首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Type 2 diabetes is characterized by pancreatic beta-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that apoptosis signal-regulating kinase 1 (ASK1) is involved in beta-cell death in response to different stressors. In this study, we tested whether ASK1 deficiency protects beta-cells from glucolipotoxic conditions and cytokines treatment or from glucose homeostasis alteration induced by endotoxemia.

Methodology/Principal Findings

Insulin secretion was neither affected upon shRNA-mediated downregulation of ASK1 in MIN6 cells nor in islets from ASK1-deficient mice. ASK1 silencing in MIN6 cells and deletion in islets did not prevent the deleterious effect of glucolipotoxic conditions or cytokines on insulin secretion. However, it protected MIN6 cells from death induced by ER stress or palmitate and islets from short term caspase activation in response to cytokines. Moreover, endotoxemia induced by LPS infusion increased insulin secretion during hyperglycemic clamps but the response was similar in wild-type and ASK1-deficient mice. Finally, insulin sensitivity in the presence of LPS was not affected by ASK1-deficiency.

Conclusions/Significance

Our study demonstrates that ASK1 is not involved in beta-cell function and dysfunction but controls stress-induced beta-cell death.  相似文献   

2.

Aims

Metabolic disturbances may contribute to cognitive dysfunction in patients with type 2 diabetes. We investigated the relation between cognitive impairment and metabolic deteriorations, low physical fitness, low-grade inflammation and abdominal obesity in middle aged individuals.

Methods

We conducted a cross-sectional study including 40 to 65 year-old patients with type 2 diabetes and limited co morbidity (N = 56), age-matched individuals with impaired glucose tolerance (N = 56) as well as age-matched controls with normal glucose tolerance (N = 72). Specific cognitive functions were assessed with focus on verbal memory, processing speed, executive functions, and a composite overall mean score. Oral glucose tolerance test, VO2max test, systemic inflammation, DXA scanning and abdominal MRI were measured.

Results

Multiple linear regression analyses adjusting for age, gender and verbal intelligence demonstrated that a low score in processing speed, executive functions and overall cognitive function were related to high fasting C-peptide, as well as low insulin sensitivity, beta-cell function and VO2max. Measurements of blood glucose, obesity and inflammation were not associated with cognitive function.

Conclusion

Low cognitive scores are seen in middle aged individuals with hyperinsulinemia, low insulin sensitivity, beta-cell function and low aerobic capacity. These findings emphasize the importance of appropriate lifestyle and not only blood glucose control in prevention of cognitive disability.  相似文献   

3.

Aims/Hypothesis

To study the effects of cereulide, a food toxin often found at low concentrations in take-away meals, on beta-cell survival and function.

Methods

Cell death was quantified by Hoechst/Propidium Iodide in mouse (MIN6) and rat (INS-1E) beta-cell lines, whole mouse islets and control cell lines (HepG2 and COS-1). Beta-cell function was studied by glucose-stimulated insulin secretion (GSIS). Mechanisms of toxicity were evaluated in MIN6 cells by mRNA profiling, electron microscopy and mitochondrial function tests.

Results

24 h exposure to 5 ng/ml cereulide rendered almost all MIN6, INS-1E and pancreatic islets apoptotic, whereas cell death did not increase in the control cell lines. In MIN6 cells and murine islets, GSIS capacity was lost following 24 h exposure to 0.5 ng/ml cereulide (P<0.05). Cereulide exposure induced markers of mitochondrial stress including Puma (p53 up-regulated modulator of apoptosis, P<0.05) and general pro-apoptotic signals as Chop (CCAAT/-enhancer-binding protein homologous protein). Mitochondria appeared swollen upon transmission electron microscopy, basal respiration rate was reduced by 52% (P<0.05) and reactive oxygen species increased by more than twofold (P<0.05) following 24 h exposure to 0.25 and 0.50 ng/ml cereulide, respectively.

Conclusions/Interpretation

Cereulide causes apoptotic beta-cell death at low concentrations and impairs beta-cell function at even lower concentrations, with mitochondrial dysfunction underlying these defects. Thus, exposure to cereulide even at concentrations too low to cause systemic effects appears deleterious to the beta-cell.  相似文献   

4.

