首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracellular polymeric substances (EPS) play an important role in the formation and activity of biofilms in wastewater treatment (WWT). The EPS of the denitrifying biomarker Comamonas denitrificans strain 110, produced in different culture media and growth modes, were characterized. The EPS mainly contained protein (3–37%), nucleic acids (9–50%), and carbohydrates (3–21%). The extracellular DNA was found to be important for initial biofilm formation since biofilm, but not planktonic growth, was inhibited in the presence of DNase. The polysaccharide fraction appeared to consist of at least two distinct polymers, one branched fraction (A) made up of glucose and mannose with a molecular weight around 100 kDa. The other fraction (B) was larger and consisted of ribose, mannose, glucose, rhamnose, arabinose, galactose, and N-acetylglucosamine. Fraction B polysaccharides were mainly found in capsular EPS which was the dominant type in biofilms and agar-grown colonies. Fraction A was abundant in the released EPS, the dominant type in planktonic cultures. Biofilm and agar-grown EPS displayed similar overall properties while planktonic EPS showed clear compositional disparity. This study presents results on the physiology of a key WWT organism, which may be useful in the future development of improved biofilm techniques for WWT purposes.  相似文献   

2.
Biofilm formation in bacteria is closely linked with production of exopolysaccharides (EPS). This study examined the quantitative variations in EPS production and biofilm-forming ability among bacteria isolated from the seawater intake point of a power station located on the east coast of India. Of the 233 isolates obtained from the intake site, 71 bacterial isolates displayed different colony morphological characteristics. Thirteen isolates that produced wide and thick mucoid colonies were further tested for their ability to attach and form biofilms by microtitre plate assay and confocal microscopy. EPS production among the selected bacterial isolates ranged from 826 to 1838 μg ml−1. Strain SBT033, which produced the maximum amount of EPS also displayed the maximum biofilm-forming ability among the 13 isolates. This strain was selected for further characterization using biochemical and molecular methods. The pale orange-pigmented isolate was a Gram negative, aerobic, short rod-shaped and grew well only in the presence of 2% NaCl. On the basis of phenotypic characteristics the isolate SBT033 is shown to belong to the genus Pseudoalteromonas. Analysis of 16S rRNA of the isolate revealed 99% homology with Pseudoalteromonas ruthenica.  相似文献   

3.
The aromatic hydrocarbon-degrading bacterium, Pseudomonas putida G7, produces exopolymers of potential interest in biotechnological applications. These exopolymers have been shown to have significant metal-binding ability . To initiate the study of the metal–polymer interactions, we explored the physical and chemical nature of the P. putida G7 exopolysaccharide, a major component of the exopolymer. A capsular structure was observed by light microscopy surrounding both planktonic and attached cells in biofilms after immunofluorescence staining with polyclonal antiserum raised against planktonic cells. Further work with planktonic cells showed that the immunostained capsule remained associated with young (log phase) cells, whereas older (stationary phase) cells lost their capsular material to the external milieu. Visualization of frozen, hydrated stationary phase cells by cryo-field emission scanning electron microscopy (cryoFESEM) revealed highly preserved extracellular material. In contrast, conventional scanning electron microscopy (SEM) of stationary phase cells showed rope-like material that most probably results from dehydrated and collapsed exopolymer. Both capsular and released exopolymers were separated from cells, and the released extracellular polysaccharide (EPS) was purified. Deoxycholate–polyacrylamide gel electrophoresis (PAGE) and silver/alcian blue staining of the partially purified material showed that it contained both EPS and lipopolysaccharide (LPS). Further purification of the EPS using a differential solubilization technique to remove LPS yielded highly purified EPS. Gas chromatography–mass spectrometry revealed that the purified EPS contained the monosaccharides, glucose, rhamnose, ribose, N-acetylgalactosamine and glucuronic acid. The structural and chemical properties of the P. putida EPS described here increase our understanding of the mechanisms of toxic metal binding by this well-known Proteobacterium.  相似文献   

4.
Summary Bacteria isolated from the rhizosphere, the rhizobacteria, of sorghum, pearl millet, wheat, alfalfa and rice were screened for the production of exopolysaccharide (EPS). Nearly a quarter of the strains produced exopolysaccharides, either capsular or hydrosoluble slime. A majority of the isolates produced slime. Physico-chemical analyses have indicated the ability of certain diazotrophic Pseudomonas paucimobilis isolates from millets and sorghum to produce unique types of EPS, which are highly viscous and thermostable.Correspondence to: T. Heulin  相似文献   

