首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adjustment of pot culture nutrient solutions increased root colonization and sporulation of vesicular-arbuscular mycorrhizal (VAM) fungi. Paspalum notatum Flugge and VAM fungi were grown in a sandy soil low in N and available P. Hoagland nutrient solution without P enhanced sporulation in soil and root colonization of Acaulospora longula, Scutellospora heterogama, Gigaspora margarita, and a wide range of other VAM fungi over levels produced by a tap water control or nutrient solutions containing P. However, Glomus intraradices produced significantly more spores in plant roots in the tap water control treatment. The effect of the nutrient solutions was not due solely to N nutrition, because the addition of NH4NO3 decreased both colonization and sporulation by G. margarita relative to levels produced by Hoagland solution without P.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) appear to be highly associated with arsenic (As) uptake in host plants because arsenate (As(V)) and phosphorus (P) share the same transporter, whereby AMF can enhance P uptake. A short-term experiment was conducted for low- (0 to 0.05 mM As) and high-affinity (0 to 2.5 mM As) uptake systems, to investigate the AMF role on As uptake mechanism in plants, which may explain As uptake kinetics in upland rice cultivar: Zhonghan 221. When concentration of As ranged from 0 to 0.05 mM, Funneliformis geosporum (Fg) significantly decreased arsenite (As(III)) and monomethylarsonicacid (MMA) uptake when (p < 0.05) compared to non-mycorrhizal (NM) treatment, since the major route for (As(III)) in rice roots—rice silicon transporter Lsi1 would be influenced by Fg inoculation at high As concentrations. Fg can also reduce As(V) uptake significantly (p < 0.05) under both uptake systems relative to NM treatment, whereas, Funneliformis mosseae (Fm) increased As(V) and MMA uptake in rice roots, with MMA uptake rate generally lower than As(III) and As(V). Using suitable AMF species inoculation with rice, As uptake and accumulation in rice grains can be reduced and the risk to human health, once consumed, can be minimized.  相似文献   

3.
Transformed root cultures of three nonmycotrophic and one mycotrophic plant species stimulated germination and hyphal growth of the vesicular-arbuscular mycorrhizal fungus Glomus etunicatum (Becker & Gerd.) in a gel medium. However, only roots of the mycotrophic species (carrot) supported continued hyphal exploration after 3 to 4 weeks and promoted appressoria formation by G. etunicatum.  相似文献   

4.
Abstract

Colonization of plant roots by arbuscular mycorrhizal fungi can greatly increase the plant uptake of phosphorus and nitrogen. The most prominent contribution of arbuscular mycorrhizal fungi to plant growth is due to uptake of nutrients by extraradical mycorrhizal hyphae. Quantification of hyphal nutrient uptake has become possible by the use of soil boxes with separated growing zones for roots and hyphae. Many (but not all) tested fungal isolates increased phosphorus and nitrogen uptake of the plant by absorbing phosphate, ammonium, and nitrate from soil. However, compared with the nutrient demand of the plant for growth, the contribution of arbuscular mycorrhizal fungi to plant phosphorus uptake is usually much larger than the contribution to plant nitrogen uptake. The utilization of soil nutrients may depend more on efficient uptake of phosphate, nitrate, and ammonium from the soil solution even at low supply concentrations than on mobilization processes in the hyphosphere. In contrast to ectomycorrhizal fungi, nonsoluble nutrient sources in soil are used only to a limited extent by hyphae of arbuscular mycorrhizal fungi. Side effects of mycorrhizal colonization on, for example, plant health or root activity may also influence plant nutrient uptake.  相似文献   

5.
Plants must be established quickly on replenished beaches in order to stabilize the sand and begin the dune-building process. The objective of this research was to determine whether inoculation of sea oats (Uniola paniculata L.) with bacteria (indigenous rhizosphere bacteria and N2 fixers) alone or in combination with vesicular-arbuscular mycorrhizal fungi would enhance plant growth in beach sand. At two fertilizer-N levels, Klebsiella pneumoniae and two Azospirillum spp. did not provide the plants with fixed atmospheric N; however, K. pneumoniae increased root and shoot growth. When a sparingly soluble P source (CaHPO4) was added to two sands, K. pneumoniae increased plant growth in sand with a high P content. The phosphorus content of shoots was not affected by bacterial inoculation, indicating that a mechanism other than bacterially enhanced P availability to plants was responsible for the growth increases. When sea oats were inoculated with either K. pneumoniae or Acaligenes denitrificans and a mixed Glomus inoculum, there was no consistent evidence of a synergistic effect on plant growth. Nonetheless, bacterial inoculation increased root colonization by vesicular-arbuscular mycorrhizal fungi when the fungal inoculum consisted of colonized roots but had no effect on colonization when the inoculum consisted of spores alone. K. pneumoniae was found to increase spore germination and hyphal growth of Glomus deserticola compared with the control. The use of bacterial inoculants to enhance establishment of pioneer dune plants warrants further study.  相似文献   

