首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
众所周知,固着生长的植物经常受到环境中各种生物和非生物胁迫的威胁。所以在漫长的进化过程中,植物必须将多样的环境信号整合到其发育过程中,以实现适应性形态的发生和代谢途径的精确调控,最终使植物完成整个生长周期。研究显示,苯丙烷代谢作为植物重要的次级代谢途径之一,其代谢产物,例如木质素、孢粉素、花青素和有机酸等,在调控植物适应性生长的过程中发挥着重要功能。特别是在药用植物中,苯丙烷代谢还与众多药用活性成分的合成息息相关,几乎所有包含苯丙烷骨架的天然药效成分均由苯丙烷代谢途径直接或间接合成,例如黄酮类、萜类和酚类等。此外,经苯丙烷代谢途径产生的一些次级代谢产物还能由植物根系外泌到周际土壤中,通过改变根系微生物的菌群生态,而影响植物生长和抵抗生物或非生物胁迫的能力。同时,苯丙烷代谢介导的这种植物-微生物互作也与药用植物的道地品质密不可分。本文综述了近年来植物苯丙烷代谢途径的最新研究进展,重点对该代谢途径中代谢产物的生理功能及表达调控机制进行了介绍,以期更深入地理解药用植物苯丙烷代谢与药材性状之间的潜在关系,旨在指导优良中草药的遗传育种,以进一步促进我国中医药事业的蓬勃发展。  相似文献   

2.
3.
Stress-Induced Phenylpropanoid Metabolism   总被引:36,自引:0,他引:36       下载免费PDF全文
Dixon RA  Paiva NL 《The Plant cell》1995,7(7):1085-1097
  相似文献   

4.

Jasmonates are important phytohormones involved in both plant developmental processes as well as defense reactions. Many JA-mediated plant defense responses have been studied in model plants using mutants of the jasmonate signaling pathway. However, in plant species where JA-signaling mutants are not accessible, the availability of a tool targeting JA signaling is crucial to investigate jasmonate-dependent processes. Neomycin is a poly-cationic aminoglycoside antibiotic that blocks the release of Ca2+ from internal stores. We examined the inhibitory activities of neomycin on different jasmonate-inducible responses in eight different plant species: Intracellular calcium measurements in Nicotiana tabacum cell culture, Sporamin gene induction in Ipomoea batatas, PDF2.2 gene expression in Triticum aestivum, Nepenthesin protease activity measurement in Nepenthes alata, extrafloral nectar production in Phaseolus lunatus, nectary formation in Populus trichocarpa, terpene accumulation in Picea abies, and secondary metabolite generation in Nicotiana attenuata. We are able to show that neomycin, an easily manageable and commercially available compound, inhibits JA-mediated responses across the plant kingdom.

  相似文献   

5.
The metabolism of -aminobutyric acid (AB) has been studied inhigher plants, particularly in peas and peanuts. Transaminationappeared to form the first step in AB degradation although transaminaseactivities were very low. The relatively active AB transaminaseassociated with whole pea plants possessing nodulated rootsappears to reside almost entirely within the nodules. AB transaminationwas demonstrated conclusively in extracts of mitochondria fromcotyledons of peanut seedlings; pyruvic acid acted as a betteramino-group acceptor than -ketoglutaric acid (KG). AB transaminaseactivity present in the microsomal and soluble cytoplasmic fractionsof the cells was very low AB was not metabolized perceptibly by intact mitochondria frompeanut, but when various organic acids were supplied simultaneously,an extra uptake of oxygen occurred and was associated with ABdisappearance. Aspartate, alanine, and ammonia were formed usingthe nitrogen atom of AB. The metabolic pathway followed by the carbon skeleton of ABwas traced by supplying C14-labelled material to leaf discsof peas and to mitochondria from peanut cotyledons. Radioactivitywas incorporated into organic acids, amino-acids, and respiratorycarbon dioxide in a manner suggesting that AB was convertedinto succinate which was then metabolized by the enzymes ofthe Krebs cycle present in the plant mitochondria. Glutamic decarboxylase was shown to be present largely in thenon-particulate (soluble) cytoplasm of cells. The enzymes responsiblefor AB synthesis and degradation, glutamic decarboxylase, andAB transaminase, respectively, therefore largely reside in differentsub-cellular fractions.  相似文献   