5.
Isolates from air in several locations in Thailand were identified as Aureobasidium pullulans PR with dark pigmentation (Loei province), A. pullulans SU with an unusual conidial apparatus (Chiangmai province), and A. pullulans CU with burgundy-red pigmentation (from a shady area in Bangkok). The internal transcribed spacer sequences of the rDNA of A. pullulans SU and A. pullulans CU confirmed that they were A. pullulans. Both A. pullulans CU and A. pullulans PR preferred 30 °C and pH 7.5 for exopolysaccharide (EPS) production, while A. pullulans SU preferred 25 °C and pH 6.5. All three isolates preferred glucose over sucrose and (NH4)2SO4 over peptone for EPS production. Under optimal conditions, A. pullulans PR produced EPS yields of up to 0.225 g g−1, followed by A. pullulans CU (0.185 g g−1) and A. pullulans SU (0.158 g g−1). Amylase activities were detected during the course of EPS production but gradually decreased as the EPS yields increased. IR spectra suggest that the EPS from these isolates was pullulan. EPS from the three isolates were partially sensitive to pullulanase. Electronic Publication  相似文献   

6.
Bioremediation, a strategy mediated by microorganisms, is a promising way used in the degradation or removal of organic contaminants from soil or aquatic system. Exopolysaccharide (EPS) which was produced by a variety of Gram-negative bacteria has been demonstrated to be a potential bioemulsifier used in the degradation of hydrocarbons. In the present study, attempts were made to optimize the production of EPS from our newly isolates by adjusting the culture conditions and medium components. Besides, the performance of diesel oil emulsification using partially purified EPS derived from different conditions was also demonstrated. Out of 40 root nodulating bacteria the better emulsifying abilities were recorded from three strains namely Rhizobium miluonense CC-B-L1, Burkholderia seminalis CC-IDD2w and Ensifer adhaerens CC-GSB4, as can be seen from their emulsification index (E24) 66, 64 and 60%, respectively. These three strains produced 212, 203 and 198 mg l−1 of EPS, respectively, in yeast extract mannitol (YEM) medium. After modifying culture conditions, better performances can be achieved from these three strains, with increases of 21.7, 21.4, 16.7% in the EPS production and 12.1, 10.9, 8.3% in E24, respectively. When considered for strain CC-B-L1 and CC-IDD2w, the addition of 1.5% (v/v) of mannitol and 0.1% (v/v) of asparagine in YEM enhanced 42.9 and 34.7% in EPS production along with 28.8 and 37.5% higher in E24. The supplement of 2.0% (v/v) glucose and 0.2% (v/v) asparagine in YEM increased 65.2% of EPS and 38.3% of E24 in strain CC-GSB4. This is the first report demonstrating the optimization of diesel emulsification by EPS from root nodulating isolates, and these microbial agents might be used in the remediation of hydrocarbon contaminated soils in a near future.  相似文献   

7.
Karr DB  Liang RT  Reuhs BL  Emerich DW 《Planta》2000,211(2):218-226
 The exact mechanism(s) of infection and symbiotic development between rhizobia and legumes is not yet known, but changes in rhizobial exopolysaccharides (EPSs) affect both infection and nodule development of the legume host. Early events in the symbiotic process between Bradyrhizobium japonicum and soybean (Glycinemax [L.] Merr.) were studied using two mutants, defective in soybean lectin (SBL) binding, which had been generated from B. japonicum 2143 (USDA 3I-1b-143 derivative) by Tn5 mutagenesis. In addition to their SBL-binding deficiency, these mutants produced less EPS than the parental strain. The composition of EPS varied with the genotype and with the carbon source used for growth. When grown on arabinose, gluconate, or mannitol, the wild-type parental strain, B. japonicum 2143, produced EPS typical of DNA homology group I Bradyrhizobium, designated EPS I. When grown on malate, strain 2143 produced a different EPS composed only of galactose and its acetylated derivative and designated EPS II. Mutant 1252 produced EPS II when grown on arabinose or malate, but when grown on gluconate or mannitol, mutant 1252 produced a different EPS comprised of glucose, galactose, xylose and glucuronic acid (1:5:1:1) and designated EPS III. Mutant 1251, grown on any of these carbon sources, produced EPS III. The EPS of strain 2143 and mutant 1252 contained SBL-binding polysaccharide. The amount of the SBL-binding polysaccharide produced by mutant 1252 varied with the carbon source used for growth. The capsular polysaccharide (CPS) produced by strain 2143 during growth on arabinose, gluconate or mannitol, showed a high level of SBL binding, whereas CPS produced during growth of strain 2143 on malate showed a low level of SBL binding. However, the change in EPS composition and SBL binding of strain 2143 grown on malate did not affect the wild-type nodulation and nitrogen fixation phenotype of 2143. Mutant 1251, which produced EPS III, nodulated 2 d later than parental strain 2143, but formed effective, nitrogen-fixing tap root nodules. Mutant 1252, which produced either EPS II or III, however nodulated 5–6 d later and formed few and ineffective tap root nodules. Restoration of EPS I production in mutant 1252 correlated with restored SBL binding, but not with wild-type nodulation and nitrogen fixation. Received: 6 October 1999 / Accepted: 18 November 1999  相似文献   