Objective

In diabetes, vascular dysfunction is characterized by impaired endothelial function due to increased oxidative stress. Empagliflozin, as a selective sodium-glucose co-transporter 2 inhibitor (SGLT2i), offers a novel approach for the treatment of type 2 diabetes by enhancing urinary glucose excretion. The aim of the present study was to test whether treatment with empagliflozin improves endothelial dysfunction in type I diabetic rats via reduction of glucotoxicity and associated vascular oxidative stress.

Methods

Type I diabetes in Wistar rats was induced by an intravenous injection of streptozotocin (60 mg/kg). One week after injection empagliflozin (10 and 30 mg/kg/d) was administered via drinking water for 7 weeks. Vascular function was assessed by isometric tension recording, oxidative stress parameters by chemiluminescence and fluorescence techniques, protein expression by Western blot, mRNA expression by RT-PCR, and islet function by insulin ELISA in serum and immunohistochemical staining of pancreatic tissue. Advanced glycation end products (AGE) signaling was assessed by dot blot analysis and mRNA expression of the AGE-receptor (RAGE).

Results

Treatment with empagliflozin reduced blood glucose levels, normalized endothelial function (aortic rings) and reduced oxidative stress in aortic vessels (dihydroethidium staining) and in blood (phorbol ester/zymosan A-stimulated chemiluminescence) of diabetic rats. Additionally, the pro-inflammatory phenotype and glucotoxicity (AGE/RAGE signaling) in diabetic animals was reversed by SGLT2i therapy.

Conclusions

Empagliflozin improves hyperglycemia and prevents the development of endothelial dysfunction, reduces oxidative stress and improves the metabolic situation in type 1 diabetic rats. These preclinical observations illustrate the therapeutic potential of this new class of antidiabetic drugs.  相似文献   

5.

Background

Pancreatic beta-cells proliferate following administration of the beta-cell toxin streptozotocin. Defining the conditions that promote beta-cell proliferation could benefit patients with diabetes. We have investigated the effect of insulin treatment on pancreatic beta-cell regeneration in streptozotocin-induced diabetic mice, and, in addition, report on a new approach to quantify beta-cell regeneration in vivo.

Methodology/Principal Findings

Streptozotocin-induced diabetic were treated with either syngeneic islets transplanted under the kidney capsule or subcutaneous insulin implants. After either 60 or 120 days of insulin treatment, the islet transplant or insulin implant were removed and blood glucose levels monitored for 30 days. The results showed that both islet transplants and insulin implants restored normoglycemia in the 60 and 120 day treated animals. However, only the 120-day islet and insulin implant groups maintained euglycemia (<200 mg/dl) following discontinuation of insulin treatment. The beta-cell was significantly increased in all the 120 day insulin-treated groups (insulin implant, 0.69±0.23 mg; and islet transplant, 0.91±0.23 mg) compared non-diabetic control mice (1.54±0.25 mg). We also show that we can use bioluminescent imaging to monitor beta-cell regeneration in living MIP-luc transgenic mice.

Conclusions/Significance

The results show that insulin treatment can promote beta-cell regeneration. Moreover, the extent of restoration of beta-cell function and mass depend on the length of treatment period and overall level of glycemic control with better control being associated with improved recovery. Finally, real-time bioluminescent imaging can be used to monitor beta-cell recovery in living MIP-luc transgenic mice.  相似文献   

6.

Background

PERK eIF2α kinase is required for the proliferation of the insulin-secreting beta- cells as well as insulin synthesis and secretion. In addition, PERK signaling has been found to be an important factor in determining growth and angiogenesis of specific types of tumors, and was attributed to PERK-dependent regulation of the hypoxic stress response. In this report we examine the role of PERK in regulating proliferation and angiogenesis of transformed beta-cells in the development of insulinomas.

Methodology

The SV40 Large T-antigen (Tag) was genetically introduced into the insulin secreting beta-cells of Perk KO mice under the control of an inducible promoter. Tumor growth and the related parameters of cell proliferation were measured. In late stage insulinomas the degree of vascularity was determined.

