首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During early sexual development in Dictyostelium discoideum cell and pronuclear fusion are negatively regulated by an endogenous autoinhibitor. Here, the autoinhibitor was partially purified from the culture medium and found to inhibit both cell and pronuclear fusion while augmenting gamete numbers. These developmental effects suggested that calmodulin might be an intracellular target for the autoinhibitor. In support of this data, the partially purified autoinhibitor inhibited the calmodulin-dependent activation of phosphodiesterase in a dose-dependent manner, but had no effect on either a calmodulin-insensitive form of phosphodiesterase or the calmodulin-independent enzymes acid and alkaline phosphatase. Thus, the autoinhibitor of sexual development in Dictyostelium discoideum appears to regulate cell and pronuclear fusion at least in part by a direct effect on calmodulin.  相似文献   

2.
The social amoebozoans have a life tricycle consisting of asexual multicellular development leading to fruiting bodies, sexual multicellular development resulting in macrocysts, and unicellular development generating microcysts. This review covers the events of sexual development in the best‐studied heterothallic (Dictyostelium discoideum) and homothallic (D. mucoroides) mating systems. Sexual development begins with pheromonal interactions that produce fusion‐competent cells (gametes) which undergo cell and pronuclear fusion. Calcium‐ and calmodulin‐mediated signalling mediates these early events. As they initiate chemotactic signalling, each zygote increases in size becoming a zygote giant cell. Using cyclic AMP (cAMP), the zygote chemotactically lures in amoebae and engulfs them in an act of cannibalistic phagocytosis. Chemotaxis proceeds more quickly than endocytosis because the breakdown products of cAMP (5‐AMP, adenosine) bind to a presumptive adenosine receptor to inhibit sexual phagocytosis. This slowing of phagocytosis allows amoebae to accumulate around the zygote to form a precyst aggregate. Zygote giant cells also produce several other signalling molecules that feed back to regulate early events. The amoebae surrounding the zygote seal their fate as zygotic foodstuff by secreting a primary cellulose wall, the extracellular sheath, around the zygote and aggregated amoebae, which prevents their escape. Phagocytosis within this precyst continues until all peripheral amoebae are internalized as endocytes and the final macrocyst wall is formed. Endocyte digestion results in a mature macrocyst with a uniform cytoplasm containing a diploid nucleus. After detailing the morphological events of heterothallic and homothallic mating, we review the various intercellular signalling events and other mechanisms involved in each stage. This complete and comprehensive review sets the stage for future research on the unique events that characterize sex in the social amoebozoans.  相似文献   

3.
The calmodulin antagonists trifluoperazine and compound R24571 were used to study the function of calmodulin during sexual development in Dictyostelium discoideum. Calmodulin activity is required for both cell fusion and pronuclear fusion. However, cell fusion and pronuclear fusion were each maximally inhibited at different concentrations of the same inhibitor suggesting differential calmodulin activity during these events. In contrast, trifluoperazine and R24571 were both found to enhance rather than inhibit the formation of gametes. This suggests an additional role for calmodulin as a negative regulator of gamete development. These results provide evidence of a role for calmodulin as both a positive (biomembrane fusion) and a negative (gamete development) regulator of developmental events in Dictyostelium. They also reveal calmodulin as a mediator of pronuclear fusion for zygote development in this eukaryote.  相似文献   

4.
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin‐binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin‐dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin‐dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin‐dependent transdifferentiation to re‐establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin‐dependent germination of spores. Specific calmodulin‐binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.  相似文献   

5.
Abstract Sporogenous mutants of Dictyostelium discoideum strain V12M2 were used to determine whether the intracellular levels of cyclic AMP or other second messengers regulate differentiation. Increasing external concentrations of cyclic AMP promoted spore formation. Caffeine and progesterone, which lower intracellular cyclic AMP levels by different mechanisms, blocked spore formation and favored stalk cell formation. In contrast, differentiation of both spore and stalk cells occurred normally in the presence of agents that disrupt calcium/calmodulin or protein kinase C-based second messenger systems. The data are in accord with the view that (1) intracellular cyclic AMP is essential for terminal differentiation of both cell types, and (2) higher levels are required for formation of spores than for stalk cells.  相似文献   

