首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fuchs Y  Steller H 《Cell》2011,147(4):742-758
Programmed cell death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neurodegeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on the regulation, roles, and modes of PCD during animal development. We also discuss the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, and review the nonlethal functions of these proteins in diverse developmental processes, such as cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells, and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing.  相似文献   

2.
Programmed cell death   总被引:6,自引:0,他引:6  
  相似文献   

3.
Programmed cell death   总被引:6,自引:0,他引:6  
This paper reviews data on programmed cell death (apoptosis) in animals and plants. Necrosis is a pathological scenario of cell death, which entails an inflammatory response in animal tissues. Apoptosis results in the disintegration of animal/plant cells into membrane vesicles enclosing the intracellular content, which are thereupon engulfed by adjacent or specialized cells (phagocytes) in animals. Plants lack such specialized cells, and plant cell walls prevent phagocytosis. The paper considers the main molecular mechanisms of apoptosis in animals and the pathways of activation of caspases, evolutionarily conserved cysteine proteases. A self-contained section concerns itself with the process of programmed cell death (PCD) in microorganisms including: 1) cell death in the myxomycete Dictyostelium discoideum and the parasitic flagellate Trypanosoma cruzi; 2) PCD in genetically manipulated yeast expressing the proapoptotic Bax and Bak proteins; 3) the death of a part of a prokaryotic cell population upon the depletion of nutrient resources or under stress; 4) the elimination of cells after a loss of a plasmid encoding a stable cytotoxic agent in combination with an unstable antidote; and 5) PCD in phage-infected bacterial cells.  相似文献   

4.
Apoptosis: Programmed cell death in health and disease   总被引:3,自引:0,他引:3  
Apoptosis is a normal physiological cell death process of eliminating unwanted cells from living organisms during embryonic and adult development. Apoptotic cells are characterised by fragmentation of nuclear DNA and formation of apoptotic bodies. Genetic analysis revealed the involvement of many death and survival genes in apoptosis which are regulated by extracellular factors. There are multiple inducers and inhibitors of apoptosis which interact with target cell specific surface receptors and transduce the signal by second messengers to programme cell death. The regulation of apoptosis is elusive, but defective regulation leads to aetiology of various ailments. Understanding the molecular mechanism of apoptosis including death genes, death signals, surface receptors and signal pathways will provide new insights in developing strategies to regulate the cell survival/death. The current knowledge on the molecular events of apoptotic cell death and their significance in health and disease is reviewed.  相似文献   

5.
The molecular basis of programmed cell death (PCD) of neurons during early metamorphic development of the central nervous system (CNS) in Drosophila melanogaster are largely unknown, in part owing to the lack of appropriate model systems. Here, we provide evidence showing that a group of neurons (vCrz) that express neuropeptide Corazonin (Crz) gene in the ventral nerve cord of the larval CNS undergo programmed death within 6 hours of the onset of metamorphosis. The death was prevented by targeted expression of caspase inhibitor p35, suggesting that these larval neurons are eliminated via a caspase-dependent pathway. Genetic and transgenic disruptions of ecdysone signal transduction involving ecdysone receptor-B (EcR-B) isoforms suppressed vCrz death, whereas transgenic re-introduction of either EcR-B1 or EcR-B2 isoform into the EcR-B-null mutant resumed normal death. Expression of reaper in vCrz neurons and suppression of vCrz-cell death in a reaper-null mutant suggest that reaper functions are required for the death, while no apparent role was found for hid or grim as a death promoter. Our data further suggest that diap1 does not play a role as a central regulator of the PCD of vCrz neurons. Significant delay of vCrz-cell death was observed in mutants that lack dronc or dark functions, indicating that formation of an apoptosome is necessary, but not sufficient, for timely execution of the death. These results suggest that activated ecdysone signaling determines precise developmental timing of the neuronal degeneration during early metamorphosis, and that subsequent reaper-mediated caspase activation occurs through a novel DIAP1-independent pathway.  相似文献   