Principal Findings

The formation and growth of insulinomas in Perk-deficient mice was dramatically ablated with much fewer tumors, which averaged 38-fold smaller than seen in wild-type control mice. Beta-cell proliferation was ablated in Perk-deficient mice associated with reduced tumor growth. In the small number of large encapsulated insulinomas that developed in Perk-deficient mice, we found a dramatic reduction in tumor vascularity compared to similar sized insulinomas in wild-type mice. Although insulinoma growth in Perk-deficient mice was largely impaired, beta-cell mass was increased sufficiently by T-antigen induction to rescue the hypoinsulinemia and diabetes in these mice.

Conclusions

We conclude that PERK has two roles in the development of beta-cell insulinomas, first to support rapid cell proliferation during the initial transition to islet hyperplasia and later to promote angiogenesis during the progression to late-stage encapsulated tumors.  相似文献   

7.

Aims/Hypothesis

Pancreatic beta-cells retain limited ability to regenerate and proliferate after various physiologic triggers. Identifying therapies that are able to enhance beta-cell regeneration may therefore be useful for the treatment of both type 1 and type 2 diabetes.

Methods

In this study we investigated endogenous and transplanted beta-cell regeneration by serially quantifying changes in bioluminescence from beta-cells from transgenic mice expressing firefly luciferase under the control of the mouse insulin I promoter. We tested the ability of pioglitazone and alogliptin, two drugs developed for the treatment of type 2 diabetes, to enhance beta-cell regeneration, and also defined the effect of the immunosuppression with rapamycin and tacrolimus on transplanted islet beta mass.

Results

Pioglitazone is a stimulator of nuclear receptor peroxisome proliferator-activated receptor gamma while alogliptin is a selective dipeptidyl peptidase IV inhibitor. Pioglitazone alone, or in combination with alogliptin, enhanced endogenous beta-cell regeneration in streptozotocin-treated mice, while alogliptin alone had modest effects. In a model of syngeneic islet transplantation, immunosuppression with rapamycin and tacrolimus induced an early loss of beta-cell mass, while treatment with insulin implants to maintain normoglycemia and pioglitazone plus alogliptin was able to partially promote beta-cell mass recovery.

Conclusions/Interpretation

These data highlight the utility of bioluminescence for serially quantifying functional beta-cell mass in living mice. They also demonstrate the ability of pioglitazone, used either alone or in combination with alogliptin, to enhance regeneration of endogenous islet beta-cells as well as transplanted islets into recipients treated with rapamycin and tacrolimus.  相似文献   

8.

Aims/Hypothesis

We have previously shown the implication of the multifunctional protein SPARC (Secreted protein acidic and rich in cysteine)/osteonectin in insulin resistance but potential effects on beta-cell function have not been assessed. We therefore aimed to characterise the effect of SPARC on beta-cell function and features of diabetes.

Methods

We measured SPARC expression by qRT-PCR in human primary pancreatic islets, adipose tissue, liver and muscle. We then examined the relation of SPARC with glucose stimulated insulin secretion (GSIS) in primary human islets and the effect of SPARC overexpression on GSIS in beta cell lines.

Results

SPARC was expressed at measurable levels in human islets, adipose tissue, liver and skeletal muscle, and demonstrated reduced expression in primary islets from subjects with diabetes compared with controls (p< = 0.05). SPARC levels were positively correlated with GSIS in islets from control donors (p< = 0.01). Overexpression of SPARC in cultured beta-cells resulted in a 2.4-fold increase in insulin secretion in high glucose conditions (p< = 0.01).

Conclusions

Our data suggest that levels of SPARC are reduced in islets from donors with diabetes and that it has a role in insulin secretion, an effect which appears independent of SPARC’s modulation of obesity-induced insulin resistance in adipose tissue.  相似文献   

9.

Background

Cadmium is a pollutant with multiple adverse health effects: renal dysfunction, osteoporosis and fractures, cancer, and probably cardiovascular disease. Some studies have reported associations between cadmium and impaired fasting glucose and diabetes. However, this relationship is controversial and there is a lack of longitudinal studies.

Objectives

To examine prospectively whether cadmium in blood is associated with incidence of diabetes mellitus.

