首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Excised stem sections of deepwater rice (Oryza sativa L.) containing the highest internode were used to study the induction of rapid internodal elongation by gibberellin (GA). It has been shown before that this growth response is based on enhanced cell division in the intercalary meristem and on increased cell elongation. In both GA-treated and control stem sections, the basal 5-mm region of the highest internode grows at the fastest rate. During 24 h of GA treatment, the internodal elongation zone expands from 15 to 35 mm. Gibberellin does not promote elongation of internodes from which the intercalary meristem has been excised. The orientation of cellulose microfibrils (CMFs) is a determining factor in cell growth. Elongation is favored when CMFs are oriented transversely to the direction of growth while elongation is limited when CMFs are oriented in the oblique or longitudinal direction. The orientation of CMFs in parenchymal cells of GA-treated and control internodes is transverse throughout the internode, indicating that CMFs do not restrict elongation of these cells. Changes in CMF orientation were observed in epidermal cells, however. In the basal 5-mm zone of the internode, which includes the intercalary meristem, CMFs of the epidermal cell walls are transversely oriented in both GA-treated and control stem sections. In slowly growing control internodes, CMF orientation changes to the oblique as cells are displaced from this basal 5-mm zone to the region above it. In GA-treated rapidly growing internodes, the reorientation of CMFs from the transverse to the oblique is more gradual and extends over the 35-mm length of the elongation zone. The CMFs of older epidermal cells are obliquely oriented in control and GA-treated internodes. The orientation of the CMFs parallels that of the cortical microtubules. This is consistent with the hypothesis that cortical microtubules determine the direction of CMF deposition. We conclude that GA acts on cells that have transversely oriented CMFs but does not promote growth of cells whose CMFs are already obliquely oriented at the start of GA treatment.  相似文献   

2.
Expansins and Internodal Growth of Deepwater Rice   总被引:10,自引:0,他引:10       下载免费PDF全文
Cho HT  Kende H 《Plant physiology》1997,113(4):1145-1151
The distribution and activity of the cell wall-loosening protein expansin is correlated with internodal growth in deepwater rice (Oryza sativa L.). Acid-induced extension of native cell walls and reconstituted extension of boiled cell walls were confined to the growing region of the internode, i.e. to the intercalary meristem (IM) and the elongation zone. Immunolocalization by tissue printing and immunoblot analysis, using antibody against cucumber expansin 29 as a probe, confirmed that rice expansin occurred primarily in the IM and elongation zone. Rice expansin was localized mainly around the vascular bundles at the base of the IM and along the inner epidermal cell layer surrounding the internodal cavity. Submergence greatly promoted the growth of rice internodes, and cell walls of submerged internodes extended much more in response to acidification than did the cell walls of air-grown internodes. Susceptibility of cell walls to added expansin was also increased in submerged internodes, and analysis by immunoblotting showed that cell walls of submerged internodes contained more expansin than did cell walls of air-grown internodes. Based on these data, we propose that expansin is involved in mediating rapid internodal elongation in submerged deepwater rice internodes.  相似文献   

3.
4.
The distribution of meristematic activity and cell length in the growing internodes of seven species of dicotyledonous vines and three species of monocotyledonous vines is described. In Schlegelia, Ipomoea, Mucuna, Passiflora, Ficus, Thunbergia alata, Dioscorea, Smilax, and Vanilla the loss of meristematic activity proceeded from the base to the top of the internode. The absence of isolated meristematic regions is typical of the uninterrupted meristem. In Thunbergia grandiflora a small peak of residual meristematic activity is located at the base of the internode, which is typical of the intercalary meristem. The same region of the internode is swollen and functions as a pulvinus. The young internodes of the seven dicotyledonous vines and an additional eight species of monocotyledonous vines with uninterrupted meristems were marked into three segments for growth studies. The upper part of the internode grew more rapidly and for a longer time than the basal part of the internode, except in T. grandiflora. The relative amounts of unequal growth in various species differed widely. Greater growth of the upper region was not correlated with comparable increases in final cell length in the upper region. It is concluded that the uninterrupted meristem is a common feature of shoot extension in many monocotyledons and dicotyledons.  相似文献   