8.
Enzyme activities in activated sludge flocs   总被引:9,自引:0,他引:9  
This study quantified the activities of enzymes in extracellular polymeric substances (EPS) and in pellets. Seven commonly adopted extraction schemes were utilized to extract from aerobic flocs the contained EPS, which were further categorized into loosely bound (LB) and tightly bound (TB) fractions. Ultrasonication effectively extracted the EPS from sludge flocs. Enzyme assay tests showed that the protease activity was localized mainly on the pellets, α-amylase and α-glucosidase activities were largely bound with LB-EPS, and few protease, α-amylase, or α-glucosidase activities were associated with the TB-EPS fraction. There exists no correlation between the biochemical compositions of EPS and the distribution of enzyme activities in the sludge matrix. The 44–65% of α-amylase and 59–100% of α-glucosidase activities noted with the LB-EPS indicate heterogeneous hydrolysis patterns in the sludge flocs with proteins and carbohydrates.  相似文献   

9.
The prevalence and nature of Shiga toxin (Stx)-producing Escherichia coli (STEC) and Stx phage were investigated in 720 swine fecal samples randomly collected from a commercial breeding pig farm in China over a 1-year surveillance period. Eight STEC O157 (1.1%), 33 STEC non-O157 (4.6%), and two stx-negative O157 (0.3%) isolates were identified. Fecal filtrates were screened directly for Stx phages using E. coli K-12 derivative strains MC1061 as indicator, yielding 15 Stx1 and 57 Stx2 phages. One Stx1 and eight Stx2 phages were obtained following norfloxacin induction of the eight field STEC O157 isolates. All Stx1 phages had hexagonal heads with long tails, while Stx2 phages had three different morphologies. Notably, most of field STEC O157 isolates released more free phages and Stx toxin after induction with ciprofloxacin. Furthermore, upon infection with the recombinant phage ΦMin27(Δstx::cat), E. coli laboratory strains produced both lysogenic and lytic phage, whereas two of the eight O157 STEC isolates produced only lysogens. The lysogens from laboratory strains produced infectious particles similar to ΦMin27. Similarly, the lysogens from the STEC O157 isolates released Stx phage too, although free ΦMin27(Δstx::cat) particles were not detected. Collectively, our results reveal that breeding pig farms could be important reservoirs for Stx phages and that residual antibacterial agents may enhance the release of Stx phages and the expression of Stx.  相似文献   

10.
In this study, the characteristics of extracellular polymeric substance (EPS) fractions of biofilm during the process of establishing a partial nitrification under salt stress were analyzed in terms of concentrations, molecular weight distribution, and three-dimensional excitation–emission matrix (EEM) fluorescence spectroscopy. A partial nitrification was formed successfully with a salinity of 1%. Results indicated that the amount of total EPS increased from 54.2 mg g−1 VSS−1 on day 1 to 99.6 mg g−1 VSS−1 on day 55 due to the NaCl concentration changed from 0 to 10.0 g L−1 in a biofilm reactor. The changes of loosely bound EPS (LB-EPS) compounds under different salt concentrations appeared to be more significant than those of the tightly bound EPS. A clear release of polysaccharides in the LB-EPS fraction was detected during the enhancement of salinity. This was considered as a protective response of bacteria to the salinity. Three fluorescence peaks were identified in the EEM fluorescence spectra of the EPS fraction samples. Two peaks were assigned to the protein-like fluorophores, and the third peak was located at the excitation/emission wavelengths of 275 nm/425–435 nm of the spectra of EPS fractions till the salinity maintained constant at 1%. This information is valuable for understanding the characteristics of EPS isolated from biomass in a saline nitrogen removal system.  相似文献   