Methods

The study population consists of 4585 subjects without history of diabetes (aged 46 to 67 years, 60% women), who participated in the Malmö Diet and Cancer study during 1991–1994. Blood cadmium levels were estimated from hematocrit and cadmium concentrations in erythrocytes. Incident cases of diabetes were identified from national and local diabetes registers.

Results

Cadmium concentrations in blood were not associated with blood glucose and insulin levels at the baseline examination. However, cadmium was positively associated with HbA1c in former smokers and current smokers. During a mean follow-up of 15.2±4.2 years, 622 (299 men and 323 women) were diagnosed with new-onset of diabetes. The incidence of diabetes was not significantly associated with blood cadmium level at baseline, neither in men or women. The hazard ratio (4th vs 1st quartile) was 1.11 (95% confidence interval 0.82–1.49), when adjusted for potential confounders.

Conclusions

Elevated blood cadmium levels are not associated with increased incidence of diabetes. The positive association between HbA1c and blood cadmium levels has a likely explanation in mechanisms related to erythrocyte turnover and smoking.  相似文献   

10.

Purpose

Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs) together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death.

Procedures

Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry), nitrite production (Griess reagent), protein localization (immunofluorescence) and protein phosphorylation (flow cytometry).

Results

We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i) augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii) NCSC-derived laminin production; (iii) decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv) decreased beta-TC6 cell phosphorylation of ERK(T202/Y204), FAK(Y397) and FAK(Y576). Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs.

Conclusion

In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta-cell survival even though ERK and FAK signaling are suppressed. It may be that future strategies to improve islet transplantation outcome may benefit from attempts to increase beta-cell cadherin junctions to neighboring cells.  相似文献   

11.

Background and Aims

Recent reports indicate the presence of low grade inflammation in functional gastrointestinal disorders (FGID), in these cases often called “post-inflammatory” FGIDs. However, suitable animal models to study these disorders are not available. The Biobreeding (BB) rat consists of a diabetes-resistant (BBDR) and a diabetes-prone (BBDP) strain. In the diabetes-prone strain, 40–60% of the animals develop diabetes and concomitant nitrergic dysfunction. Our aim was to investigate the occurrence of intestinal inflammation, nitrergic dysfunction and intestinal dysmotility in non-diabetic animals.

Methods

Jejunal inflammation (MPO assay, Hematoxylin&Eosin staining and inducible nitric oxide synthase (iNOS) mRNA expression), in vitro jejunal motility (video analysis) and myenteric neuronal numbers (immunohistochemistry) were assessed in control, normoglycaemic BBDP and diabetic BBDP rats. To study the impact of iNOS inhibition on these parameters, normoglycaemic BBDP rats were treated with aminoguanidine.

Results

Compared to control, significant polymorphonuclear (PMN) cell infiltration, enhanced MPO activity, increased iNOS mRNA expression and a decreased ratio of nNOS to Hu-C/D positive neurons were observed in both normoglycaemic and diabetic BBDP rats. Aminoguanidine treatment decreased PMN infiltration, iNOS mRNA expression and MPO activity. Moreover, it restored the ratio of nNOS to Hu-C/D positive nerves in the myenteric plexus and decreased the abnormal jejunal elongation and dilation observed in normoglycaemic BBDP rats.

Conclusions

Aminoguanidine treatment counteracts the inflammation-induced nitrergic dysfunction and prevents dysmotility, both of which are independent of hyperglycaemia in BB rats. Nitrergic dysfunction may contribute to the pathophysiology of “low-grade inflammatory” FGIDs. Normoglycaemic BBDP rats may be considered a suitable animal model to study the pathogenesis of FGIDs.  相似文献   

12.

Background

A subclinical left ventricle diastolic dysfunction (LVDD) has been described in patients with chronic obstructive pulmonary disease (COPD).

Objectives

To evaluate the prevalence of LVDD in stable severe COPD patients, to analyze its relationship with exercise capacity and to look for its possible causes (lung hyperinflation, ventricular interdependence or inflammatory mechanisms).

Methods

We evaluated 106 consecutive outpatients with severe COPD (FEV1 between 30–50%). Thirty-three (31%) were excluded because of previous heart disease. A pulmonary function test, a 6-minute walking test (6MWT), a Doppler echocardiography test, including diastolic dysfunction parameters, and an analysis of arterial blood gases, NT-proBNP and serum inflammatory markers (CRP, leucocytes), were performed in all patients.