6.
Studies on genetically selected mutants in phagocytosis of E[IgG] indicated that the defect in some mutants could be corrected by addition of 8 Br-cAMP, and suggested that cyclic AMP may be involved in the mechanism of phagocytosis through the Fc receptor. In order to elucidate the role of cyclic AMP in phagocytosis in the parental, nonmutant macrophage-like cell line, J774.2, it was necessary to employ restrictive conditions which rendered phagocytosis suboptimal. When 4774.2 cells were cultured in nontissue culture Petri dishes phagocytosis was markedly reduced. Addition of 8 Br-cAMP or inducers of intracellular cyclic AMP such as isoproterenol restored the phagocytic ability of these cells. Similarly, treatment of the parental J774.2 cells with insulin reduced the level of phagocytosis, and once again this suppression could be corrected by addition of 8 Br-cAMP. In no case did AMP mimic the effects of 8 Br-cAMP. The effect of cyclic AMP action in this system was not instantaneous, but rather reached optimal levels at 5 to 10 hr, suggesting that cyclic AMP is not the immediate signal for phagocytosis. The genetic analysis of macrophage variants may provide a useful model for studies on the mechanisms of phagocytosis, and also the effects of insulin and cyclic AMP on an easily measurable biologic function in a specialized cell type.  相似文献   

7.
The effect on lactose production of several external modulators of intracellular cyclic AMP was studied in rat mammary gland tissue slices and explants. Adrenaline, a beta-adrenergic receptor effector, forskolin, a direct adenylate cyclase activator and fluphenazine, a calmodulin inhibitor, all produced an increase in the intracellular level of cyclic AMP and a concomitant inhibition of lactose production. These results suggest a role for adrenaline and calmodulin in modulating cyclic AMP levels in mammary tissue during the lactogenic cycle.  相似文献   

8.
During placental development cytotrophoblast stem cells fuse to form the syncytiotrophoblast, a multinucleate cytoplasm with a brush border in contact with the maternal blood. Biochemical differentiation including the expression of placental-specific proteins and hormones accompanies this maturation. However, the biochemical mechanisms responsible for these events are unknown. We have defined a system in which single cytotrophoblast-like cells of the human choriocarcinoma (BeWo) cell line undergo fusion and extensive morphological differentiation following their treatment with effectors of cyclic AMP metabolism. Forskolin incubation caused a dose-dependent increase in intracellular and secreted cyclic AMP and a coordinate fusion of cells which yielded syncytia containing hundreds of nuclei per cytoplasm and a mature dense "placental-like" brush border. These fused cells also synthesized and secreted large amounts of both subunits of chorionic gonadotropin. However, they continued to synthesize several other placenta-specific proteins--placental-like alkaline phosphatase, placental lactogen, and SP1--at rates similar to those in control cells. Other reported effectors of cyclic AMP metabolism also induced cell fusion, although theophylline, an inhibitor of phosphodiesterase, induced fusion by a cyclic AMP-independent mechanism. Additionally, unlike the case with forskolin, treatment of BeWo cells with theophylline did not induce other morphological features of mature syncytiotrophoblasts. Thus, this system will allow one to examine the biochemical mechanism of placental cell fusion in the absence of other variables of cell differentiation.  相似文献   

9.
Human erythrocyte ghosts loaded with various kinds of protein molecules were fused with mouse splenic lymphocytes by means of polyethylene glycol supplemented with poly-L-arginine and dimethylsulfoxide. This fusion method made quantitative microinjection of IgG and other proteins into intact lymphocytes possible. The injection itself did not alter cell viability, and lymphocytes given protein molecules retained intact response activity when they were stimulated with mitogens. Rabbit anticyclic AMP was purified by affinity chromatography and injected into lymphocytes. Antibody activity in the cell lysates was measured by using 125I-labeled cyclic AMP as an antigen, and it was shown that antibody molecules were quantitatively injected and immunologically active in the cells. Antigen binding activity of anti-cyclic AMP antibodies in the nonstimulated lymphocytes was stable and intact even 24 hr after microinjection, whereas the activity rapidly decreased in mitogen-stimulated lymphocytes, indicating that some immunologic or enzymatic mechanisms for inactivating antibodies were induced in mitogen-stimulated cells. Furthermore, microinjection of anti-cyclic AMP markedly enhanced the proliferative responses of lymphocytes to mitogens such as Con A or LPS and reversed the effect of a known elevator of intracellular cyclic AMP. These observations have implications for the role of cyclic AMP in early lymphocyte activation events.  相似文献   

