首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic cyanobacteria, heterotrophic bacteria, free-living amoebae, and ciliated protozoa may support growth of Legionella pneumophila. Studies were done with two tap water cultures (WS1 and WS2) containing L. pneumophila and associated microbiota to characterize growth-supporting activity and assess the relative importance of the microbiota in supporting multiplication of L. pneumophila. The water cultures were incubated in the dark at 35 degrees C. The growth-supporting factor(s) was separated from each culture by filtration through 1-micron-pore-size membrane filters. The retentate was then suspended in sterile tap water. Multiplication of L. pneumophila occurred when both the retentate suspension and the filtrate from either culture were inoculated into sterile tap water. L. pneumophila did not multiply in tap water inoculated with only the filtrate, even though filtration did not reduce the concentration of L. pneumophila or heterotrophic bacteria in either culture. Growth-supporting activity of the retentate suspension from WS1 was inactivated at 60 degrees C but unaffected at 0, 25, and 45 degrees C after 30-min incubations. Filtration experiments indicated that the growth-supporting factor(s) in WS1 was 2 to 5 micron in diameter. Ciliated protozoa were not detected in either culture. Hartmannellid amoebae were conclusively demonstrated in WS2 but not in WS1. L. pneumophila multiplied in tap water inoculated with the amoebae (10(3)/ml) and the 1-micron filtrate of WS2. No multiplication occurred in tap water inoculated with the filtrate only. Growth-supporting activity for L. pneumophila may be present in plumbing systems; hartmannellid amoebae appear to be important determinants of multiplication of L. pneumophila in some tap water cultures.  相似文献   

2.
A water culture containing naturally occurring Legionella pneumophila and associated microbiota was maintained in the laboratory by serially transferring the culture in tap water which had been sterilized by membrane filtration. Successful maintenance of the water culture depended upon transferring the culture when the growth of L. pneumophila was in the late-exponential to early-stationary phase. The water culture was used as a source of naturally occurring bacteria to determine some of the parameters which affect the multiplication of L. pneumophila in tap water. Naturally occurring L. pneumophila multiplied at a temperature between 25 and 37 degrees C, at pH levels of 5.5 to 9.2, and at concentrations of dissolved oxygen of 6.0 to 6.7 mg/liter. Multiplication did not occur in tap water which contained less than 2.2 mg of dissolved oxygen per liter. An association was observed between the multiplication of L. pneumophila and the non-Legionellaceae bacteria which were also present in the water culture. The method of preserving naturally occurring L. pneumophila and associated microbiota may facilitate studies on the symbiosis of L. pneumophila with other microorganisms.  相似文献   

3.
A water culture containing naturally occurring Legionella pneumophila and associated microbiota was maintained in the laboratory by serially transferring the culture in tap water which had been sterilized by membrane filtration. Successful maintenance of the water culture depended upon transferring the culture when the growth of L. pneumophila was in the late-exponential to early-stationary phase. The water culture was used as a source of naturally occurring bacteria to determine some of the parameters which affect the multiplication of L. pneumophila in tap water. Naturally occurring L. pneumophila multiplied at a temperature between 25 and 37 degrees C, at pH levels of 5.5 to 9.2, and at concentrations of dissolved oxygen of 6.0 to 6.7 mg/liter. Multiplication did not occur in tap water which contained less than 2.2 mg of dissolved oxygen per liter. An association was observed between the multiplication of L. pneumophila and the non-Legionellaceae bacteria which were also present in the water culture. The method of preserving naturally occurring L. pneumophila and associated microbiota may facilitate studies on the symbiosis of L. pneumophila with other microorganisms.  相似文献   

4.
At the site of a legionellosis outbreak, amoebae and two ciliates, Tetrahymena sp. and Cyclidium sp., were isolated from cooling-tower water containing Legionella pneumophila. The Tetrahymena sp. and the amoebae repeatedly showed the ability to support intracellular multiplication of L. pneumophila. Both were isolated from cooling towers specifically implicated as the source for the spread of legionellosis. These protozoa may be reservoirs supporting the survival and multiplication of virulent legionellae in cooling-tower water.  相似文献   