Results

The prevalence of LVDD in severe stable COPD patients was 90% (80% type I, n=57, and 10% type II, n=7). A significant association between a lower E/A ratio (higher LVDD type I) and a lower exercise tolerance (6-minute walked distance (6MWD)) was found (r=0.29, p<0.05). The fully adjusted multivariable linear regression model demonstrated that a lower E/A ratio, a DLCO in the quartile 4th and a higher tobacco consumption were associated with a lower 6MWD (76, 57 and 0.7 metres, respectively, p<0.05). A significant correlation between E/A ratio and PaO2 was observed (r=0.26, p<0.05), but not with static lung hyperinflation, inflammation or right ventricle overload parameters.

Conclusion

In stable severe COPD patients, the prevalence of LVDD is high and this condition might contribute in their lower exercise tolerance. Hypoxemia could have a concomitant role in their pathogenesis.  相似文献   

13.
14.

Background

Aberrations in the phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR)/AKT pathway are common in solid tumors. Numerous drugs have been developed to target different components of this pathway. However the prognostic value of these aberrations is unclear.

Methods

PubMed was searched for studies evaluating the association between activation of the PI3K/mTOR/AKT pathway (defined as PI3K mutation [PIK3CA], lack of phosphatase and tensin homolog [PTEN] expression by immunohistochemistry or western-blot or increased expression/activation of downstream components of the pathway by immunohistochemistry) with overall survival (OS) in solid tumors. Published data were extracted and computed into odds ratios (OR) for death at 5 years. Data were pooled using the Mantel-Haenszel random-effect model.

Results

Analysis included 17 studies. Activation of the PI3K/mTOR/AKT pathway was associated with significantly worse 5-year survival (OR:2.12, 95% confidence intervals 1.42–3.16, p<0.001). Loss of PTEN expression and increased expression/activation of downstream components were associated with worse survival. No association between PIK3CA mutations and survival was observed. Differences between methods for assessing activation of the PI3K/mTOR/AKT pathway were statistically significant (p = 0.04). There was no difference in the effect of up-regulation of the pathway on survival between different cancer sites (p = 0.13).

Conclusion

Activation of the PI3K/AKT/mTOR pathway, especially if measured by loss of PTEN expression or increased expression/activation of downstream components is associated with poor survival. PIK3CA mutational status is not associated with adverse outcome, challenging its value as a biomarker of patient outcome or as a stratification factor for patients treated with agents acting on the PI3K/AKT/mTOR pathway.  相似文献   

15.

Context

Anorexia nervosa is a common illness among adolescents and is characterised by oxidative stress.

Objective

The effects of anorexia on mitochondrial function and redox state in leukocytes from anorexic subjects were evaluated.

Design and setting

A multi-centre, cross-sectional case-control study was performed.

Patients

Our study population consisted of 20 anorexic patients and 20 age-matched controls, all of which were Caucasian women.

Main outcome measures

Anthropometric and metabolic parameters were evaluated in the study population. To assess whether anorexia nervosa affects mitochondrial function and redox state in leukocytes of anorexic patients, we measured mitochondrial oxygen consumption, membrane potential, reactive oxygen species production, glutathione levels, mitochondrial mass, and complex I and III activity in polymorphonuclear cells.

Results

Mitochondrial function was impaired in the leukocytes of the anorexic patients. This was evident in a decrease in mitochondrial O2 consumption (P<0.05), mitochondrial membrane potential (P<0.01) and GSH levels (P<0.05), and an increase in ROS production (P<0.05) with respect to control subjects. Furthermore, a reduction of mitochondrial mass was detected in leukocytes of the anorexic patients (P<0.05), while the activity of mitochondrial complex I (P<0.001), but not that of complex III, was found to be inhibited in the same population.

Conclusions

Oxidative stress is produced in the leukocytes of anorexic patients and is closely related to mitochondrial dysfunction. Our results lead us to propose that the oxidative stress that occurs in anorexia takes place at mitochondrial complex I. Future research concerning mitochondrial dysfunction and oxidative stress should aim to determine the physiological mechanism involved in this effect and the physiological impact of anorexia.  相似文献   

16.