6.
Beach replenishment is a widely used method of controlling coastal erosion. To reduce erosional losses from wind, beach grasses are often planted on the replenishment sands. However, there is little information on the microbial populations in this material that may affect plant establishment and growth. The objectives of this research were to document changes in the populations of vesicular-arbuscular mycorrhizal (VAM) fungi and other soil microorganisms in replenishment materials and to determine whether roots of transplanted beach grasses become colonized by beneficial microbes. The study was conducted over a 2-year period on a replenishment project in northeastern Florida. Three sampling locations were established at 1-km intervals along the beach. Each location consisted of three plots: an established dune, replenishment sand planted with Uniola paniculata and Panicum sp., and replenishment sand left unplanted. Fungal and bacterial populations increased rapidly in the rhizosphere of beach grasses in the planted plots. However, no bacteria were recovered that could fix significant amounts of N2. The VAM fungi established slowly on the transplanted grasses. Even after two growing seasons, levels of root colonization and sporulation were significantly below those found in the established dune. There was a shift in the dominant VAM fungi found in the planted zone with respect to those in the established dunes. The most abundant species recovered from the established dunes were Glomus deserticola, followed by Acaulospora scrobiculata and Scutellospora weresubiae. The VAM fungi that colonized the planted zone most rapidly were Glomus globiferum, followed by G. deserticola and Glomus aggregatum.  相似文献   

7.
Roots of 12, 3-month-old, field-propagated clones of cassava (Manihot esculenta Crantz) were more heavily mycorrhizal in the dry (Jan.–March and Oct.–Dec.) (39–83 %) than in the wet season (April–Sept.) (20–71%). Mean dry weights (biomass) of roots and shoots in the wet season (3.8–7.9 and 9.7–19.1 g/plant) were higher (P = 0.01) than in the dry season (2.1–5.9 and 5.4–12.8 g/plant, respectively). Clones with symptoms of the African cassava mosaic disease (ACMD) were less mycorrhizal, (20–69%) than mosaic symptom-free clones (51–83%). Higher colonization of roots of the clones by indigenous fungal symbionts and lower biomass accumulation in the dry season are attributed mainly to soil moisture and other effects, while reduced infections in cassava with ACMD symptoms may be due to ACMD-induced reductions in carbohydrate levels.  相似文献   

8.
采用盆栽实验,以藜麦品种‘亿隆1号’为实验材料,探究在不同施氮量(纯氮用分别为0、0.2、0.4和0.6g/kg)接种2种丛枝菌根真菌(AM)即摩西球囊霉(Gm)和扭形球囊霉(Gt)对藜麦及其根系生长指标以及生理指标的影响,为提高氮肥利用率提供理论依据。结果表明:(1)在0.4g/kg施氮量下,接种Gm藜麦根系侵染率和菌根依赖性最大。(2)同一接种处理下,藜麦株高、基径、叶面积、地上部生物量、总根长等根系生长指标,以及根系抗氧化酶活性均随施氮量的增加呈先增加后减小的趋势;与未接种处理相比,接种AM真菌后上述各指标均显著增加,均在0.4g/kg施氮量下达到最大值,且接种Gm的增幅大于接种Gt。(3)同一接种处理下,藜麦根系MDA含量、可溶性糖含量和脯氨酸含量随施氮量的增加均呈先减小后增加的趋势;与未接种处理相比,接种AM真菌后藜麦根系MDA含量显著减小,而其根系可溶性糖含量和脯氨酸含量增加,且接种Gm根系MDA含量降幅以及可溶性糖含量和脯氨酸含量的增幅显著大于接种Gt。研究表明,适量施氮可显著增加藜麦根系摩西球囊霉和扭形球囊霉的侵染率及其菌根依赖性指数,促进藜麦地上部及根系的生长,同时增加其根系抗氧化酶活性和渗透调节物质的积累,减少了体内有害物质的积累,并以摩西球囊霉配合施氮0.4g/kg效果最佳。  相似文献   