5.
At the site of a legionellosis outbreak, amoebae and two ciliates, Tetrahymena sp. and Cyclidium sp., were isolated from cooling-tower water containing Legionella pneumophila. The Tetrahymena sp. and the amoebae repeatedly showed the ability to support intracellular multiplication of L. pneumophila. Both were isolated from cooling towers specifically implicated as the source for the spread of legionellosis. These protozoa may be reservoirs supporting the survival and multiplication of virulent legionellae in cooling-tower water.  相似文献   

6.
The need for protozoa for the proliferation of Legionella pneumophila in aquatic habitats is still not fully understood and is even questioned by some investigators. This study shows the in vivo growth of L. pneumophila in protozoa in aquatic biofilms developing at high concentrations on plasticized polyvinyl chloride in a batch system with autoclaved tap water. The inoculum, a mixed microbial community including indigenous L. pneumophila originating from a tap water system, was added in an unfiltered as well as filtered (cellulose nitrate, 3.0-microm pore size) state. Both the attached and suspended biomasses were examined for their total amounts of ATP, for culturable L. pneumophila, and for their concentrations of protozoa. L. pneumophila grew to high numbers (6.3 log CFU/cm2) only in flasks with an unfiltered inoculum. Filtration obviously removed the growth-supporting factor, but it did not affect biofilm formation, as determined by measuring ATP. Cultivation, direct counting, and 18S ribosomal DNA-targeted PCR with subsequent sequencing revealed the presence of Hartmannella vermiformis in all flasks in which L. pneumophila multiplied and also when cycloheximide had been added. Fluorescent in situ hybridization clearly demonstrated the intracellular growth of L. pneumophila in trophozoites of H. vermiformis, with 25.9% +/- 10.5% of the trophozoites containing L. pneumophila on day 10 and >90% containing L. pneumophila on day 14. Calculations confirmed that intracellular growth was most likely the only way for L. pneumophila to proliferate within the biofilm. Higher biofilm concentrations, measured as amounts of ATP, gave higher L. pneumophila concentrations, and therefore the growth of L. pneumophila within engineered water systems can be limited by controlling biofilm formation.  相似文献   

7.
A naturally occurring suspension of Legionella pneumophila and associated microbiota contained three unidentified non-Legionellaceae bacteria which supported satellite growth of a subculture of L. pneumophila on an L-cysteine-deficient medium and another bacterium which did not support growth of the subculture. Washed suspensions containing 10(3), 10(5), 10(7), or 10(8) CFU of a mixture of isolates of these non-Legionellaceae bacteria failed to support the multiplication of an isolate of agar-grown L. pneumophila which had been washed and seeded into the suspensions. The suspensions which contained 10(3), 10(5), or 10(7) CFU of the non-Legionellaceae bacteria per ml appeared to enhance survival or cryptic growth of agar-grown L. pneumophila. A decline of 1.3 log CFU of L. pneumophila per ml occurred within the first week of incubation in the sample which contained 10(8) CFU of the non-Legionellaceae bacteria per ml. In contrast to these results, naturally occurring L. pneumophila multiplied in the presence of associated microbiota. The necessity to subculture L. pneumophila and the non-Legionellaceae bacteria on artificial medium to obtain pure cultures may have affected the multiplication of L. pneumophila in tap water. Alternatively, other microorganisms may be present in the naturally occurring suspension which support the growth of this bacterium.  相似文献   

8.
A naturally occurring suspension of Legionella pneumophila and associated microbiota contained three unidentified non-Legionellaceae bacteria which supported satellite growth of a subculture of L. pneumophila on an L-cysteine-deficient medium and another bacterium which did not support growth of the subculture. Washed suspensions containing 10(3), 10(5), 10(7), or 10(8) CFU of a mixture of isolates of these non-Legionellaceae bacteria failed to support the multiplication of an isolate of agar-grown L. pneumophila which had been washed and seeded into the suspensions. The suspensions which contained 10(3), 10(5), or 10(7) CFU of the non-Legionellaceae bacteria per ml appeared to enhance survival or cryptic growth of agar-grown L. pneumophila. A decline of 1.3 log CFU of L. pneumophila per ml occurred within the first week of incubation in the sample which contained 10(8) CFU of the non-Legionellaceae bacteria per ml. In contrast to these results, naturally occurring L. pneumophila multiplied in the presence of associated microbiota. The necessity to subculture L. pneumophila and the non-Legionellaceae bacteria on artificial medium to obtain pure cultures may have affected the multiplication of L. pneumophila in tap water. Alternatively, other microorganisms may be present in the naturally occurring suspension which support the growth of this bacterium.  相似文献   