Purpose

Studies in our laboratory are concerned with developing optional insulin delivery routes based on amidated pectin hydrogel matrix gel. We therefore investigated whether the application of pectin insulin (PI)-containing dermal patches of different insulin concentrations sustain controlled release of insulin into the bloodstream of streptozotocin (STZ)-induced diabetic rats with concomitant alleviation of diabetic symptoms in target tissues, most importantly, muscle and liver.

Methods

Oral glucose test (OGT) responses to PI dermal matrix patches (2.47, 3.99, 9.57, 16.80 µg/kg) prepared by dissolving pectin/insulin in deionised water and solidified with CaCl2 were monitored in diabetic rats given a glucose load after an 18-h fast. Short-term (5 weeks) metabolic effects were assessed in animals treated thrice daily with PI patches 8 hours apart. Animals treated with drug-free pectin and insulin (175 µg/kg, sc) acted as untreated and treated positive controls, respectively. Blood, muscle and liver samples were collected for measurements of selected biochemical parameters.

Results

After 5 weeks, untreated diabetic rats exhibited hyperglycaemia and depleted hepatic and muscle glycogen concentrations. Compared to untreated STZ-induced diabetic animals, OGT responses of diabetic rats transdermally applied PI patches exhibited lower blood glucose levels whilst short-term treatments restored hepatic and muscle glycogen concentrations. Plasma insulin concentrations of untreated diabetic rats were low compared with control non-diabetic rats. All PI treatments elevated plasma insulin concentrations of diabetic rats although the levels induced by high doses (9.57 and 16.80 µg/kg) were greater than those caused by low doses (2.47 and 3.99 µg/kg) but comparable to those in sc insulin treated animals.

Conclusions

The data suggest that the PI hydrogel matrix patch can deliver physiologically relevant amounts of pharmacologically active insulin.

Novelty of the Work

A new method to administer insulin into the bloodstream via a skin patch which could have potential future applications in diabetes management is reported.  相似文献   

17.

Background

Gain-of-function mutations in the ATP-sensitive potassium channel can cause permanent neonatal diabetes mellitus (PNDM) or neonatal diabetes accompanied by a constellation of neurological symptoms (iDEND syndrome). Studies of a mouse model of iDEND syndrome revealed that cerebellar Purkinje cell electrical activity was impaired and that the mice exhibited poor motor coordination. In this study, we probed the hand-eye coordination of PNDM and iDEND patients using visual tracking tasks to see if poor motor coordination is also a feature of the human disease.

Methods

Control participants (n = 14), patients with iDEND syndrome (n = 6 or 7), and patients with PNDM (n = 7) completed three computer-based tasks in which a moving target was tracked with a joystick-controlled cursor. Patients with PNDM and iDEND were being treated with sulphonylurea drugs at the time of testing.

Results

No differences were seen between PNDM patients and controls. Patients with iDEND syndrome were significantly less accurate than controls in two of the three tasks. The greatest differences were seen when iDEND patients tracked blanked targets, i.e. when predictive tracking was required. In this task, iDEND patients incurred more discrepancy errors (p = 0.009) and more velocity errors (p  = 0.009) than controls.

Conclusions

These results identify impaired hand-eye coordination as a new clinical feature of iDEND. The aetiology of this feature is likely to involve cerebellar dysfunction. The data further suggest that sulphonylurea doses that control the diabetes of these patients may be insufficient to fully correct their neurological symptoms.  相似文献   

18.

Background

Lipotoxicity is a key feature of the pathogenesis of diabetic kidney disease, and is attributed to excessive lipid accumulation (hyperlipidemia). Increasing evidence suggests that fibroblast growth factor (FGF)21 has a crucial role in lipid metabolism under diabetic conditions.

Objective

The present study investigated whether FGF21 can prevent hyperlipidemia- or diabetes-induced renal damage, and if so, the possible mechanism.