9.
ABSTRACT Using a compartmentalized treatment technique, the role of arbuscular mycorrhizal fungi (AMF; Acaulospora scrobiculata) on arsenic (As) uptake and translocation in Brachiaria decumbens. Treatments consisted of a factorial arrangement of three As doses (0, 50, and 100 mg kg?1) and the presence/absence of AMF inoculates. In the absence of AMF, B. decumbens did not show As accumulation, indicating the probable presence of tolerance mechanism via As exclusion by the roots. B. decumbens plants showed high AMF colonization levels, especially in the arsenic treatments, with AMF improving shoot and root growth independent of As concentrations. Arsenic accumulation occurred only with AMF inoculation. Phosphorous uptake was reduced in B. decumbens roots in the presence of arsenic with and without inoculation of AMF. Results suggest that B. decumbens can be used in phytoremediation procedures when inoculated with A. scrobiculata, although pasture formation should be strictly avoided in contaminated sites.  相似文献   

10.
R. Utkhede 《BioControl》2006,51(3):393-400
The arbuscular mycorrhizal fungi Glomus monosporum, G. vesiculiferum, G. deserticola, G. intraradices, G. mosseae, and two unidentified species were tested to determine their effect on plant growth and fruit production of tomato (Lycopersicon esculentum Mill.) cv. Trust inoculated with Fusarium oxysporum f. sp. radicis-lycopersici (FORL) under near-commercial greenhouse conditions. Inoculation with G. monosporum and G. mosseae significantly increased fruit yield and fruit number of tomato plants grown hydroponically in sawdust. Plant height and plant dry weight increased significantly when inoculated with G. monosporum and G. mosseae. Further, plants inoculated with G. monosporum and G. mosseae showed significantly lower FORL root infection than the untreated control plants.  相似文献   

11.
Growth, development, and mineral physiology of potato (Solanum tuberosum L.) plants in response to infection by three species of vesicular-arbuscular mycorrhizal (VAM) fungi and different levels of P nutrition were characterized. P deficiency in no-P and low-P (0.5 mM) nonmycorrhizal plants developed between 28 and 84 d after planting. By 84 d after planting, P deficiency decreased plant relative growth rate such that no-P and low-P plants had, respectively, 65 and 45% less dry mass and 76 and 55% less total P than plants grown with high P (2.5 mM). A severe reduction in leaf area was also evident, because P deficiency induced a restriction of lateral bud growth and leaf expansion and, also, decreased the relative plant allocation of dry matter to leaf growth. Root growth was less influenced by P deficiency than either leaf or stem growth. Moreover, P-deficient plants accumulated a higher proportion of total available P than high-P plants, indicating that P stress had enhanced root efficiency of P acquisition. Plant P deficiency did not alter the shoot concentration of N, K, Mg, or Fe; however, the total accumulation of these mineral nutrients in shoots of P-stressed plants was substantially less than that of high-P plants. P uptake by roots was enhanced by each of the VAM symbionts by 56 d after planting and at all levels of abiotic P supply. Species differed in their ability to colonize roots and similarly to produce a plant growth response. In this regard, Glomus intraradices (Schenck and Smith) enhanced plant growth the most, whereas Glomus dimorphicum (Boyetchko and Tewari) was least effective, and Glomus mosseae ([Nicol. and Gerd.] Gerd. and Trappe) produced an intermediate growth response. The partial alleviation of P deficiency in no-P and low-P plants by VAM fungi stimulated uptake of N, K, Mg, Fe, and Zn. VAM fungi enhanced shoot concentrations of P, N, and Mg by 28 d after planting and, through a general improvement of overall plant mineral nutrition, promoted plant growth and development.  相似文献   