5.
Cohen E  Kende H 《Plant physiology》1987,84(2):282-286
Inasmuch as the activity of 1-aminocyclopropane-1-carboxylate (ACC) synthase cannot be measured in homogenates of deepwater rice internodes (Oryza sativa L.), we have employed an in vivo assay to determine the activity of this enzyme. This assay is based on the accumulation of ACC in tissue kept under N2. Submergence of whole plants or stem sections containing the uppermost, developing internode enhances the in vivo activity of ACC synthase in the stem. This stimulation of in vivo ACC-synthase activity is especially pronounced in the region of the internode containing the intercalary meristem and the elongation zone above it. Enhancement of in vivo ACC-synthase activity is evident after 2 hours of submergence and shows a peak after 4 hours. Reduced levels of atmospheric O2, which promote ethylene synthesis and growth in internodes of deepwater rice, also enhance the in vivo activity of ACC synthase. Our results are consistent with the hypothesis that induction of ACC-synthase activity at low partial O2 pressures is among the first biochemical events leading to internodal growth in deepwater rice.  相似文献   

6.
Rice internodes are vital for supporting high‐yield panicles, which are controlled by various factors such as cell division, cell elongation and cell wall biosynthesis. Therefore, formation and regulation of the internode cell‐producing intercalary meristem (IM) are important for determining the shape of internodes. To understand the regulation of internode development, we analysed a rice dwarf mutant, dwarf 50 (d50). Previously, we reported that parenchyma cells in the elongated internodes of d50 ectopically deposit cell wall phenolics. In this study, we revealed that D50 encodes putative inositol polyphosphate 5‐phosphatase (5PTase), which may be involved in phosphoinositide signalling required for many essential cellular functions, such as cytoskeleton organization, endocytosis and vesicular trafficking in eukaryotes. Analysis of the rice genome revealed 20 putative 5PTases including D50. The d50 mutation induced abnormally oriented cell division, irregular deposition of cell wall pectins and thick actin bundles in the parenchyma cells of the IM, resulting in abnormally organized cell files of the internode parenchyma and dwarf phenotype. Our results suggest that the putative 5PTase, encoded by D50, is essential for IM formation, including the direction of cell division, deposition of cell wall pectins and control of actin organization.  相似文献   

7.
Six indica rice varieties belonging to three duration groups,each group containing one tall and one dwarf variety, were grownunder irrigated field conditions during the wet season of 1986.At the time of culm elongation, the distal 5–6 internodesof a variety elongated. The pattern of extension was hierarchical,each successive internode dominating the one immediately belowit and hence the final internode lengths increased in acropetalfashion from the bottom to the top. Between the tall and dwarfvarieties, the lengths of the individual intemodes did not differmuch in the apical and basal positions, but significant differenceswere found between the lengths of the middle internodes. Withincrease in length, the internodes became visibly thinner anddry matter content per unit length decreased. Analyses of solublecarbohydrates, amino acids, and phosphate contents of the internodesindicated that the concentration of the metabolites increasedin acropetal succession from the base to the apex. In general,the dwarf varieties contained at least the same, if not a higherconcentration of the metabolites as the tall varieties. Thepossible role of the metabolites in internode extension is discussed. Key words: Rice, internode extension, assimilates, phosphates, sink  相似文献   

8.
Mechanical perturbation of bean (Phaseolus vulgaris L.) internodes results in reduced elongation and increased diameter of the internodes (thigmomorphogenesis). Perturbation of a single lower internode results in thigmorphogenesis in that internode and all of those internodes above it, the degree of which depends on the age (size) of the internodes and the frequency of perturbation. Application of ethephon to the internodes mimics mechanical perturbation. Early removal of the shoot tip or the cotyledons does not effect thigmomorphogenesis, indicating that those organs do not exert control over the response. Mechanical perturbation of one plant of a pair grafted together at the first internodes results in thigmomorphogenesis in both plants. This indicates the transport of some factor from the mechanically perturbed donor to the non-treated receiver. Evidence is presented to support the contention that ethylene is not this transportable factor.  相似文献   