10.
The effect of cholera toxin on myogenesis in rat skeletal muscle cultures   总被引:1,自引:0,他引:1  
Cholera toxin, when added to rat primary embryonic muscle cultures, stimulates intracellular cyclic AMP and cell fusion. The effect on cell fusion can be mimicked by daily addition of dibutyryl cyclic AMP, but not by choleragenoid, which like cholera toxin binds to the ganglioside GM1, but does not stimulate adenyl cyclase. The effects on fusion of three other agents known to affect intracellular cyclic AMP levels, indomethacin, isobutylmethyl xanthine, and isoproterenol were also studied. It is concluded that intracellular cyclic AMP levels are important in the control of rat skeletal muscle cell fusion.  相似文献   

11.
The biologic roles of guanosine 3',5'-monophosphate (cyclic GMP) and adenosine 3',5'-monophosphate (cyclic AMP) in the secretion of lysosomal enzymes from, and in phagocytosis by, human neurtrophils were studied. Contact between neurophils and particulate immunologic reactants results in both phagocytosis of the particles and secretion of lysosomal enzymes. These cellular events are accompanied by the accumulation of cyclic GMP and require the presence of extracellular caclium. Acetylcholine, pilocarpine, and cyclic GMP enhance, whereas epinephrine, cyclic AMP, and/or dibutyryl cyclic AMP inhibit, both phagocytosis and lysosomal enzyme secretion. The stimulatory action of cholinergic agents and the inhibitory action of epinephrine are accompanied by the accumulation of cyclic GMP and cyclic AMP, respectively, in human neutrophils. The data suggest that cyclic GMP mediates whereas cyclic AMP inhibits the major functions of human neutrophils. Moreover, by virtue of their effects of cyclic nucleotide accumulation, autonomic neurohormones are capable of modulating human neutrophil function.  相似文献   

12.
The Tetrahymena Ca2+-binding protein of 25 kDa (TCBP-25) is a calmodulin family protein containing four EF-hand type calcium-binding domains. TCBP-25 is localized in the whole cell cortex and around both the migratory and stationary pronuclei at the pronuclear exchange stage during conjugation. TCBP-25 is expected to play an important role in conjugation, though its function during sexual reproduction has not been elucidated. According to the localization of this protein and its timing, three possible roles of TCBP-25 are proposed. TCBP-25 may play a role in 1) differentiating the two functional pronuclei from the degenerative post-meiotic nuclei, 2) the process of pronuclear exchange and 3) pronuclear fusion. To test these hypotheses, the localization of TCBP-25 in conjugation mutants (cnj10, cnj7 and bcd2) was examined. The results ruled out the first and the third hypotheses and suggested that TCBP-25 may play a role in pronuclear exchange. In the next step we succeeded in reducing expression of the TCBP-25 gene using the antisense ribosome system, and we analyzed the phenotype of the transformants. The knock down of TCBP-25 function also suggests that TCBP-25 plays a role in the pronuclear exchange and in the maintenance of cell shape.  相似文献   

13.
14.
ABSTRACT: BACKGROUND: PKA, a key regulator of cell signaling, phosphorylates a diverse and important array of target molecules and is spatially docked to members of the A-kinase Anchoring Protein (AKAP) family. AKAR2 is a biosensor which yields a FRET signal in vivo, when phosphorylated by PKA. AKAP5, a prominent member of the AKAP family, docks several signaling molecules including PKA, PDE4D, as well as GPCRs, and is obligate for the propagation of the activation of the mitogen-activated protein kinase cascade from GPCRs to ERK1,2. RESULTS: Using an AKAR2-AKAP5 fusion "biosensor", we investigated the spatial-temporal activation of AKAP5 undergoing phosphorylation by PKA in response to beta-adrenergic stimulation. The pattern of PKA activation reported by AKAR2-AKAP5 is a more rapid and spatially distinct from those "sensed" by AKAR2-AKAP12. Spatial-temporal restriction of activated PKA by AKAP5 was found to "shape" the signaling response. Phosphatase PDE4D tethered to AKAP5 also later reverses within 60 s elevated intracellular cyclic AMP levels stimulated by beta-adrenergic agonist. AKAP12, however, fails to attenuate the rise in cyclic AMP over this time. Fusion of the AKAP5 PDE4D-binding-domain to AKAP12 was found to accelerate a reversal of accumulation of intracellular cyclic AMP. CONCLUSION: AKAPs, which are scaffolds with tethered enzymes, can "shape" the temporal and spatial aspects of cell signaling.  相似文献   