9.
In a series of experiments, we have determined that Legionella pneumophila will proliferate as an intracellular parasite of the ciliated holotrich Tetrahymena pyriformis in sterile tap water at 35 degrees C. After 7 days of incubation, serpentine chains of approximately 10(3) L. pneumophila cells were observed throughout the cytoplasm of the protozoan infected initially with 1 to 30 L. pneumophila cells. The overall L. pneumophila population increased from ca. 1.0 X 10(2) to ca. 5.0 X 10(4) cells per ml in the coculture within this time frame. The interactions between the protozoan and the bacterium appear to depend upon their concentrations as well as temperature of incubation. L. pneumophila did not multiply in sterile tap water alone, in suspensions of lysed T. pyriformis, or in cell-free filtrates of a T. pyriformis culture. In addition to establishing an ecological model, we found that addition of T. pyriformis to environmental specimens served as an enrichment method that improved isolation of legionella from the specimens.  相似文献   

10.
In a series of experiments, we have determined that Legionella pneumophila will proliferate as an intracellular parasite of the ciliated holotrich Tetrahymena pyriformis in sterile tap water at 35 degrees C. After 7 days of incubation, serpentine chains of approximately 10(3) L. pneumophila cells were observed throughout the cytoplasm of the protozoan infected initially with 1 to 30 L. pneumophila cells. The overall L. pneumophila population increased from ca. 1.0 X 10(2) to ca. 5.0 X 10(4) cells per ml in the coculture within this time frame. The interactions between the protozoan and the bacterium appear to depend upon their concentrations as well as temperature of incubation. L. pneumophila did not multiply in sterile tap water alone, in suspensions of lysed T. pyriformis, or in cell-free filtrates of a T. pyriformis culture. In addition to establishing an ecological model, we found that addition of T. pyriformis to environmental specimens served as an enrichment method that improved isolation of legionella from the specimens.  相似文献   

11.
Multiplication of Legionella pneumophila in unsterilized tap water.   总被引:22,自引:17,他引:5       下载免费PDF全文
Naturally occurring Legionella pneumophila, an environmental isolate which had not been grown on artificial medium, was tested for the ability to multiply in tap water. A showerhead containing L. pneumophila and non-Legionellaceae bacteria was immersed in nonsterile tap water supplying this fixture. Also L. pneumophila and non-Legionellaceae bacteria were sedimented from tap water from a surgical intensive care unit. This bacterial suspension was inoculated into tap water from our laboratory. The legionellae in both suspensions multiplied in the tap water at 32, 37, and 42 degrees C. The non-Legionellaceae bacteria multiplied at 25, 32, and 37 degrees C. A water sample which was collected from the bottom of a hot water tank was found to contain L. pneumophila and non-Legionellaceae bacteria. These legionellae also multiplied when the water sample was incubated at 37 degrees C. These results indicate that L. pneumophila may multiply in warm water environments such as hot water plumbing fixtures, hot water tanks, and cooling towers.  相似文献   

12.
A model was developed to study the multiplication of various Legionella spp. in tap water containing Hartmannella vermiformis. Tap water cultures prepared with the following components were suitable for the multiplication studies: Legionella spp., 10(3) CFU/ml; H. vermiformis, 10(4.4) cysts per ml; and killed Pseudomonas paucimobilis, 10(9) cells per ml. Cocultures were incubated at 37 degrees C for at least 1 week. The following legionellae multiplied in tap water cocultures in each replicate experiment: L. bozemanii (WIGA strain), L. dumoffii (NY-23 and TX-KL strains), L. micdadei (two environmental strains), and L. pneumophila (six environmental strains and one clinical isolate). Growth yield values for these strains were 0.6 to 3.5 log CFU/ml. Legionellae which did not multiply in replicate cocultures included L. anisa (one strain), L. bozemanii (MI-15 strain), L. micdadei (a clinical isolate), L. longbeachae, (one strain), and L. pneumophila (Philadelphia 1 strain). L. gormanii and an environmental isolate of L. pneumophila multiplied in only one of three experiments. None of the legionellae multiplied in tap water containing only killed P. paucimobilis. The mean growth yield (+/- standard deviation) of H. vermiformis in the cocultures was 1.2 +/- 0.1 log units/ml. H. vermiformis supports multiplication of only particular strains of legionellae, some of which are from diverse origins.  相似文献   