Methods

Mice were injected with free fatty acids (FFAs, 10 mg/10 g body weight) or streptozotocin (150 mg/kg) to establish a lipotoxic model or type 1 diabetic model, respectively. Simultaneously the mice were treated with FGF21 (100 µg/kg) for 10 or 80 days. The kidney weight-to-tibia length ratio and renal function were assessed. Systematic and renal lipid levels were detected by ELISA and Oil Red O staining. Renal apoptosis was examined by TUNEL assay. Inflammation, oxidative stress, and fibrosis were assessed by Western blot.

Results

Acute FFA administration and chronic diabetes were associated with lower kidney-to-tibia length ratio, higher lipid levels, severe renal apoptosis and renal dysfunction. Obvious inflammation, oxidative stress and fibrosis also observed in the kidney of both mice models. Deletion of the fgf21 gene further enhanced the above pathological changes, which were significantly prevented by administration of exogenous FGF21.

Conclusion

These results suggest that FFA administration and diabetes induced renal damage, which was further enhanced in FGF21 knock-out mice. Administration of FGF21 significantly prevented both FFA- and diabetes-induced renal damage partially by decreasing renal lipid accumulation and suppressing inflammation, oxidative stress, and fibrosis.  相似文献   

19.

Background

The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes.

Method

Seventeen healthy and non-obese subjects with known genetic predisposition for type 2 diabetes (first-degree relatives, FDRs) and 17 control subjects were recruited. The groups were matched for gender and BMI and had similar age. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was calculated using HOMA-index. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene expression analysis and adipocyte cell size measurement.

Results

Our findings show that, in spite of similar age, BMI and percent body fat, FDRs displayed adipocyte hypertrophy, as well as higher waist/hip ratio, fasting insulin levels, HOMA-IR and serum triglycerides. Adipocyte hypertrophy in the FDR group, but not among controls, was associated with measures of impaired insulin sensitivity. The adipocyte hypertrophy was accompanied by increased inflammation and Wnt-signal activation. In addition, signs of tissue remodeling and fibrosis were observed indicating presence of early alterations associated with adipose tissue dysfunction in the FDRs.

Conclusion

Genetic predisposition for type 2 diabetes is associated with impaired insulin sensitivity, adipocyte hypertrophy and other markers of adipose tissue dysfunction. A dysregulated subcutaneous adipose tissue may be a major susceptibility factor for later development of type 2 diabetes.  相似文献   

20.

Background

We sought to examine whether type 2 diabetes increases the risk of acute organ dysfunction and of hospital mortality following severe sepsis that requires admission to an intensive care unit (ICU).

Methods

Nationwide population-based retrospective cohort study of 16,497 subjects with severe sepsis who had been admitted for the first time to an ICU during the period of 1998–2008. A diabetic cohort (n = 4573) and a non-diabetic cohort (n = 11924) were then created. Relative risk (RR) of organ dysfunctions, length of hospital stay (LOS), 90-days hospital mortality, ICU resource utilization and hazard ratio (HR) of mortality adjusted for age, gender, Charlson-Deyo comorbidity index score, surgical condition and number of acute organ dysfunction, were compared across patients with severe sepsis with or without diabetes.

Results

Diabetic patients with sepsis had a higher risk of developing acute kidney injury (RR, 1.54; 95% confidence interval (CI), 1.44–1.63) and were more likely to be undergoing hemodialysis (15.55% vs. 7.24%) in the ICU. However, the diabetic cohort had a lower risk of developing acute respiratory dysfunction (RR = 0.96, 0.94–0.97), hematological dysfunction (RR = 0.70, 0.56–0.89), and hepatic dysfunction (RR = 0.77, 0.63–0.93). In terms of adjusted HR for 90-days hospital mortality, the diabetic patients with severe sepsis did not fare significantly worse when afflicted with cardiovascular, respiratory, hepatic, renal and/or neurologic organ dysfunction and by numbers of organ dysfunction. There was no statistically significant difference in LOS between the two cohorts (median 17 vs. 16 days, interquartile range (IQR) 8–30 days, p = 0.11). Multiple logistic regression analysis to predict the occurrence of mortality shows that being diabetic was not a predictive factor with an odds ratio of 0.972, 95% CI 0.890–1.061, p = 0.5203.

Interpretation

This large nationwide population-based cohort study suggests that diabetic patients do not fare worse than non-diabetic patients when suffering from severe sepsis that requires ICU admission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号