6.
Programmed cell death in cell cultures   总被引:21,自引:0,他引:21  
In plants most instances of programmed cell death (PCD) occur in a number of related, or neighbouring, cells in specific tissues. However, recent research with plant cell cultures has demonstrated that PCD can be induced in single cells. The uniformity, accessibility and reduced complexity of cell cultures make them ideal research tools to investigate the regulation of PCD in plants. PCD has now been induced in cell cultures from a wide range of species including many of the so-called model species. We will discuss the establishment of cell cultures, the fractionation of single cells and isolation of protoplasts, and consider the characteristic features of PCD in cultured cells. We will review the wide range of methods to induce cell death in cell cultures ranging from abiotic stress, absence of survival signals, manipulation of signal pathway intermediates, through the induction of defence-related PCD and developmentally induced cell death.  相似文献   

7.
Programmed death (PDC) of individual cells is a genetically controlled biological process related to the development of multicellular organisms. It proceeds in most cases as apoptosis characterized by DNA degradation and breakdown of dying cells to apoptotic bodies, and ending by their phagocytosis by macrophages or by the surrounding tissue. Unlike apoptosis, necrosis is a genetically unregulated sudden death of a group of cells caused by a severe damage of membranes and other cell components. In bacteria, programmed cell death is mostly related to population development. This holds mainly for sporulation of bacilli where the process is best understood at the morphological, physiological and genetic level. Sporulation of bacilli begins by an asymmetric division of the nongrowing cell into two parts—the mother and the forespore compartment, whose fate is different. Whereas the smaller compartment develops into the spore, the function of the larger is twofold. It participates in the spore development mainly by forming spore coast but it also synthesizes or activates the autolytic apparatus which lyzes the sporangium cell wall at the end of the process. Some phases of the development of myxobacteria and streptomycetes also have characteristic features of programmed death. Unlike sporulation of bacilli, the autolysis of a portion of population of myxobacteria or hyphae of streptomycetes proceeds in the middle of their developmental cycle. Extensive turnover of cell membranes in growing myxobacteria results in the formation of a fatty acid mixture—theautocide—which kills a smaller or greater portion of the myxobacterial population. The dead cells are digested by extracellular enzymes released by myxobacteria and the digest is used as nutrient for completion of the developmental cycle of the remaining living population. Similar events take place also during the formation of aerial mycelium in streptomycetes. Here the autolysis of a portion of vegetative (substrate) mycelium supplies amino acids for the formation of aerial mycelium. The recently discovered programmed death of plasmid-free descendants of a plasmid-bearing population of different bacteria is based on the loss of control of toxin activity by its antidote. Both substances are encoded by plasmid DNA and the loss of the plasmid results in an “enforced suicide” of the host cell because the effective concentration of the antidote decreases more rapidly than that of the toxin. The mechanisms of this suicide can vary. In addition to the above mentioned kinds of programmed death, other events of developmentally regulated death of prokaryotes probably exist. Some bacteria contain “death genes” in their chromosome which trigger cell death at the onset of the stationary phase. The physiological function of this kind of suicide is not known. However, most nonsporulating bacteria developed a strategy of surviving at the nongrowing stage by transforming the growing cell to a more resistant dormant (cryptobiological) form.  相似文献   

8.
Programmed cell death in protists   总被引:3,自引:0,他引:3  
Programmed cell death in protists does not seem to make sense at first sight. However, apoptotic markers in unicellular organisms have been observed in all but one of the six/eight major groups of eukaryotes suggesting an ancient evolutionary origin of this regulated process. This review summarizes the available data on apoptotic markers in non-opisthokonts and elucidates potential functions and evolution of programmed cell death. A newly discovered family of caspase-like proteases, the metacaspases, is considered to exert the function of caspases in unicellular organisms. Important results on metacaspases, however, showed that they cannot be always correlated to the measured proteolytic activity during protist cell death. Thus, a major challenge for apoptosis research in a variety of protists remains the identification of the molecular cell death machinery.  相似文献   