9.
Previously 'frozen' Tulipa gesneriana L. bulbs cv. Apeldoorn, were planted and grown at higher temperatures to study the role of invertase (EC 3.2.1.26) in the cold-induced elongation of the flower stalk internodes. After planting, flower stalks were left intact, or, the leaves and flower bud were both removed to inhibit internode elongation. In intact flower stalks, elongation of the internodes was accompanied by an accumulation of glucose and an initial decrease in the sucrose content g,−1 dry weight. Insoluble invertase activity g,−1 dry weight hardly changed, but soluble invertase activity showed a peak pattern, that was related, at least for the greater part, to the changes in the sugar contents. Peak activities of soluble invertase were found during (lower- and uppermost internodes) or around the onset of the rapid phase of internode elongation (middle internodes). Internode elongation and glucose accumulation immediately ceased when the leaves and flower bud were removed. Insoluble invertase activity g,−1 dry weight remained at its initial level (lowermost internode) or increased more towards the upper internodes. Soluble invertase activity did not further increase (uppermost internode) or decreased abruptly to a low level. It is concluded that soluble invertase may be one of the factors contributing to glucose accumulation and internode elongation in the tulip flower stalk.  相似文献   

10.
A fate map for the shoot apical meristem of Zea mays L. at the time of germination was constructed by examining somatic sectors (clones) induced by -rays. The shoot apical meristem produced stem, leaves, and reproductive structures above leaf 6 after germination and the analysis here concerns their formation. On 160 adult plants which had produced 17 or 18 leaves, 277 anthocyanin-deficient sectors were scored for size and position. Sectors found on the ear shoot or in the tassel most often extended into the vegetative part of the plant. Sectors ranged from one to six internodes in length and some sectors of more than one internode were observed at all positions on the plant. Single-internode sectors predominated in the basal internodes (7,8,9) while longer sectors were common in the middle and upper internodes. The apparent number of cells which gave rise to a particular internode was variable and sectors were not restricted to the lineage unit: a leaf, the internode below it, and the axillary bud and prophyll at the base of the internode. These observations established two major features of meristem activity: 1) at the time of germination the developmental fate of any cell or group of cells was not fixed, and 2) at the time of germination cells at the same location in a meristem could produce greatly different amounts of tissue in the adult plant. Consequently, the developmental fate of specific cells in the germinating meristem could only be assigned in a general way.Abbreviations ACN apparent cell number - LI, LII, LI-LII sectors restricted to the epidermis, the subepidermis, or encompassing epidermis and subepidermis - PCN progenitor cell  相似文献   

11.
The differentiation of primary phloem fibers was studied in Coleus blumei on a quantitative basis. The pattern of fiber differentiation in intact, untreated plants was found to be in the acropetal direction (from a mature internode to a young one). The youngest internodes to differentiate primary phloem fibers were those with cambial activity. In plants grown in the winter, fibers started to differentiate in internodes closer to leaf #2 than in spring-grown plants. A wound changes the pattern of fiber differentiation surrounding it. A wound in which the tissues above and below it were separated with parafilm, prevented fiber differentiation in the tissues directly below the wound, and caused more fiber differentiation in the tissues above and lateral to it. Under wounds with no parafilm separation, few or many fibers differentiated depending on the angle of the wound. The number of fibers under diagonal wounds was five to nine times more than under a horizontal wound. By excision experiments it was found that mature leaves were the source of induction of fiber differentiation. Leaves that produced induction caused fiber differentiation in the internode below them but did not cause fiber differentiation in the internode above. The induction, which can flow through a wound and cause fiber differentiation in at least two internodes below the source, is a polar induction in the basipetal direction (i.e., in the direction from the leaves to the root). Phloem fibers differentiated only in the vascular strands and not from the parenchyma cells between the strands. Therefore, they follow the new regenerative sieve and vessel elements in the pre-existing vascular strands, but do not follow them in their regeneration between the longitudinal strands.  相似文献   

12.
An electron microprobe (EMP) analysis of silica (SiO2) deposition in the epidermis of developing internodes of the perennial scouring rush (Equisetum hyemale var. affine) indicates that SiO2 is first detected in the stomatal apparatus beginning with internode 3, then the epidermal papillae (internode 8), and finally in radial cell walls of the long epidermal cells (internode 10). This process is initiated in the intercalary growth regions at the bases of the elongating internodes. The deposition of SiO2 in long epidermal cell walls occurs after internodal extension has ceased and should therefore be considered as one of the final stages in internodal differentiation that involves strengthening the cellulosic framework of the cell wall. EMP measurements indicate that SiO2 in stomata is equivalent to 30% of a pure SiO2 standard and that SiO2 in the radial walls of long epidermal cells averages twice that measured on the tangential walls of these same cells. This study supports the view that silicification plays a major role in strengthening the developing perennial scouring rush internodal system and that regulation of this process in this and other species of Equisetum, whose SiO2 deposition patterns are markedly different, deserves further study.  相似文献   