12.
Generally, soils in Pakistan are deficient in P and N. Due to intensive cropping and irrigation, Pakistani soils have also become deficient in micronutrients such as Zn, Fe, Cu, and Mn. Arbuscular mycorrhizal fungi, which form symbiotic associations with roots of most land plants, are known to enhance uptake of P and trace elements such as Cu, Ni, Pb, and Zn. The present study was conducted to investigate the role of arbuscular mycorrhizae (AM) in uptake of nickel (Ni) and zinc (Zn) by crops viz. soybean (Glycine max (L.) Merrill) and lentil (Lens culinaris Medic). Zn and Ni were applied as ZnSO4 7H2O and NiCl2 respectively, in four concentrations (0.0, 1.0, 3.0, and 5.0 g kg-1 soil). AM inoculum consisted of sand containing sporocarps, spores, and AMF infected root pieces from a pot culture of Glomus mosseae. Control plants received pot culture filtrate containing soil microflora minus AM fungal propagules. A significant difference (p < 0.05) was observed in the dry weights of roots and shoots of the mycorrhizal (M) and nonmycorrhizal (NM) cereal plants. The sievate-amended treatments did not stimulate plant growth to the same extent as the AM fungal amended treatments. Trace metals inhibited the extent of mycorrhizal colonization of the cereal roots. The concentrations of the trace metals in the plant tissues of 12-week old cereal plants were found significantly (p < 0.05) higher in M than NM plants. These results indicate that mycorrhize can be used as effective tools to supply sufficient Zn in generally Zn-deficient Pakistani soils and to ameliorate the toxicity of trace metals in polluted soils. The contents of Ni in mycorrhizal soybean plant tissues were higher than those in the mycorrhizal lentil plant tissues. The implications of these results in mycorrhizo remediation of agricultural soils are discussed.  相似文献   

13.
The effect of an arbuscular mycorrhizal fungi (AMF) consortium conformed by (Glomus intraradices, Glomus albidum, Glomus diaphanum, and Glomus claroideum) on plant growth and absorption of Pb, Fe, Na, Ca, and 32P in barley (Hordeum vulgare L.) and sunflower (Helianthus annuus L.) plants was evaluated. AMF-plants and controls were grown in a substrate amended with powdered Pb slag at proportions of 0, 10, 20, and 30% v/v equivalent to total Pb contents of 117; 5,337; 13,659, and 19,913 mg Pb kg?1 substrate, respectively. Mycorrhizal root colonization values were 70, 94, 98, and 90%, for barley and 91, 97, 95, and 97%, for sunflower. AMF inoculum had positive repercussions on plant development of both crops. Mycorrhizal barley absorbed more Pb (40.4 mg Pb kg?1) shoot dry weight than non-colonized controls (26.5 mg Pb kg?1) when treated with a high Pb slag dosage. This increase was higher in roots than shoots (650.0 and 511.5 mg Pb kg?1 root dry weight, respectively). A similar pattern was found in sunflower. Plants with AMF absorbed equal or lower amounts of Fe, Na and Ca than controls. H. vulgare absorbed more total P (1.0%) than H. annuus (0.9%). The arbuscular mycorrizal consortium enhanced Pb extraction by plants.  相似文献   