6.
Phenylpropaniod metabolism has been implicated in plant defence mechanism(s) against pathogen attack. In this study, phenylpropanoid metabolism was examined over a 72 h time course in the weed sicklepod (Cassia obtusifolia) in relation to pathogenic effects of the fungus Alternaria cassiae. When 3- to 4-week old seedlings were challenged by the pathogen, extrable phenylalanine ammonia-lyase (PAL, E.C. 4.3.1.5) activity was dramatically increased above that in uninfected plants severalhours after inoculation and exposure to dew. Greatest increases of enzyme activity (3-fold, specific activity basis) occurred at ca 15–23 after treatment with fungal spores. After this peak of activity, PAL activity declined with time in infectedtissue, but remained greater than in uninfected plants through 65 h after treatment. Total methanol-soluble hydroxyphenolic compound levels (PAL products) were higher in shoots (stems and leaves) of infected plants at 48–72 h. Leaves contained a higherconcentration (per gram fresh weight) of hydroxyphenolic compounds than did stems, and infected leaves exhibited a phenolic content greater than that of uninfected leaves at ca 27–72 h. Increased soluble phenolic compound production correlated with the appearance of lesions and necrotic spots on leaves and stems. UV irradiation examination and spectrofluorometric analysis of thin layer chromatographic separations of methanolic exatracts revealed a substantial increase of several components ininfected tissue 48 h after inoculation. Results support the view that PAL activity increases correlate with increased phenolic compound production in this host/pathogen interaction.  相似文献   

7.
Molybdenum Metabolism in Plants   总被引:1,自引:0,他引:1  
Abstract: Among the micronutrients essential for plant growth and for microsymbionts, Mo is required in minute amounts. However, since Mo is often sequestered by Fe- or Al-oxihydrox-ides, especially in acidic soils, the concentration of the water-soluble molybdate anion available for uptake by plants may be limiting for the plant, even when the total Mo content of the soil is sufficient. In contrast to bacteria, no specific molybdenum uptake system is known for plants, but since molybdate and sulfate behave similarly and have similar structure, uptake of molybdate could be mediated unspecifically by one of the sulfate transporters. Transport into the different plant organs proceeds via xylem and phloem. A pterin-bound molybdenum is the cofactor of important plant enzymes involved in redox processes: nitrate reductase, xanthine dehydrogenase, aIdehyde oxidase, and probably sulfite oxidase. Biosynthesis of the molybdenum cofactor (Moco) starts with a guanosine-X-phos-phate. Subsequently, a sulfur-free pterin is synthesized, sulfur is added, and finally molybdenum is incorporated. In addition to the molybdopterin enzymes, small molybdopterin binding proteins without catalytic function are known and are probably involved in the storage of Moco. In symbiotic systems the nitrogen supply of the host plant is strongly influenced by the availability of Mo in soil, since both bacterial nitrogenase and NADPH-dependent nitrate reductase of mycorrhizal fungi are Mo enzymes.  相似文献   

8.
Hydrogen Metabolism in Higher Plants   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

9.
高等植物中铁的代谢机制   总被引:1,自引:0,他引:1  
铁在高等植物的生长发育中发挥着重要作用,但随着人类的耕作及土壤的盐碱化,缺铁已成为一个世界性植物营养问题。高等植物在长期的进化过程中,形成了完善的对环境铁信号响应的体系。本文围绕植物与环境的相互作用,综述了近年来植物铁营养的吸收、转运、分配和储存的研究进展,并总结了植物中铁营养代谢调控的相关机理。  相似文献   

10.
11.
A time-dependent correlation of anatomical and chemical defence reactions was shown during the incompatible reaction of tomato against the phanerogamic parasite Cuscuta reflexa. Microscopical analysis of the infection sites at the tomato stem revealed the elongation of epidermal, hypodermal and collenchymatic cells beneath the parasitic prehaustorium. After 9–11 days of infection the elongated cells had collapsed forming a visible brownish plaque at the tomato stem followed by a scalariform tissue with lignified and suberized cell walls. Concomitantly, an enhanced accumulation of soluble phenolic compounds (chlorogenic acid and an unidentified hydroxycinnamic acid derivative), as well as a stimulation of peroxidases, was observed. In contrast, PAL activity was not increased. Whereas the stimulation of phenylpropanoid metabolism could also be induced by artificial wounding, the described anatomical changes were only observed during attack of Cuscuta.  相似文献   