13.
Partial submergence induces rapid internodal elongation in deepwater rice (Oryza sativa L., cv Habiganj Aman II). We measured in vivo extensibility, tissue tension, hydraulic conductance and osmotic potential in the region of cell elongation in the uppermost internode. The in vivo extensibility of the internode, measured by stretching of living tissue with a custom-made constant stress extensiometer, rose rapidly following submergence of the plant. Both the elastic (Eel) and plastic (Epl) extensibility increased when growth of the internode was induced. The submerged internode displayed tissue tension (elastic outward bending of longitudinally split internode sections); in air-grown control internodes, no such bending occurred. The hydraulic conductance, estimated from the kinetics of tissue shrinkage in 0.5 molar mannitol and subsequent swelling in distilled water, was not changed by submergence. The osmotic potential, measured with a dew-point hygrometer using frozen-thawed tissue, was only 18% less negative in the submerged internode than in the air-grown control. This indicates that osmoregulation takes place in rapidly elongating rice internodes. We suggest that the rapid expansion of the newly formed internodal cells of submerged plants is controlled by the yielding properties (Epl) of the cell walls. Experiments with excised stem sections indicate that gibberellin is involved in increasing the Epl of the elongating cell walls.  相似文献   

14.
Increased activity of α-amylase in bean stems occurred during cellular autolysis in the pith region. In etiolated pea seedlings, α-amylase activity increased sequentially in the first, second, and third internodes. In light-grown seedlings, the increase was initially observed in the first internode, then simultaneously in the second and third internodes. In all internodes, these changes were observed in regions undergoing cellular autolysis in the cortex region. As in bean hypocotyls, α-amylase activity occurred in tissues virtually devoid of starch. Sequential accumulation and then decline in protein and sugar concentrations in each internode indicate a remobilization of materials from nongrowing regions of the stem. These results are consistent with the hypothesis that regulation of α-amylase activity is related to this remobilization.  相似文献   

15.
Sugarcane varieties (Saccharum spp. hybrids) that accumulate high levels of sucrose at the start of the harvest season are of considerable commercial interest. Our understanding of the factors that contribute to early sucrose accumulation in these varieties is limited. In this study we used the plant hormone ethylene to investigate the relationship between growth and early sucrose accumulation in sugarcane. The sugarcane variety KQ228 was exposed to a low concentration of the ethylene-forming compound 2-chloroethylphosphonic acid (CEPA) for a prolonged duration commencing from shoot emergence. The changes in sucrose accumulation and plant growth were investigated. Results from two glasshouse experiments revealed that the CEPA-treated plants accumulated a significantly higher amount of sucrose in their primary culm 2 and 3½ months post-germination. The treated plants had taller primary culms with many smaller internodes, smaller leaves, and a higher photosynthetic rate. Despite producing smaller internodes, treated culms were comparable in fresh weight and volume to the controls due to the compensating effect of faster internode formation. We identified three factors that may have contributed to the early accumulation of more sucrose in the treated culm: (1) the specific leaf area of young leaves was greater indicating efficient diversion of photoassimilate to sink tissue, (2) internode formation was initiated earlier, and (3) internodes continued to form at a faster rate. Consequently, a greater proportion of the internodes in the treated sugarcane matured earlier and began filling with sucrose sooner. The higher reducing sugar level in the apical region of the culm probably contributed to faster internode development. This coincided with elevated vacuolar and cell wall acid invertase gene expression that increased sucrose turnover in the vacuole and increased apoplastic uptake of reducing sugars. These findings extend our understanding of how some sugarcane varieties can naturally accumulate a high level of sucrose early in the season.  相似文献   