13.
A model was developed to study the multiplication of various Legionella spp. in tap water containing Hartmannella vermiformis. Tap water cultures prepared with the following components were suitable for the multiplication studies: Legionella spp., 10(3) CFU/ml; H. vermiformis, 10(4.4) cysts per ml; and killed Pseudomonas paucimobilis, 10(9) cells per ml. Cocultures were incubated at 37 degrees C for at least 1 week. The following legionellae multiplied in tap water cocultures in each replicate experiment: L. bozemanii (WIGA strain), L. dumoffii (NY-23 and TX-KL strains), L. micdadei (two environmental strains), and L. pneumophila (six environmental strains and one clinical isolate). Growth yield values for these strains were 0.6 to 3.5 log CFU/ml. Legionellae which did not multiply in replicate cocultures included L. anisa (one strain), L. bozemanii (MI-15 strain), L. micdadei (a clinical isolate), L. longbeachae, (one strain), and L. pneumophila (Philadelphia 1 strain). L. gormanii and an environmental isolate of L. pneumophila multiplied in only one of three experiments. None of the legionellae multiplied in tap water containing only killed P. paucimobilis. The mean growth yield (+/- standard deviation) of H. vermiformis in the cocultures was 1.2 +/- 0.1 log units/ml. H. vermiformis supports multiplication of only particular strains of legionellae, some of which are from diverse origins.  相似文献   

14.
Determination of the concentration of Legionella pneumophila in environmental water sites may be useful for the prediction of the risk of a particular site's causing Legionnaires' disease as well as for experimental studies of environmental growth or remediation. The precision and accuracy of recovery of two different L. pneumophila strains from seeded tap water samples were studied, with either filtration or centrifugation used to concentrate the bacteria. L. pneumophila grown on BCYE alpha agar or in Acanthamoeba castellanii was used to seed sterile tap water. Water samples were then either filtered (0.2-microns pore size) or centrifuged. An average of 53% (95% confidence interval [CI], 47 to 58%; n = 45) of the seeded L. pneumophila organisms were recovered by filtration with flat polycarbonate membranes. This recovery was significantly higher (P < 0.01) than that obtained by filtration with cast membranes (mean, 13%; 95% CI, 11 to 38%; n = 4) or by centrifugation at 3,800 x g for 30 min (mean, 14%; 95% CI, 2 to 25%; n = 9) or at 8,150 x g for 15 min (mean, 32%; 95% CI, 28 to 36%; n = 19). Recovery of L. pneumophila was not significantly different whether the bacteria were grown on plates or in amoebae. Use of a selective medium did not decrease the recovery efficiency, but preplating acid treatment of specimens caused an approximately 30% bacterial loss.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Survival and distribution of legionellae in the environment are assumed to be associated with their multiplication in amoebae, whereas the ability to multiply in macrophages is usually regarded to correspond to pathogenicity. Since most investigations focused on Legionella pneumophila serogroup 1, we examined the intracellular multiplication of different Legionella species in Mono Mac 6 cells, which express phenotypic and functional features of mature monocytes, and in Acanthamoeba castellanii, an environmental host of Legionella spp. According to the bacterial doubling time in Mono Mac 6 cells and in A. castellanii, seven clusters of legionellae could be defined which could be split further with regard to finer differences. L. longbeachae serogroup 1, L. jordanis, and L. anisa were not able to multiply in either A. castellanii or Mono Mac 6 cells and are members of the first cluster. L. dumoffi did not multiply in Mono Mac 6 cells but showed a delayed multiplication in A. castellanii 72 h after infection and is the only member of the second cluster. L. steigerwaltii, L. gormanii, L. pneumophila serogroup 6 ATCC 33215, L. bozemanii, and L. micdadei showed a stable bacterial count in Mono Mac 6 cells after infection but a decreasing count in amoebae. They can be regarded as members of the third cluster. As the only member of the fourth cluster, L. oakridgensis was able to multiply slight in Mono Mac 6 cells but was killed within amoebae. A strain of L. pneumophila serogroup 1 Philadelphia obtained after 30 passages on SMH agar and a strain of L. pneumophila serogroup 1 Philadelphia obtained after intraperitoneal growth in guinea pigs are members of the fifth cluster, which showed multiplication in Mono Mac 6 cells but a decrease of bacterial counts in A. castellanii. The sixth cluster is characterized by intracellular multiplication in both host cell systems and consists of several strains of L. pneumophila serogroup 1 Philadelphia, a strain of L. pneumophila serogroup 2, and a fresh clinical isolate of L. pneumophila serogroup 6. Members of the seventh cluster are a strain of agar-adapted L. pneumophila serogroup 1 Bellingham and a strain of L. pneumophila serogroup 1 Bellingham which was passaged fewer than three times on BCYE alpha agar after inoculation and intraperitoneal growth in guinea pigs. In comparison to members of the sixth cluster, both strains showed a slightly enhanced multiplication in Mono Mac 6 cells but a reduced multiplication in amoebae. From our investigations, we could demonstrate a correlation between prevalence of a given Legionella species and their intracellular multiplication in Mono Mac 6 cells. Multiplication of members of the genus Legionella in A. castellanii seems to be dependent on mechanisms different from those in monocytes.  相似文献   