15.
Previous work from our laboratory has shown that both cyclic AMP and calcium/calmodulin appear to be involved in the regulation of melanogenesis in murine B16 melanoma cells. In these cells as in murine Cloudman S91 cells, melanogenic responsiveness to melanocyte-stimulating hormone (MSH) varies with cell density in culture. Our objective in this study was to learn more about the intracellular systems involved in the control of melanogenesis, particularly the role played by calcium. The melanogenic response to alpha MSH was compared to the response to drugs affecting intracellular free calcium and calmodulin over a range of cell densities in B16F1 cells. alpha MSH-stimulated melanin production was extremely density-dependent but alpha MSH-stimulated cyclic AMP production was independent of cell density. The melanogenic response to agents that increased intracellular calcium (A23187) or inhibited intracellular calmodulin varied with cell density. A drug (TMB8) that lowered intracellular free calcium, however, increased melanogenesis independently of cell density. At high cell density it was found that an elevation in calcium decreased melanogenesis, whereas agents that reduced calcium or inhibited calmodulin activity increased melanogenesis. At low cell density, however, the inhibitory response to A23187 was lost and in some experiments even stimulated melanogenesis. These data suggest that the calcium/calmodulin signalling system has an inhibitory influence on melanogenesis, and its expression, which depends upon cell density, may also modulate the response to stimulatory agents such as alpha MSH.  相似文献   

16.
Previous work from our laboratory has shown that both cyclic AMP and calcium/calmodulin appear to be involved in the regulation of melanogenesis in murine B16 melanoma cells. In these cells as in murine Cloudman S91 cells, melanogenic responsiveness to melanocyte-stimulating hormone (MSH) varies with cell density in culture. Our objective in this study was to learn more about the intracellular systems involved in the control of melanogenesis, particularly the role played by calcium. The melanogenic response to αMSH was compared to the response to drugs affecting intracellular free calcium and calmodulin over a range of cell densities in B16F1 cells. αMSH-stimulated melanin production was extremely density-dependent but αMSH-stimulated cyclic AMP production was independent of cell density. The melanogenic response to agents that increased intracellular calcium (A23187) or inhibited intracellular calmodulin varied with cell density. A drug (TMB8) that lowered intracellular free calcium, however, increased melanogenesis independently of cell density. At high cell density it was found that an elevation in calcium decreased melanogenesis, whereas agents that reduced calcium or inhibited calmodulin activity increased melanogenesis. At low cell density, however, the inhibitory response to A23187 was lost and in some experiments even stimulated melanogenesis. These data suggest that the calcium/calmodulin signalling system has an inhibitory influence on melanogenesis, and its expression, which depends upon cell density, may also modulate the response to stimulatory agents such as αMSH.  相似文献   

17.
HVJ(Sendai virus)-induced fusion of Ehrlich ascites tumor cells was found to be stimulated by treatments which increase the intracellular level of cyclic AMP. This stimulation was optimal at an external concentration of Ca++ of about 0.5 mM. During the process of cell fusion, the intracellular concentration of cyclic AMP was increased with a maximum at 2 min after the initiation of the fusion reaction.Evidence is also presented which suggests that the increase of the cyclic nucleotide is a part of control mechanism of HVJ-induced fusion of eukariotic cells. Thus, this cyclic AMP-stimulated process could be one of the step(s) requiring ATP and Ca++, both of which are necessary for the overall fusion process of the tumor cells.  相似文献   