16.
Quantitative changes in cell pattern in the pith, cortex, cortical collenchyma, and epidermis were followed in developing internodes of Liquidambar to examine the cellular basis of compressive and tensile stresses in organized shoot growth. Initially, the highest rates of cell multiplication occur in the pith, followed successively by the epidermis, cortex, and cortical collenchyma. As internodes enter the phase of maximum elongation growth, mitotic activity begins to shift acropetally, accompanied by pronounced changes in cell pattern. The highest rates of cell multiplication now occur in the pith and cortex and continue until the cessation of internode growth. Concomitantly, reduced rates of cell division in peripheral tissues result in rapid increases in rates of cell elongation in the cortical collenchyma and epidermis. Attention is focused on the role of continued cell division in developing internodes with emphasis on differences in rates of cell multiplication between inner and outer tissues affecting patterns of tissue stress. For example, rapid and sustained increases in cell number in the pith, accompanied by growth of readily extensible pith cells, result in the development of compressive forces driving the growth of internodes. Conversely, continuing divisions in less extensible collenchyma and epidermal cells can relieve threshold tensile stresses resulting from the continuous stretching of these tissues by the developing pith. The concept that the passive extension of peripheral tissues, especially the epidermis, control the rate of internode elongation is viewed as an oversimplification of the interacting role of compressive and tensile forces in organized growth and development.  相似文献   

17.
Luo A  Qian Q  Yin H  Liu X  Yin C  Lan Y  Tang J  Tang Z  Cao S  Wang X  Xia K  Fu X  Luo D  Chu C 《Plant & cell physiology》2006,47(2):181-191
Elongation of rice internodes is one of the most important agronomic traits, which determines the plant height and underlies the grain yield. It has been shown that the elongation of internodes is under genetic control, and various factors are implicated in the process. Here, we report a detailed characterization of an elongated uppermost internode1 (eui1) mutant, which has been used in hybrid rice breeding. In the eui1-2 mutant, the cell lengths in the uppermost internodes are significantly longer than that of wild type and thus give rise to the elongated uppermost internode. It was found that the level of active gibberellin was elevated in the mutant, whereas its growth in response to gibberellin is similar to that of the wild type, suggesting that the higher level accumulation of gibberellin in the eui1 mutant causes the abnormal elongation of the uppermost internode. Consistently, the expression levels of several genes which encode gibberellin biosynthesis enzymes were altered. We cloned the EUI1 gene, which encodes a putative cytochrome P450 monooxygenase, by map-based cloning and found that EUI1 was weakly expressed in most tissues, but preferentially in young panicles. To confirm its function, transgenic experiments with different constructs of EUI1 were conducted. Overexpression of EUI1 gave rise to the gibberellin-deficient-like phenotypes, which could be partially reversed by supplementation with gibberellin. Furthermore, apart from the alteration of expression levels of the gibberellin biosynthesis genes, accumulation of SLR1 protein was found in the overexpressing transgenic plants, indicating that the expression level of EUI1 is implicated in both gibberellin-mediated SLR1 destruction and a feedback regulation in gibberellin biosynthesis. Therefore, we proposed that EUI1 plays a negative role in gibberellin-mediated regulation of cell elongation in the uppermost internode of rice.  相似文献   

18.
The cell walls in the elongating zone of submerged floating rice internodes show high susceptibility to expansins. When internode sections corresponding to such an elongation zone were incubated for 24 h under osmotic stress conditions produced by treatment with 100 mM polyethylene glycol 4000 (PEG), the cell wall susceptibility to expansins remained at its initial level, while the susceptibility of internode sections incubated under unstressed conditions decreased considerably during the same period. The contents of polysaccharides and phenolic acids as ferulic, diferulic and p-coumaric acids in the cell walls of internode sections increased substantially under unstressed conditions, but the increases were almost completely prevented by osmotic stress. Ferulic acid applied to internode sections under osmotic stress reduced the susceptibility of the cell walls to expansins and increased the levels of ferulic and diferulic acids in the cell walls, with little effect on the accumulation of polysaccharides. In contrast, applied p-coumaric acid increased the level of p-coumaric acid in the cell walls without a change in the levels of ferulic and diferulic acids but did not reduce the susceptibility to expansins. These results suggest that the deposition of ferulic and diferulic acids is a primary determinant in regulating the reduction of the susceptibility of cell walls to expansins in floating rice internodes.  相似文献   

