMP does not act as an absolute chain terminator but rather that chains with 3'-terminal arabinosyl nucleotides are extended slowly. The inhibition of DNA synthesis by ara-ATP is markedly enhanced by the addition of the nucleotide derivative of 6-mercaptopurine, 6-mercaptopurine ribonucleoside 5'-monophosphate. The increased inhibition of DNA synthesis in the presence of 6-MPR-P is due to increased incorporation of ara-AMP. The mechanism by which 6-MPR-P increases the incorporation of ara-AMP is by selective inhibition of the 3' to 5' exonuclease activity of DNA polymerase, thereby preventing the removal of newly incorporated ara-AMP at 3' termini of DNA chains.  相似文献   

18.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

19.
H Fischer  S Erdmann  E Holler 《Biochemistry》1989,28(12):5219-5226
From extracts of microplasmodia of Physarum polycephalum and their culture medium, an unusual substance was isolated which inhibited homologous DNA polymerase alpha of this slime mold but not beta-like DNA polymerase and not heterologous DNA polymerases. Analysis, especially NMR spectroscopy, revealed the major component to be an anionic polyester of L-malic acid and the inhibition to be due to poly(L-malate) in binding reversibly to DNA polymerase alpha. The mode of inhibition is competitive with substrate DNA and follows an inhibition constant Ki = 10 ng/mL. Inhibition is reversed in the presence of spermine, spermidine, poly(ethylene imine), and calf thymus histone H1. According to its ester nature, the inhibitor is slightly labile at neutral and instable at acid and alkaline conditions. Its largest size corresponds to a molecular mass of 40-50 kDa, but the bulk of the material after purification has lower molecular masses. The inhibitory activity depends on the polymer size and has a minimal size requirement.  相似文献   

20.
Virus-nonproducer Raji cells, when induced to early antigen synthesis by 12-O-tetradecanoyl-phorbol-13-acetate and sodium butyrate, showed an increase in DNA polymerase activity. This enzyme has the characteristics of a typical Epstein-Barr virus DNA polymerase with regard to chromatographical pattern and biological properties: it is eluted from DEAE-cellulose at 0.08 M NaCl, has a high salt resistance, is sensitive to phosphonoacetic acid and phosphonoformate, and shows a substrate preference for poly(dC)-oligo(dG12-18). The resistance of Epstein-Barr virus polymerase activity to aphidicolin is a property distinct from that of HSV DNA polymerase. Viral DNA polymerase activity increases in the absence of Epstein-Barr virus DNA replication, indicating that this enzyme is an early viral protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号