11.
The influencing factors of extracellular polysaccharide (EPS) produced from a strain of lactic acid bacteria (LAB L15) were studied by using the phenol-H2SO4 method. It was demonstrated that the strain produced EPS at the most amount when it was incubated for 40–48 h and when the pH value was 4 under 30°C. Glucose was the most suitable carbon source for LAB-producing EPS. The rough EPS was obtained from L15 culture after centrifugation, dialysis, deprotein, decoloration, and ethanol-precipitation. The sample was at least composed of two polysaccharides that were completely different in molecular weight and the amount. The purified EPS was passed through the SephadexG-200 column and it showed that it was a sample purified by thin layer chromatography. __________ Translated from Microbiology, 2005, 32(4): 85–90 [译自: 微生物学通报, 2005, 32(4): 85–90]  相似文献   

12.
The dual roles of capsular extracellular polymeric substances (EPS) in the photocatalytic inactivation of bacteria were demonstrated in a TiO2-UVA system, by comparing wild-type Escherichia coli strain BW25113 and isogenic mutants with upregulated and downregulated production of capsular EPS. In a partition system in which direct contact between bacterial cells and TiO2 particles was inhibited, an increase in the amount of EPS was associated with increased bacterial resistance to photocatalytic inactivation. In contrast, when bacterial cells were in direct contact with TiO2 particles, an increase in the amount of capsular EPS decreased cell viability during photocatalytic treatment. Taken together, these results suggest that although capsular EPS can protect bacterial cells by consuming photogenerated reactive species, it also facilitates photocatalytic inactivation of bacteria by promoting the adhesion of TiO2 particles to the cell surface. Fluorescence microscopy and scanning electron microscopy analyses further confirmed that high capsular EPS density led to more TiO2 particles attaching to cells and forming bacterium-TiO2 aggregates. Calculations of interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) potential, suggested that the presence of capsular EPS enhances the attachment of TiO2 particles to bacterial cells via acid-base interactions. Consideration of these mechanisms is critical for understanding bacterium-nanoparticle interactions and the photocatalytic inactivation of bacteria.  相似文献   

13.
Paenibacillus jamilae, a strain isolated from compost prepared with olive-mill wastewaters, produced an extracellular polysaccharide (EPS) when it was grown in a culture containing olive-mill waste waters (OMWW) as sole carbon and energy sources. Maximal EPS production in 100 mL batch-culture experiments (5.1 g L−1) was reached with a concentration of 80% of OMWW as fermentation substrate (v/v). Although an inhibitory effect was observed on growth and EPS production when OMWW concentration was increased, an appreciable amount of EPS (2.7 g L−1) was produced with undiluted OMWW. Sepharose CL-2B chromatography showed that the EPS presented two fractions, EPS I (>2000 kDa) and EPS II (500 kDa). Both fractions were characterized by GC-MS as two different acidic heteropolysaccharides containing glucose, galactose and mannose as the major components. The performed study made evident the possibility of using OMWW as substrate for the production of EPS by P. jamilae with a satisfactory yield.  相似文献   

14.
The surface polysaccharides of Rhizobium leguminosarum 128C53 smrrifr (parent) and its exo−1 mutant were isolated and characterized. The parent carries out normal symbiosis with its host, pea, while the exo−1 mutant does not nodulate the pea. The following observations were made. (a) The parent produces lipopolysaccharide (LPS), typical acidic extracellular polysaccharide (EPS), and three additional polysaccharides, PS1, PS2, and PS3. The PS1 and PS2 fractions are likely to be the capsular polysaccharide (CPS) and are identical in composition to the EPS. The PS3 fraction is a small-molecular-weight glucan. (b) The exo−1 mutant produces LPS, EPS, and a PS3 fraction, but does not produce significant amounts of either PS1 or PS2. The LPS from the exo−1 mutant appears to be identical to the parental LPS. Analysis of the EPS from exo−1 shows that it consists of two polysaccharides. One polysaccharide is identical to the LPS and comprises 70% of the exo−1 EPS. The second polysaccharide is identical to the exo−1 PS3 and comprises 30% of the exo−1 EPS. This result shows that the exo−1 mutant does not produce any of the typical acidic parental EPS and that the major polysaccharide released into the media by the exo−1 mutant is intact LPS. The exo−1 mutant PS3 fraction was found to contain two polysaccharides, PS3-1 and PS3-2. The PS3-2 polysaccharide is identical to the parental PS3 described above. The PS3-1 polysaccharide has a composition similar to the polysaccharide portion of the LPS. This result suggests that the exo−1 mutant produces LPS polysaccharide fragments. These LPS polysaccharide fragments are not produced by the parent strain.  相似文献   

