首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulphate uptake by Amphidinium carterae, Amphidinium klebsii and Gymnodinium microadriaticum grown on artificial seawater medium with sulphate, cysteine, methionine or taurine as sulphur source occurred via an active transport system which conformed to Michaelis-Menten type saturation kinetics. Values for K m ranged from 0.18–2.13 mM and V max ranged from 0.2–24.2 nmol · 105 cells–1 · h–1. K m for symbiotic G. microadriaticum was 0.48 mM and V max was 0.2 nmol · 105 cells–1 · h–1. Sulphate uptake was slightly inhibited by chromate and selenate, but not by tungstate, molybdate, sulphite or thiosulphate. Cysteine and methionine (0.1 mM), but not taurine, inhibited sulphate uptake by symbiotic G. microadriaticum, but not by the two species of Amphidinium. Uptake was inhibited 45–97% under both light and dark conditions by carbonylcyanide 3-chlorophenylhydrazone (CCCP); under dark conditions sulphate uptake was 40–60% of that observed under light conditions and was little affected by 3-(3,4-dichlorophenyl) 1,1-dimethylurea (DCMU).The uptake of taurine, cysteine and methionine by A. carterae, A. klebsii, cultured and symbiotic G. microadriaticum conformed to Michaelis-Menten type saturation kinetics. K m values of taurine uptake ranged from 1.9–10 mM; for cysteine uptake from 0.6–3.2 mM and methionine from 0.001–0.021 mM. Cysteine induced a taurine uptake system with a K m of 0.3–0.7 mM. Cysteine and methionine uptake by all organisms was largely unaffected by darkness or by DCMU in light or darkness. CCCP significantly inhibited uptake of these amino acids. Thus energy for cysteine and methionine uptake was supplied mainly by respiration. Taurine uptake by A. carterae was independent of light but was inhibited by CCCP, whereas uptake by A. klebsii and symbiotic G. microadriaticum was partially dependent on photosynthetic energy. Taurine uptake by cultured G. microadriaticum was more dependent on photosynthetic energy and was more sensitive to CCCP. Cysteine inhibited uptake of methionine and taurine by cultured and symbiotic G. microadriaticum to a greater extent than in the Amphidinium species. Methionine did not greatly affect taurine uptake, but did inhibit cysteine uptake. Taurine did not affect the uptake of cysteine or methionine.  相似文献   

2.
This study quantitatively investigated the biosynthesis of methionine (Met) and the production of related compounds from homocysteine (Hcys), cystathionine (Cysta), and homoserine (Hser) plus cysteine (Cys) by rumen bacteria (B) or protozoa (P) alone and by a mixture of these bacteria and protozoa (BP). Rumen contents were collected from fistulated goats to prepare the microbial suspensions and were anaerobically incubated at 39 degrees C for 12 h. Hcys, Cysta, and Hser plus Cys were catabolized by all rumen microbial fractions to different extents. B, P, and BP converted Hcys to Met with 2-aminobutyric acid (2AB) and methionine sulfoxide. The Met-producing ability of B (83.2 micromol g(-1) microbial nitrogen; MN) from Hcys was about 3.6 times higher than that of P in a 6-h incubation period. The ability of BP, during the same incubation period, was about 30.0% higher than that of B. Hcys, Met, and 2AB were formed when Cysta was incubated with B, P, or BP. Rumen microbial fermentation of Hser plus Cys led to the formation of Cysta, Met (through Hcys), and 2AB. Thus the results indicated that a trans-sulfurylation pathway for Met synthesis was operating in the rumen bacteria and protozoa. The results mentioned above have been demonstrated for the first time in B, P, and BP in the present study.  相似文献   

3.
4.
5.
Summary The characteristics of stimulation of colony formationin vitro from cells of mouse haemopoietic tissues has been briefly reviewed. Mouse kidney or embryo feeder cells, media conditioned by the cells from these tissues, normal or leukemic mouse sera, sera from leukemic or infectious mononucleosis patients, human urine and mouse embryo extracts are all sources of colony stimulating activity and their properties have been described. All sources of colony-stimulating activity produce clones of cells of the granulocyte series. In tritiated thymidine treated mice injection of preparations rich in colony-stimulating activity has been shown to produce a neutrophil leucocytosis and accelerate the rate of accumulation of labelled neutrophils in the blood. It is suggested that thein vitro assay can detect factors capable of stimulating granulocyte development.  相似文献   

6.
7.
The production of cysteinesulfinic acid from cysteine in vitro   总被引:1,自引:0,他引:1  
  相似文献   

8.
Engineering of cysteine and methionine biosynthesis in potato   总被引:10,自引:0,他引:10  
Summary. Methionine and cysteine, two amino acids containing reduced sulfur, are not only an important substrate of protein biosynthesis but are also precursors of various other metabolites such as glutathione, phytochelatines, S-adenosylmethionine, ethylene, polyamines, biotin, and are involved as methyl group donor in numerous cellular processes. While methionine is an essential amino acid due to an inability of monogastric animals and human beings to synthesise this metabolite, animals are still able to convert methionine consumed with their diet into cysteine. Thus, a balanced diet containing both amino acids is necessary to provide a nutritionally favourable food or feed source. Because the concentrations of methionine and cysteine are often low in edible plant sources, e.g. potato, considerable efforts in plant breeding and research have been and are still performed to understand the physiological, biochemical, and molecular mechanisms that contribute to their synthesis, transport, and accumulation in plants. During the last decade molecular tools have enabled the isolation of most of the genes involved in cysteine and methionine biosynthesis, and the efficient plant transformation technology has allowed the creation of transgenic plants that are altered in the activity of individual genes. The physiological analysis of these transgenic plants has contributed considerably to our current understanding of how amino acids are synthesised. We focused our analysis on potato (Solanum tuberosum cv. Désirée) as this plant provides a clear separation of source and sink tissues and, for applied purposes, already constitutes a crop plant. From the data presented here and in previous work we conclude that threonine synthase and not cystathionine gamma-synthase as expected from studies of Arabidopsis constitutes the main regulatory control point of methionine synthesis in potato. This article aims to cover the current knowledge in the area of molecular genetics of sulfur-containing amino acid biosynthesis and will provide new data for methionine biosynthesis in solanaceous plants such as potato. Received December 19, 2001 Accepted January 7, 2002  相似文献   