18.
CD4 is a coreceptor on T helper (Th) cells that interacts with MHC class II molecules (MHCII). The mechanisms mediating the effects of CD4 on responses by T helper cells to stimulation of the antigen-specific T cell receptor (TCR) are still poorly understood. Here, we demonstrate T cell costimulation via CD4 signalling independent of T cell receptor-mediated signals. Incubation of T helper cells with peptide mimetics of the CD4-binding region on the MHC class II beta2 domain caused intracellular calcium mobilization in the absence of antigen or other T cell receptor stimuli. Engagement of CD4 by peptide mimetics or wild-type MHC class II, but not by mutant MHC class II molecules incapable of engaging CD4, inhibited the T cell receptor-mediated increase in cyclic AMP (cAMP) concentrations in T helper cells. CD4-mediated signals activated cyclic AMP phosphodiesterases (PDEs) and inhibited adenylyl cyclase. Full activation and clonal expansion of antigen-stimulated T helper cells required the CD4-mediated regulation of cyclic AMP. Our results suggest a costimulatory mechanism of CD4 function that acts on the second messengers, calcium and cyclic AMP.  相似文献   

19.
Reproducible methods are now available for introducing protein molecules such as antibodies into normal murine lymphocytes by fusion with protein molecule-containing erythrocyte ghosts. Monoclonal antibodies against cyclic AMP were raised by hybridoma technique and packed into erythrocyte ghosts. Then, monoclonal anti-cyclic AMP containing ghosts were fused with splenic B lymphocytes by polyethylene glycol-mediated fusion at various intervals after LPS stimulation. This method made it possible for us to quantitatively microinject antibodies into B lymphocytes. Microinjection of anti-cyclic AMP antibody molecules into lymphocytes at a very early stage of LPS stimulation resulted in a marked enhancement of DNA synthetic responses as well as increased numbers of plaque-forming cells. Intracellular cyclic AMP levels were found to be markedly decreased after microinjection of monoclonal anti-cyclic AMP, suggesting that lowering the intracellular cyclic-AMP level in the B lymphocytes at an early stage of stimulation might have induced the enhanced proliferative as well as differentiative responses to LPS. Similar enhancing effects on cell proliferation were obtained when antibodies were injected 18 hr after stimulation. Microinjection of anti-cyclic AMP at 12 hr after culture, however, inhibited the DNA synthetic responses, and induction of plaque-forming cells was suppressed when anti-cyclic AMP was injected 6 hr after LPS stimulation. The present data suggest the biphasic regulatory roles of cyclic AMP at the early stage of B lymphocyte activation. This approach may be useful in identifying regulatory molecules in B lymphocyte induced by mitogenic or antigenic stimulation.  相似文献   

20.

Background

PKA, a key regulator of cell signaling, phosphorylates a diverse and important array of target molecules and is spatially docked to members of the A-kinase Anchoring Protein (AKAP) family. AKAR2 is a biosensor which yields a FRET signal in vivo, when phosphorylated by PKA. AKAP5, a prominent member of the AKAP family, docks several signaling molecules including PKA, PDE4D, as well as GPCRs, and is obligate for the propagation of the activation of the mitogen-activated protein kinase cascade from GPCRs to ERK1,2.

Results

Using an AKAR2-AKAP5 fusion ??biosensor??, we investigated the spatial-temporal activation of AKAP5 undergoing phosphorylation by PKA in response to ??-adrenergic stimulation. The pattern of PKA activation reported by AKAR2-AKAP5 is a more rapid and spatially distinct from those ??sensed?? by AKAR2-AKAP12. Spatial-temporal restriction of activated PKA by AKAP5 was found to ??shape?? the signaling response. Phosphatase PDE4D tethered to AKAP5 also later reverses within 60?s elevated intracellular cyclic AMP levels stimulated by ??-adrenergic agonist. AKAP12, however, fails to attenuate the rise in cyclic AMP over this time. Fusion of the AKAP5 PDE4D-binding-domain to AKAP12 was found to accelerate a reversal of accumulation of intracellular cyclic AMP.

Conclusion

AKAPs, which are scaffolds with tethered enzymes, can ??shape?? the temporal and spatial aspects of cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号