16.
Legionella pneumophila is an intracellular parasite of protozoa and human phagocytes. To examine adaptation of this bacterium to parasitize protozoa, the sequence of events of the intracellular infection of the amoeba Hartmannella vermiformis was examined. The previously described uptake phenomenon of coiling phagocytosis by human monocytes was not detected. A 1 h postinfection with wild-type strain AA100, mitochondria were observed within the vicinity of the phagosome. At 2.5 h postinfection, numerous vesicles surrounded the phagosomes and mitochondria were in close proximity to the phagosome. At 5 h postinfection, the bacterium was surrounded by a ribosome-studded multilayer membrane. Bacterial multiplication was evident by 8 h postinfection, and the phagosome was surrounded by a ribosome-studded multilayer membrane until 15 h postinfection. The recruitment of organelles and formation of the ribosome-studded phagosome was defective in an isogenic attenuated mutant of L. pneumophila (strain AA101A) that failed to replicate within amoebae. At 20 h postinfection with wild-type strain AA100, numerous bacteria were present in the phagosome and ribosome were not detected around the phagosome. These data showed that, at the ultrastructural level, the intracellular infection of protozoa by L. pneumophila is highly similar to that of infection of macrophages. Immunocytochemical studies provided evidence that at 5 h postinfection the phagosome containing L. pneumophila acquired an abundant amount of the endoplasmic reticulum-specific protein (BiP). Similar to phagosomes containing heat-killed wild-type L. pneumophila, the BiP protein was not detectable in phagosomes containing the mutant strain AA101A. In addition to the absence of ribosomes and mitochondria, the BiP protein was not detected in the phagosomes at 20 h postinfection with wild-type L. pneumophila. The data indicated that the ability of L. pneumophila to establish the intracellular infection of amoebae is dependent on its capacity to reside and multiply within a phagosome surrounded by the rough endoplasmic reticulum. This compartment may constitute a rich source of nutrients for the bacteria and is probably recognized as cellular compartment. The remarkable similarity of the intracellular infections of macrophages and protozoa by L. pneumophila strongly supports the hypothesis that adaptation of the bacterium to the intracellular environment of protozoa may be the mechanism for its ability to adapt to the intracellular environment of human alveolar macrophages and causes pneumonia.  相似文献   