15.
Abstract In many intertidal cohesive—sediment habitats, epipelic diatoms are the dominant microphytobenthic organisms. In such sediments, concentrations of colloidal carbohydrate [including the exopolymeric substances (EPS) produced by diatoms during motility] are closely correlated with the biomass (chlorophyll a) of epipelic diatoms. A model describing this relationship (log (conc. coll. carbo. + 1) = 1.40 + 1.02(log (chl. a conc. + 1)) was derived from published data. It was validated against published and unpublished data from 6 different estuaries, and accounted for 64.6% of the variation in sediment colloidal carbohydrate concentrations. The model was valid for intertidal habitats with cohesive sediments where epipelic diatoms constituted >50% of the microphytobenthic assemblage. In sites with noncohesive sediments, or where the microphytobenthic assemblage was dominated by other algal groups, the model was not applicable. The mean percentage of EPS in colloidal carbohydrate extracts varied between 11 and 37% for axenic cultures of epipelic diatoms (with higher values obtained during stationary phase), and between 22.7% and 24.3% for natural sediments dominated by epipelic diatoms. Assuming an EPS percentage of 25% in colloidal extracts yielded an EPS chl. a ratio of 2.62:1. Maximum rates of EPS production in diatom cultures occurred at the beginning of stationary phase (1.6–5.09 μg EPS μg−1 chl a d−1), with Nitzschia sigma having a significantly (P < 0.05) higher rate of production than N. frustulum, Navicula perminuta and Surirella ovata. Similar rates of EPS production were measured in the field. The dynamics of EPS production and loss on mudflats is discussed, with reference to the model and these production rates. Received: 25 February 1997; Accepted: 23 May 1997  相似文献   

16.
Aerobic, alkaliphilic bacteria were isolated and characterized from water and sediment samples collected in the winter season, January 2002 from alkaline Lonar lake, India, having pH 10.5. The total number of microorganisms in the sediment and water samples was found to be 102–106 cfu g−1 and 102–104 cfu ml−1, respectively. One hundred and ninety-six strains were isolated using different enrichment media. To study the bacterial diversity of Lonar lake and to select the bacterial strains for further characterization, screening was done on the basis of pH and salt tolerance of the isolates. Sixty-four isolates were subjected to phenotypic, biochemical characterization and 16S rRNA sequencing. Out of 64, 31 bacterial isolates were selected on the basis of their enzyme profile and further subjected to phylogenetic analysis. Phylogenetic analysis indicated that most of the Lonar lake isolates were related to the phylum Firmicutes, containing Low G+C, Gram-positive bacteria, with different genera: Bacillus, Paenibacillus, Alkalibacillus, Exiguobacterium, Planococcus, Enterococcus and Vagococcus. Seven strains constituted a Gram-negative bacterial group, with different genera: Halomonas, Stenotrophomonas and Providencia affiliated to γ-Proteobacteria, Alcaligenes to β-Proteobacteria and Paracoccus to α-Proteobacteria. Only five isolates were High G+C, Gram-positive bacteria associated with phylum Actinobacteria, with various genera: Cellulosimicrobium, Dietzia, Arthrobacter and Micrococcus. Despite the alkaline pH of the Lonar lake, most of the strains were alkalitolerant and only two strains were obligate alkaliphilic. Most of the isolates produced biotechnologically important enzymes at alkaline pH, while only two isolates (ARI 351 and ARI 341) showed the presence of polyhydroxyalkcanoate (PHA) and exopolysaccharide (EPS), respectively.  相似文献   