12.
13.
Kinetin is used as an elicitor to induce vanillic acid formation in cell suspension cultures of Vanilla planifolia. Maximal induction is observed at a kinetin concentration of 20 micrograms per gram of fresh weight of cells. Vanillic acid synthesis is observed a few hours after elicitation. The effects of kinetin on the activity of some enzymes of the phenylpropanoid pathway, i.e. phenylalanine ammonia-lyase, 4-hydroxycinnamate:coenzyme A ligase and uridine 5′-diphosphate-glucose:trans-cinnamic acid glucosyltransferase, are reported and compared to the effects of chitosan. The former two enzymes are induced by chitosan with a maximum activity of approximately 25 to 40 hours after elicitation. All three enzymes are induced by kinetin with maximum activities for phenylalanine ammonia lyase and 4-hydroxycinnamate:coenzyme A ligase at approximately 50 hours after induction, whereas maximum glucosyltransferase activity is seen already after 24 hours. Furthermore, both elicitors induced the formation of lignin-like material, whereas only kinetin induced vanillic acid biosynthesis. Finally, kinetin but not chitosan induces catechol-4-O-methyltransferase activity, catalyzing the formation of 4-methoxycinnamic acids, which were shown to be intermediates of hydroxybenzoic acid biosynthesis within cells of V. planifolia. It is suggested that this methyltransferase is directly involved in the biosynthesis of vanillic acid.  相似文献   

14.
15.
植物的苹果酸代谢和转运   总被引:2,自引:0,他引:2  
本文简要回顾了苹果酸代谢和转运的研究进展。  相似文献   

16.
用瓜类刺盘孢(Colletotrichum langenarium)对哈密瓜进行免疫诱导处理,诱导植株的提取物对瓜类疫霉具有抑制作用。在诱导免疫植株中,苯丙烷类代谢的3个酶(PAL,CA4H和4CL)的活性都比未经免疫诱导的植株增强,过氧化物酶及其同工酶的活性在诱导免疫植株中也明显增强。用10%聚丙烯酰胺凝胶电泳在诱导免疫植株中分离到一种新的蛋白质,这是一种酸性蛋白,等电点为pH5.0,其分子量在15.5kD左右,此蛋白不能直接抑制瓜类疫霉孢子萌发。  相似文献   

17.
The metabolism of -aminobutyric acid (AB) by two yeasts, Saccharomycescerevisiae and Torulopsis utilis, was investigated. Both yeastsgrew well upon AB as a sole source of nitrogen (N), and thelag phase for Torulopsis was shorter than when provided the N-source. The metabolism of AB by Torulopsis, whichwas associated with an increased O2 uptake, was adaptive incharacter. The enzyme whose formation was induced by the supplyof AB was a transaminase, which was apparently specific forAB as the amino donor. Small amounts of transaminase were presentin unadapted, -grown cells. The optimum pH, equilibrium constant, Michaelis' constant, and coenzyme requirementwere investigated for the transamination reaction involving-ketoglutaric acid (KG) as amino group acceptor. Succinic semi-aldehyde(SSA) was a product of this transamination reaction.The possibility;that some AB was converted into SSA by a direct oxidative deaminationremained unconfirmed. The further conversion of SSA into succinic acid was establishedusing intact. cells for both yeasts. This oxidation processwas shown to be linked to the reduction of pyridine nucleotidesvising extracts of Saccharomyces as a source of SSA dehydrogenase.Dehydrogenase activity could be ascribed to two separate enzymes,one linked to DPN, and the other utilizing TPN and requiringMg++ as an activator. The properties of the former enzyme, whichwas more important quantitatively, were investigated and comparedwith those described in the literature for an aldehyde dehydrogenaseof baker's yeast and for SSA dehydro-genases of Pseudomonas.Torulopsis extracts could catalyse the reduction of SSA to -hydroxybutyricacid (OHB); the OHB dehydrogenase involved required TPNH asa coenzyme. Certain other properties of this enzyme are recorded. The possibility is discussed that AB and SSA act as intermediatesin a metabolic pathway that may form a by-pass of the KG-succinatestage of the tricarboxylic acid cycle.  相似文献   

18.
植物在生命周期里能合成释放多种多样的挥发性化合物,这些物质在植物生长发育和代谢调控,植物抵御病虫侵害,以及植物与环境信息交流中行使重要功能。在介绍植物挥发性化合物的生理功能、合成途径调控和商业应用的基础上,重点论述应用基因工程调控植物挥发性物质合成的技术策略和研究进展,并讨论了植物挥发性物质遗传修饰存在的问题和发展前景。  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号