9.
10.
11.
12.
13.
The mixed-ligand complex formation in the systems Hg2+-Edta4−-L (L = Cys2−, Met) has been studied by means of calorimetry, pH-potentiometry and NMR spectroscopy in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO3). The thermodynamic parameters of formation of the HgEdtaL, HgEdtaHL and (HgEdta)2L complexes have been determined. The most probable coordination mode for the complexone and the amino acid in the mixed-ligand complexes is discussed.  相似文献   

14.
15.
16.
17.
18.
The biosynthesis of retinoic acid from retinol by rat tissues in vitro   总被引:3,自引:0,他引:3  
This report shows that a spectrum of vitamin A-dependent tissues can produce retinoic acid by synthesis in situ, indicates that cellular retinol and retinoic acid binding proteins are not obligatory to retinoic acid synthesis, and provides initial characterization of retinoic acid synthesis by rat tissues. Retinoic acid synthesis from retinol was detected in homogenates of rat testes, liver, lung, kidney, and small intestinal mucosa, but not spleen. Zinc did not stimulate the conversion of retinol into retinoic acid by liver homogenates. Retinoic acid synthesis was localized in cytosol of liver and kidney, where its rate of synthesis from retinol was fourfold (liver) and sevenfold (kidney) slower than from retinal. The synthesis of retinoic acid from retinol required NAD and was not supported by NADP. NADH (0.5 mM) reduced retinoic acid synthesis from retinol, supported by NAD (2 mM), by 50-70%, but was fivefold less potent in reducing retinoic acid synthesis from retinal. Dithiothreitol enhanced the conversion of retinol, but not retinal, into retinoic acid. EDTA inhibited the conversion of retinol into retinoic acid slightly (13%, liver; 29%, kidney). A high ethanol concentration (100 mM), relative to retinoid substrate (10 microM), inhibited retinoic acid synthesis from retinol (liver, 54%; kidney, 30%) and from retinal (30%, liver; 9%, kidney). 4'-(9-Acridinylamino)methansulfon-m-anisidine, an inhibitor of aldehyde oxidase, and disulfiram, a sulfhydryl-group crosslinking agent, were potent inhibitors of retinoic acid synthesis at 10 microM or less, and seemed equipotent in liver and kidney. 4-Methylpyrazole, an inhibitor of ethanol metabolism, also inhibited retinoic acid synthesis from retinol, but was less potent than the former two inhibitors, and affected liver to a greater extent than kidney, particularly with retinal as substrate.  相似文献   

19.
The intracellular ratio of cysteine and cystine in various tissues   总被引:7,自引:1,他引:6  
1. The cysteine-cystine ratio was measured in rat kidney cortex, diaphragm, jejunum, liver and brain. 2. This ratio was determined by incubating these tissues in buffer containing [(35)S]cystine and then homogenizing the tissue in a buffered solution of N-ethylmaleimide. The products of this reaction were separated by high-voltage electrophoresis and the radioactivity in the cystine and 2-(l-2'-amino-2'-carboxyethylthio)-N-ethylsuccinimide regions was determined. 3. In these tissues cyst(e)ine was mainly present in the reduced form. 4. After incubation of [(35)S]cystine with rat jejunal segments it was found that 36% of the cystine in the medium has been reduced. 5. Anaerobiosis, Na(+)-free media, glucose and high concentrations of cystine and lysine were found not to affect significantly the cysteine-cystine ratio in rat kidney-cortex slices.  相似文献   

20.
The sulpho-conjugation of [14C]adrenaline form inorganic sulphate and ATP or preformed adenosine 3'-phosphate 5'-sulphatophosphate was demonstrated in the high-speed supernatant prepared from the liver and small intestine of various animals. Hydrolysis with sulphatase indicated the sulphate nature of the conjugate. The overall sulphation reaction has a pH optimum of 9.0. Maximal activity was obtained with a ratio of ATP/Mg2+ of 1 at 4--6mM. Above their optimal concentrations, ATP and Mg2+, separately or in combination, were inhibitory. Dithiothreitol at 3 mM stimulated the reaction by about 30%. The Km for adrenaline, determined by the sulphotransferase reaction and by the three-step (sulphate-activating and sulphotransferase) reactions was 125 micrometer. The rate of synthesis of [14C]-adrenaline sulphate, expressed in pmol/min per mg of protein for the livers of dog, monkey, rat, guinea pig and rabbit were, respectively, 144, 77, 47, 11 and 6. The corresponding values for the small intestines of dog and monkey were 60 and 62. Brain and heart tissues showed no measurable activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号