9.
Programmed cell death in trypanosomatids   总被引:4,自引:0,他引:4  
It has generally been assumed that apoptosis and other forms of programmed cell death evolved to regulate growth and development in multicellular organisms. However, recent work has shown that some parasitic protozoa have evolved a cell suicide pathway analogous to the process described as apoptosis in metazoa. In this review, Susan Welburn, Marcello Barcinski and Gwyn Williams discuss the possible implications of a cell suicide pathway in the vector-borne Trypanosomatids.  相似文献   

10.
The modern concepts of programmed cell death (PCD) in plants are reviewed as compared to PCD (apoptosis) in animals. Special attention is focused on considering the potential mechanisms of implementation of this fundamental biological process and its participants. In particular, the proteolytic enzymes involved in PCD in animals (caspases) and plants (phytaspases) are compared. Emphasis is put on elucidation of both common features and substantial differences of PCD implementation in plants and animals.  相似文献   

11.

Research on cell death mechanisms gets a lot of attention. This is understandable as it underlies biology in general, as well as the insight in pathological conditions and the development of opportunities for therapeutic intervention. Over the last years a steady rise in the number of scientific reports and in the impact of this literature on the different mechanisms of programmed cell death can be observed. A number of new concepts are highlighted.

  相似文献   

12.
Programmed cell death (PCD) has been observed in many unicellular eukaryotes; however, in very few cases have the pathways been described. Recently the early divergent amitochondrial eukaryote Giardia has been included in this group. In this paper we investigate the processes of PCD in Giardia. We performed a bioinformatics survey of Giardia genomes to identify genes associated with PCD alongside traditional methods for studying apoptosis and autophagy. Analysis of Giardia genomes failed to highlight any genes involved in apoptotic-like PCD; however, we were able to induce apoptotic-like morphological changes in response to oxidative stress (H2O2) and drugs (metronidazole). In addition we did not detect caspase activity in induced cells. Interestingly, we did observe changes resembling autophagy when cells were starved (staining with MDC) and genome analysis revealed some key genes associated with autophagy such as TOR, ATG1 and ATG 16. In organisms such as Trichomonas vaginalis, Entamoeba histolytica and Blastocystis similar observations have been made but no genes have been identified. We propose that Giardia possess a pathway of autophagy and a form of apoptosis very different from the classical known mechanism; this may represent an early form of programmed cell death.  相似文献   

13.
14.
Programmed cell death in pathogenic fungi   总被引:2,自引:0,他引:2  
Greater understanding of programmed cell death (PCD) responses in pathogenic fungi may offer a chance of exploiting the fungal molecular death machinery to control fungal infections. Clearly identifiable differences between the death machineries of pathogens and their hosts, make this a feasible target. Evidence for PCD in a range of pathogenic fungi is discussed alongside an evaluation of the capacity of existing antifungal agents to promote apoptosis and other forms of cell death. Information about death related signalling pathways that have been examined in pathogens as diverse as Candida albicans, Aspergillus fumigatus, Magnaporthe grisea and Colletotrichum trifolii are discussed.  相似文献   

15.
Programmed cell death in the germline   总被引:9,自引:0,他引:9  
In many organisms, programmed cell death of germ cells is required for normal development. This often occurs through highly conserved events including the transfer of vital cellular material to the growing gametes following death of neighboring cells. Germline cell death also plays a role in such diverse processes as removal of abnormal or superfluous cells at certain checkpoints, establishment of caste differentiation, and individualization of gametes. This review focuses on the cell death events that occur during gametogenesis in both vertebrates and invertebrates. It also examines the signals and machinery that initiate and carry out these germ cell deaths.  相似文献   