14.
In this study, we tested whether communities of arbuscular mycorrhizal (AM) fungi associated with roots of plant species forming vegetative cover as well as some soil parameters (amounts of phosphatase and glomalin-related soil protein, microbial biomass C and N concentrations, amount of P available, and aggregate stability) were affected by different amounts (control, 6.5 kg m−2, 13.0 kg m−2, 19.5 kg m−2, and 26.0 kg m−2) of an urban refuse (UR) 19 years after its application to a highly eroded, semiarid soil. The AM fungal small-subunit (SSU) rRNA genes were subjected to PCR, cloning, single-stranded conformation polymorphism analysis, sequencing, and phylogenetic analyses. One hundred sixteen SSU rRNA sequences were analyzed, and nine AM fungal types belonging to Glomus groups A and B were identified: three of them were present in all the plots that had received UR, and six appeared to be specific to certain amendment doses. The community of AM fungi was more diverse after the application of the different amounts of UR. The values of all the soil parameters analyzed increased proportionally with the dose of amendment applied. In conclusion, the application of organic wastes enhanced soil microbial activities and aggregation, and the AM fungal diversity increased, particularly when a moderate dose of UR (13.0 kg m−2) was applied.The semiarid Mediterranean areas of Southeastern Spain are affected by environmental degradation and erosive processes due to the fact that they are characterized by a set of climatic conditions that includes irregular and scarce rainfall and long, dry, and hot summers. Under these conditions, the soil organic matter content decreases, and the availability of nutrients and water for plants is reduced. Consequently, soil productivity decreases, levels of below-ground microbially diverse populations decline, and the water deficit limits plant growth so that the vegetation cover of natural soils cannot be sustained. Therefore, the development of revegetation techniques to reduce erosion, to remediate the effects of degradation, and, thus, to allow the restoration of biodiversity is needed. It was previously demonstrated that the application of organic amendments, such as urban refuse (UR), to soil increases the organic matter content of soil and improves the quality and productivity of degraded soils (17, 44, 57). Also, it was previously shown that the organic residues yield an improvement in levels of microbially diverse populations in the soil (43).A substantial part of the soil microbial communities belongs to the arbuscular mycorrhizal (AM) fungi, an ancient group of fungi belonging to the phylum Glomeromycota (49), which form mutualistic associations with the roots of the majority of land plants. These fungi have a variety of beneficial effects on their host plants, such as increasing the uptake of mineral nutrients, particularly phosphorus and nitrogen (41, 52); reduction of pathogen infections (7); improvement of water relations (12) and soil stability (58); and the limitation of heavy metal uptake (34). It is evident that AM fungi are an important factor contributing to the maintenance of terrestrial ecosystem functioning. Studies have shown that the diversity of AM fungal populations in the soil can affect plant diversity and productivity and ecosystem stability (62). Therefore, information on the species composition of the AM fungal community in roots is important for an understanding of mycorrhizal function as well as for the effective management and preservation of the diversity of AM fungal populations in ecological field studies.Thanks to advances in molecular techniques in recent years, it is possible to apply PCR-based molecular methods in order to analyze the diversity of AM fungi colonizing the roots of an individual plant at any given time. Traditional identification based on spore morphology is often problematic, and the abundance of spores in the soil may not accurately reflect AM fungal community composition and dynamics (8). The single-stranded conformation polymorphism (SSCP) approach is a very sensitive and reproducible technique for analyzing the sequence diversity of AM fungi within roots (30). This method is based on nucleotide differences between homologous sequence strands, which are detected by electrophoresis of single-stranded DNA under nondenaturing conditions (38).It is known that the application of organic amendments can have a positive effect on the proliferation of natural AM fungi in crop systems (20, 26). The stimulatory effects of the addition of organic matter on the development of AM fungi could be related to an improvement in the extensive network of AM fungal mycelium in the soil. In this way, the colonized plants are able to effectively exploit nutrients and water from soil (52). Moreover, AM fungi are able to exploit nutrients released by the mineralization of organic matter due to the activities of mineralizing microorganisms (28). However, there are many previous reports that showed a strong negative impact on the presence of AM fungal populations and mycorrhizal colonization when composted urban waste was added to the soil (19, 46). Also, research using trap cultures of host plants showed a decrease in the level of diversity of AM fungal species in soils amended with sewage sludge (25, 61).In a previous study carried out in 1992 at the site that is also the subject of the current work, Roldán and Albaladejo (43) found that the application of UR decreased levels of AM fungal populations in the first year after amendment; however, they observed an increase in levels of these populations 3 years after the addition. We hypothesized that after a long period of time, the application of UR could alter the diversity of AM fungal populations in a highly eroded, semiarid soil and that this effect could be influenced by the refuse application rate. In order to verify this hypothesis, we studied the diversity of the AM fungi associated with the roots of plant species forming the vegetative cover of five plots that received different amounts of UR 19 years after the amendment. Also, we determined whether there was an improvement in soil quality parameters related to soil microbial activity.  相似文献   

15.
Forest succession may cause changes in nitrogen (N) availability, vegetation and fungal community composition that affect N uptake by trees and their mycorrhizal symbionts. Understanding how these changes affect the functioning of the mycorrhizal symbiosis is of interest to ecosystem ecology because of the fundamental roles mycorrhizae play in providing nutrition to trees and structuring forest ecosystems. We investigated changes in tree and mycorrhizal fungal community composition, the availability and uptake of N by trees and mycorrhizal fungi in a forest undergoing a successional transition (age-related loss of early successional tree taxa). In this system, 82–96% of mycorrhizal hyphae were ectomycorrhizal (EM). As biomass production of arbuscular mycorrhizal (AM) trees increased, AM hyphae comprised a significantly greater proportion of total fungal hyphae, and the EM contribution to the N requirement of EM-associated tree taxa declined from greater than 75% to less than 60%. Increasing N availability was associated with lower EM hyphal foraging and 15N tracer uptake, yet the EM-associated later-successional species Quercus rubra was nonetheless a stronger competitor for 15N than AM-associated Acer rubrum, likely due to the more extensive nature of the persistent EM hyphal network. These results indicate that successional increases in N availability and co-dominance by AM-associated trees have increased the importance of AM fungi in the mycorrhizal community, while down-regulating EM N acquisition and transfer processes. This work advances understanding of linkages between tree and fungal community composition, and indicates that successional changes in N availability may affect competition between tree taxa with divergent resource acquisition strategies.  相似文献   