19.
H T Cho  H Kende 《The Plant cell》1997,9(9):1661-1671
Expansins are a family of proteins that catalyze long-term extension of isolated cell walls. Previously, two expansin proteins have been isolated from internodes of deepwater rice, and three rice expansin genes, Os-EXP1, Os-EXP2, and Os-EXP3, have been identified. We report here on the identification of a fourth rice expansin gene, Os-EXP4, and on the expression pattern of the rice expansin gene family in deepwater rice. Rice expansin genes show organ-specific differential expression in the coleoptile, root, leaf, and internode. In these organs, there is increased expression of Os-EXP1, Os-EXP3, and Os-EXP4 in developmental regions where elongation occurs. This pattern of gene expression is also correlated with acid-induced in vitro cell wall extensibility. Submergence and treatment with gibberellin, both of which promote rapid internodal elongation, induced accumulation of Os-EXP4 mRNA before the rate of growth started to increase. Our results indicate that the expression of expansin genes in deepwater rice is differentially regulated by developmental, hormonal, and environmental signals and is correlated with cell elongation.  相似文献   

20.
Brassinosteroid (BR) phytohormones play crucial roles in regulating internode elongation in rice (Oryza sativa). However, the underlying mechanism remains largely unclear. The dwarf and low-tillering (dlt) mutant is a mild BR-signaling-defective mutant. Here, we identify two dlt enhancers that show more severe shortening of the lower internodes compared to the uppermost internode (IN1). Both mutants carry alleles of ORYZA SATIVA HOMEOBOX 15 (OSH15), the founding gene for dwarf6-type mutants, which have shortened lower internodes but not IN1. Consistent with the mutant phenotype, OSH15 expression is much stronger in lower internodes, particularly in IN2, than IN1. The osh15 single mutants have impaired BR sensitivity accompanied by enhanced BR synthesis in seedlings. DLT physically interacts with OSH15 to co-regulate many genes in seedlings and internodes. OSH15 targets and promotes the expression of the BR receptor gene BR INSENSITIVE1 (OsBRI1), and DLT facilitates this regulation in a dosage-dependent manner. In osh15, dlt, and osh15 dlt, BR levels are higher in seedlings and panicles, but unexpectedly lower in internodes compared with the wild-type. Taken together, our results suggest that DLT interacts with OSH15, which functions in the lower internodes, to modulate rice internode elongation via orchestrating BR signaling and metabolism.

DWARF AND LOW-TILLERING interacts with the homeodomain protein OSH15, which directly targets the brassinosteroid receptor gene OsBRI1 and is expressed in lower internodes, to regulate the internode elongation via modulating brassinosteroid signaling and metabolism.

IN A NUTSHELL Background: Rice culms consist of five to seven internodes and the length of these internodes determines plant height and resistance to wind, which is crucial for field performance. Brassinosteroid (BR) plant hormones are involved in regulating plant height because defects in BR synthesis or signaling (such as mutants in the BR receptor gene BRASSINOSTEROID INSENSITIVE 1 (OsBRI1)) usually result in dwarfism with specific shortening of the lower internodes or the second internode (IN2) compared to that of the uppermost/first internode (IN1). This pattern is known as d6 or dm-type dwarfism. Question: We wanted to know how BRs are involved in organizing the different internodes and therefore, we carried out a large-scale screen for mutants with altered internode organization pattern using the mild BR signaling-defective mutant dwarf and low-tillering (dlt). Findings: We identified two mutants showing specific shortening of the lower internodes, that is d6-type dwarfism. Both mutants have the same causal gene, namely, OSH15, which encodes a homeodomain-containing protein. OSH15 can directly interact with DLT, forming a protein complex to regulate BR contents and BR signaling. For example, DLT–OSH15 directly binds the promoter of OsBRI1 to promote gene expression. OSH15 expression is strong in the lower internodes, particularly in IN2, and DLT shows an opposite expression pattern. Therefore, the protein complex has different levels in different internodes, exerting different effects on BR levels and signaling to modulate internode organization. Next steps: Scientists aim to use BR-related genes to engineer plant height and grain size and thus produce new crops having improved grain yield and lodging resistance. The discovery of the DLT–OSH15–OsBRI1 module could help achieve this goal. Next, we will try to uncover how BRs coordinate internode elongation with panicle development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号