16.
Programmed cell death in cereal aleurone   总被引:21,自引:0,他引:21  
Progress in understanding programmed cell death (PCD) in the cereal aleurone is described. Cereal aleurone cells are specialized endosperm cells that function to synthesize and secrete hydrolytic enzymes that break down reserves in the starchy endosperm. Unlike the cells of the starchy endosperm, aleurone cells are viable in mature grain but undergo PCD when germination is triggered or when isolated aleurone layers or protoplasts are incubated in gibberellic acid (GA). Abscisic acid (ABA) slows down the process of aleurone cell death and isolated aleurone protoplasts can be kept alive in media containing ABA for up to 6 months. Cell death in barley aleurone occurs only after cells become highly vacuolated and is manifested in an abrupt loss of plasma membrane integrity. Aleurone cell death does not follow the apoptotic pathway found in many animal cells. The hallmarks of apoptosis, including internucleosomal DNA cleavage, plasma membrane and nuclear blebbing and formation of apoptotic bodies, are not observed in dying aleurone cells. PCD in barley aleurone cells is accompanied by the accumulation of a spectrum of nuclease and protease activities and the loss of organelles as a result of cellular autolysis.  相似文献   

17.
Programmed cell death in plant reproduction   总被引:44,自引:0,他引:44  
Reproductive development is a rich arena to showcase programmed cell death in plants. After floral induction, the first act of reproductive development in some plants is the selective killing of cells destined to differentiate into an unwanted sexual organ. Production of functional pollen grains relies significantly on deterioration and death of the anther tapetum, a tissue whose main function appears to nurture and decorate the pollen grains with critical surface molecules. Degeneration and death in a number of anther tissues result ultimately in anther rupture and dispersal of pollen grains. Female sporogenesis frequently begins with the death of all but one of the meiotic derivatives, with surrounding nucellar cells degenerating in concert with embryo sac expansion. Female tissues that interact with pollen undergo dramatic degeneration, including death, to ensure the encounter of compatible male and female gametes. Pollen and pistil interact to kill invading pollen from an incompatible source. Most observations on cell death in reproductive tissues have been on the histological and cytological levels. We discuss various cell death phenomena in reproductive development with a view towards understanding the biochemical and molecular mechanisms that underlie these processes.  相似文献   

18.
Programmed cell death in fission yeast   总被引:2,自引:0,他引:2  
Recently a metacaspase, encoded by YCA1, has been implicated in a primitive form of apoptosis or programmed cell death in yeast. Previously it had been shown that over-expression of mammalian pro-apoptotic proteins can induce cell death in yeast, but the mechanism of how cell death occurred was not clearly established. More recently, it has been shown that DNA or oxidative damage, or other cell cycle blocks, can result in cell death that mimics apoptosis in higher cells. Also, in fission yeast deletion of genes required for triacylglycerol synthesis leads to cell death and expression of apoptotic markers. A metacaspase sharing greater than 40% identity to budding yeast Yca1 has been identified in fission yeast, however, its role in programmed cell death is not yet known. Analysis of the genetic pathways that influence cell death in yeast may provide insights into the mechanisms of apoptosis in all eukaryotic organisms.  相似文献   

19.
赵萍  王攀  王筱冰 《生命科学》2011,(4):329-334
程序性细胞死亡(programmed cell death,PCD)是指由基因控制的细胞自主的有序性死亡方式,涉及一系列基因的激活、表达以及调控等。目前,经典细胞凋亡被称为Ⅰ型PCD,而自噬性细胞死亡称为Ⅱ型PCD,坏死样程序性细胞死亡则被称为Ⅲ型PCD,它们在肿瘤的发生、发展及治疗过程中起非常重要的作用。该文结合国内外最新研究进展主要针对不同细胞死亡模式及其相互作用、关键作用蛋白,细胞自噬与肿瘤发生,细胞自噬、凋亡与肿瘤治疗作一简要综述,并展望发展前景,提出在肿瘤治疗中如何利用不同死亡模式的协同作用最大限度地发挥其临床应用价值。  相似文献   

20.
细胞程序性死亡与生态适应   总被引:3,自引:1,他引:3  
林久生  王根轩 《生命科学》2002,14(4):232-233,207
细胞程序性死亡是多细胞有机生命周期中正常的组成部分,细胞程序性死亡过程的存在对生物体是一种保护机制。它是在生物进化过程中形成的,也是生物对环境的适应方式之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号