16.
A strain of Penicillium which produced dimethylselenide from inorganic selenium compounds was isolated from raw sewage. Sulfate and methionine enhanced growth of the fungus and its production of dimethylselenide in media containing selenite. In solutions containing selenate, methionine inhibited dimethylselenide formation while stimulating proliferation of the fungus. Dimethylselenide was also generated from inorganic selenide. Alkylation did not appear to be a significant mechanism of selenium detoxication by this organism. Dimethyltelluride was also produced by the organism from several tellurium compounds, but this product was synthesized only in the presence of both tellurium and selenium. The yields of dimethylselenide and dimethyltelluride varied with the relative concentrations of selenium and tellurium in the medium.  相似文献   

17.
Abstract Poor growth of Quercus robur L. (oak) trees has been reported on mine sites where overburden and subsoil have been used in the reinstatement of surface layers. This stunting has been attributed to a lack of macronutrients and to an adverse soil environment for root growth and mycorrhizal development. Growth, mineral nutrition, and ectomycorrhizal colonization of Q. robur seedlings were studied in an experiment carried out under controlled growing conditions in which mine spoil material was enriched with a leaf litter mulch. Enrichment of mine spoil material was found to produce a significant increase in growth and foliar N concentrations of oak seedlings. Inoculation with three taxa of ectomycorrhizal fungi did not benefit seedlings when mine spoil was the only substrate, possibly due to the poor physical properties of the unamended spoil and lack of nutrients. Inoculation with two taxa, Laccaria laccata and Hebeloma crustuliniforme, isolated from 3‐year‐old trees produced a significant stimulation of growth in the organically enriched treatment, which was believed to be due to greater uptake of mineralized N. However, Cortinarius anomalus isolated from fruit bodies associated with a 15‐year‐old tree did not increase biomass. The presence of organic matter was found to result in a significant stimulation of mycorrhizal infection by both inoculum and contaminant mycobionts. Recommendations are made for improving the establishment and growth of oak seedlings on reinstated sites.  相似文献   

18.
Phthalate esters, such as di-2-ethyl hexyl phthalate (DEHP) and di-n-butyl phthalate (DBP), were efficiently removed from wastewater by inoculating viable cells of Nocardia erythropolis, a bacterium capable of rapidly degrading phthalate esters, in activated sludge. When the wastewater containing 1500 ppm of DEHP was treated with the activated sludge inoculated with Nocardia erythropolis, the DEHP was found to be removed at a rate of 98.2% in 1 day and to be gas-chromatographically free on and after the 3rd day. Activated sludges, in particular, when high concentration of substances was used, were efficiently prevented from deflocculation of sludge by inoculation of Nocardia erythropolis, and moreover, the deflocked sludge was restored and recovered by the addition of Nocardia erythropolis.  相似文献   

19.
Inoculation of corn (Zea mays) seeds with Azospirillum brasilense strain Cd or Sp 7 significantly enhanced (30 to 50% over controls) the uptake of NO3, K+, and H2PO4 into 3- to 4-day- and 2-week-old root segments. No gross changes in root morphology were observed; altered cell arrangement in the outer four or five layers of the cortex was seen in photomicrographs of cross sections of inoculated corn roots. The surface activity involved in ion uptake probably increased, as shown by the darker staining by methylene blue of the affected area. Shoot dry weight increased 20 to 30% in inoculated plants after 3 weeks, presumably by enhancement of mineral uptake. Corn and sorghum plants grown to maturity on limiting nutrients in the greenhouse showed improved growth from inoculation approaching that of plants grown on normal nutrient concentrations. Enhanced ion uptake may be a significant factor in the crop yield enhancement reported for Azospirillum inoculation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号