17.
The survival of a strain of Legionella pneumophila (Lp-1) inoculated in artificial water microcosms was investigated with and without an amoebal host and varying environmental conditions, such as biofilm formation, amount of nutrients and incubation temperature. The results obtained using short (micromethod) and long (macromethod) term methods showed that L. pneumophila Lp-1 dies rapidly at 4 degrees C in the "macromethod" assay. When the same temperature (4 degrees C) was applied to the "micromethod" assay, L. pneumophila Lp-1 survived for three weeks, although it progressively decreased. At an incubation temperature of 30 degrees C, the aquatic environment was more favourable and better survival emerged in the "macromethod"; in contrast, this favourable temperature condition did not improve the survival of L. pneumophila Lp-1 cultured with the "micromethod". The role of the protozoa Acanthamoeba polyphaga proved to be indispensable for legionella survival only when environmental conditions become unfavourable.  相似文献   

18.
Legionella pneumophila in sterile distilled water was not detected after ultraviolet irradiation by FLONLIZER, a new-type sterilizer, at a flow rate of 82.5 to 364.8 liters/hr. When irradiated by FLONLIZER at a flow rate of under 324.0 liters/hr, no viable cells of legionellae, other heterotrophic bacteria and bacterivorous protozoa were detected in the cooling tower water, which was found to contain L. pneumophila. No viable cells of L. pneumophila and L. bozemanii suspended in sterile distilled water were detected after the irradiation with UV-doses of over 6.16 X 10(3) micro W.sec/cm2. At the irradiation of low UV-doses under 1.06 X 10(4) micro W.sec/cm2, the viable count of legionellae recuperated by photoreactivation from UV-damage increased with the exposure time under a white fluorescent lamp. However, in the samples irradiated with UV-doses of over 3.52 X 10(4) micro W.sec/cm2, equal to the FLONLIZER, legionellae did not recuperate even after 18 hr illumination with a white fluorescent lamp. FLONLIZER is thus expected to act as a sterilizer which can control the legionellae inhabiting cooling tower systems placed in outdoor space.  相似文献   

19.
Previous studies using a murine model of coinhalation of Legionella pneumophila and Hartmannella vermiformis have shown a significantly enhanced intrapulmonary growth of L. pneumophila in comparison to inhalation of legionellae alone (J. Brieland, M. McClain, L. Heath, C. Chrisp, G. Huffnagle, M. LeGendre, M. Hurley, J. Fantone, and C. Engleberg, Infect. Immun. 64:2449-2456, 1996). In this study, we introduce an in vitro coculture model of legionellae, Mono Mac 6 cells (MM6) and Acanthamoeba castellanii, using a cell culture chamber system which separates both cell types by a microporous polycarbonate membrane impervious to bacteria, amoebae, and human cells. Whereas L. pneumophila has shown a maximal 4-log-unit multiplication within MM6, which could not be further increased by coculture with Acanthamoeba castellanii, significantly enhanced replication of L. gormanii, L. micdadei, L. steigerwaltii, L. longbeachae, and L. dumoffii was seen after coculture with amoebae. This effect was seen only with uninfected amoebae, not with Legionella-infected amoebae. The supporting effect for intracellular multiplication in MM6 could be reproduced in part by addition of a cell-free coculture supernatant obtained from a coincubation experiment with uninfected A. castellanii and Legionella-infected MM6, suggesting that amoeba-derived effector molecules are involved in this phenomenon. This coculture model allows investigations of molecular and biochemical mechanisms which are responsible for the enhancement of intracellular multiplication of legionellae in monocytic cells after interaction with amoebae.  相似文献   

20.
Three different species of Legionella were recovered from samples of water taken from chlorinated public water supplies where no coliform bacteria were simultaneously detected. Five of 856 samples yielded Legionella isolates. Three isolates were identified as Legionella pneumophila serogroup 1, the fourth was identified as Legionella dumoffii, and the fifth was identified as Legionella jordanis. Studies to determine the survival of L. pneumophila Flint 1 serogroup 1 in tap water at various temperatures and in tap water with added sodium hypochlorite were done. These organisms were found to survive for 299 days in tap water at 24 and 5 degrees C but not at 35 degrees C. A concentration of at least 0.2 mg of residual chlorine per ml was required to eliminate at least 90% of L. pneumophila and Escherichia coli inocula in 2 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号