17.
Aims: To determine whether the presence and type of exopolysaccharides (EPS), slime‐EPS or capsular, and the structural characteristics of the polymers produced by Streptococcus thermophilus strains could interfere with or be involved in phage adsorption. Methods and Results: Phage–host interactions between eight EPS‐producing Strep. thermophilus strains (CRL419, 638, 804, 810, 815, 817, 821, 1190) and five streptococcus specific phages (φYsca, φ3, φ5, φ6, φ8) isolated from Argentinean faulty fermentation failed yoghurts were evaluated. No relationship was found between the EPS chemical composition and the phage sensitivity/resistance phenotype. In general, the capsular‐producing strains were more sensitive to phage attacks than the noncapsular‐producing strains. Streptococcus thermophilus CRL1190 (capsular‐producing) was the only strain sensitive to all bacteriophages and showed the highest efficiency of plating. Phage adsorption to a capsular‐negative, EPS low‐producing mutant of strain CRL1190 was reduced, especially for φYcsa and φ8. Conclusions: The presence of capsular polysaccharide surrounding the cells of Strep. thermophilus strains could play a role in the adsorption of specific phages to the cells. Significance and Impact of the Study: Capsular‐producing Strep. thermophilus strains should be evaluated for their bacteriophage sensitivity if they are included in starter cultures for the fermented food industry.  相似文献   

18.
Extracellular polymeric substances (EPS) produced by a toxic dinoflagellate Amphidinium carterae Hulburt 1957 was isolated and characterized. Molecular masses of the EPS were about 233 and 1,354 kDa. Spectral analyses by 1H nuclear magnetic resonance and Fourier Transformed–Infrared Spectroscopy revealed the characteristic of the functional groups viz. primary amine, carboxyl, halide, and sulfate groups present in the EPS. However, five elements (C, O, Na, S, and Ca) were detected by scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDX) analysis. X-ray diffraction and differential scanning calorimetric analysis confirmed the amorphous nature of EPS, which was comprised of an average particle size of 13.969 μm (d 0.5) with 181 nm average roughness. Two monosaccharide constituents, galactose (73.13%) and glucose (26.87%) were detected by gas chromatography–mass spectroscopy analysis. Thermal gravimetric analysis revealed that degradation of EPS obtained from A. carterae takes place in three steps. The EPS produced by A. carterae was found to be beneficial for the growth of both A. carterae and Bacillus pumilus. The potential heterogeneous properties of EPS may play an important role in harmful algal bloom.  相似文献   

19.
The filamentous desmid Spondylosium panduriforme (Heimerl) Teiling var. panduriforme f. limneticum (West & West) Teiling (Desmidiaceae), strain 072CH-UFCAR, is surrounded by a well-defined, mucilaginous capsule consisting of a capsular polysaccharide (CPS). This microalga also produces an extracellular polysaccharide (EPS), which can be isolated from the culture medium. Analysis of the carbohydrate composition of the two polymers by gas chromatography showed that they were different. Both were composed, of galactose, fucose, xylose, arabinose, rhamnose, and glucose but in different amounts. For example, glucuronic acid accounts for 24% of the EPS material but only traces were found in the CPS. Significant differences were also found during methylation analysis. Fucose appeared to have a higher degree of branching in the EPS than in the CPS. These branches were located on C-3 and could be the position for the attachment of the glucuronic acid units in the EPS. The glucuronic acid was present as 1→4-linked and terminal units. A possible explanation for the formation of the EPS is suggested.  相似文献   

20.
Phosphobacteria are able to enhance phosphorus availability in soil and improve crop yields. To develop such biofertilizers, 14 predominant phosphobacteria were isolated from eutrophic aquatic ecosystems. Molecular identification and phylogenetic analysis revealed three groups among the nine isolates of inorganic phosphate-solubilizing bacteria (IPSB): IPSBl and IPSB2 belonged to the actinobacteria and flavobacteria, respectively, and the other seven belonged to the γ-proteobacteria. Among five isolates of organic phosphorus-mineralizing bacteria (OPMB), two groups were present: OPMB1 and OPMB3 belonged to the β-proteobacteria, while the other three belonged to the γ-proteobacteria. The IPSB isolates released 62.8–66.7 mg P 1−1 from tricalcium phosphate under shaking conditions, and 26.8 to 43.7 mg P 1−1 under static conditions; the OPMB strains released 23.5–30.2 mg P 1−1 from lecithin under shaking conditions, and 16.7–27.6 mg P 1−1 under static conditions. To the best of our knowledge, this is the first report indicating that IPSBl (designated Aureobacterium resistents) as a tricalcium phosphate-solubilizing bacterium and OPMB1 and OPMB3 (designated Acidovorax temperans and Achromobacter xylosoxidans, respectively) are lecithin-mineralizing bacteria. This investigation demonstrated that a eutrophic aquatic ecosystem is a selective source of phosphobacteria and the screened phosphobacteria are a potential alternative to the development of biofertilizers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号