首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Staphylococcus aureus readily develops resistance to antibiotics and achieving effective therapies to overcome resistance requires in-depth understanding of S. aureus biology. High throughput, parallel-sequencing methods for analyzing transposon mutant libraries have the potential to revolutionize studies of S. aureus, but the genetic tools to take advantage of the power of next generation sequencing have not been fully developed.

Results

Here we report a phage-based transposition system to make ultra-high density transposon libraries for genome-wide analysis of mutant fitness in any Φ11-transducible S. aureus strain. The high efficiency of the delivery system has made it possible to multiplex transposon cassettes containing different regulatory elements in order to make libraries in which genes are over- or under-expressed as well as deleted. By incorporating transposon-specific barcodes into the cassettes, we can evaluate how null mutations and changes in gene expression levels affect fitness in a single sequencing data set. Demonstrating the power of the system, we have prepared a library containing more than 690,000 unique insertions. Because one unique feature of the phage-based approach is that temperature-sensitive mutants are retained, we have carried out a genome-wide study of S. aureus genes involved in withstanding temperature stress. We find that many genes previously identified as essential are temperature sensitive and also identify a number of genes that, when disrupted, confer a growth advantage at elevated temperatures.

Conclusions

The platform described here reliably provides mutant collections of unparalleled genotypic diversity and will enable a wide range of functional genomic studies in S. aureus.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1361-3) contains supplementary material, which is available to authorized users.  相似文献   

2.

Background

We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics.

Methods

Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines.

Results

The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum.

Conclusions

The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.  相似文献   

3.
SN Leonard 《PloS one》2012,7(7):e42103

Introduction

Continued pressure from glycopeptide use has led to non-susceptible strains of Staphylococcus aureus including heterogeneously vancomycin-intermediate S. aureus (hVISA). Infections with hVISA are associated with poor patient outcomes, thus incentivizing novel treatments. Evidence suggests that vancomycin and anti-staphylococcal penicillin susceptibility are inversely related which indicates that the use of this combination may be particularly useful against methicillin-resistant S. aureus with reduced susceptibility to vancomycin, such as hVISA. The aim of this study was to evaluate the potential for synergy between vancomycin and nafcillin against hVISA.

Methods

Twenty-five hVISA strains were evaluated for vancomycin and nafcillin minimum inhibitory concentration (MIC) by broth microdilution in duplicate. Potential for synergy was assessed by time-kill at 1/2x MIC in triplicate. Five strains were chosen, representing the range nafcillin MIC’s available in the cohort –4, 16, 64, 128, and 256 µg/mL, and were run in an in vitro pharmacokinetic/pharmacodynamic (PK/PD) model in duplicate over 72 hours to evaluate the potential of the combination with simulated human pharmacokinetics. In addition, 4 fully glycopeptide susceptible strains of S. aureus including 2 methicillin-susceptible (MSSA) and 2 methicillin-resistant (MRSA) were run in the PK/PD model for comparison.

Results

In the time-kill, 92% of strains (23 of 25) displayed synergy with the combination of vancomycin and nafcillin. In the PK/PD model, all five strains of hVISA showed an improvement in overall activity (P≤0.004) and organism burden at 72 hours (P≤0.001) with the combination compared to either drug alone. The combination was also successful against both MRSA and MSSA in overall activity (P≤0.009) and organism burden at 72 hours (P≤0.016), though the magnitude of the effect was diminished against MSSA.

Conclusions

The combination of vancomycin and nafcillin significantly improved antibacterial activity against hVISA, MRSA, and MSSA compared to either drug alone.  相似文献   

4.

Background

Appropriate empiric therapy, antibiotic therapy with in vitro activity to the infecting organism given prior to confirmed culture results, may improve Staphylococcus aureus outcomes. We aimed to measure the clinical impact of appropriate empiric antibiotic therapy on mortality, while statistically adjusting for comorbidities, severity of illness and presence of virulence factors in the infecting strain.

Methodology

We conducted a retrospective cohort study of adult patients admitted to a tertiary-care facility from January 1, 2003 to June 30, 2007, who had S. aureus bacteremia. Time to appropriate therapy was measured from blood culture collection to the receipt of antibiotics with in vitro activity to the infecting organism. Cox proportional hazard models were used to measure the association between receipt of appropriate empiric therapy and in-hospital mortality, statistically adjusting for patient and pathogen characteristics.

Principal Findings

Among 814 admissions, 537 (66%) received appropriate empiric therapy. Those who received appropriate empiric therapy had a higher hazard of 30-day in-hospital mortality (Hazard Ratio (HR): 1.52; 95% confidence interval (CI): 0.99, 2.34). A longer time to appropriate therapy was protective against mortality (HR: 0.79; 95% CI: 0.60, 1.03) except among the healthiest quartile of patients (HR: 1.44; 95% CI: 0.66, 3.15).

Conclusions/Significance

Appropriate empiric therapy was not associated with decreased mortality in patients with S. aureus bacteremia except in the least ill patients. Initial broad antibiotic selection may not be widely beneficial.  相似文献   

5.
6.

Objectives

This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture.

Methods

Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations.

Results

C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides.

Conclusions

This study identifies a novel point mutation (G2073A) in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media.  相似文献   

7.

Background

Preoperative screening for nasal S. aureus carriage, followed by eradication treatment of identified carriers with nasal mupirocine ointment and chlorhexidine soap was highly effective in preventing deep-seated S. aureus infections. It is unknown how cost-effectiveness of this intervention is affected by suboptimal S. aureus screening. We determined cost-effectiveness of different preoperative S. aureus screening regimes.

Methods

We compared different screening scenarios (ranging from treating all patients without screening to treating only identified S. aureus carriers) to the base case scenario without any screening and treatment. Screening and treatment costs as well as costs and mortality due to deep-seated S. aureus infection were derived from hospital databases and prospectively collected data, respectively.

Results

As compared to the base case scenario, all scenarios are associated with improved health care outcomes at reduced costs. Treating all patients without screening is most cost-beneficial, saving €7339 per life year gained, as compared to €3330 when only identified carriers are treated. In sensitivity analysis, outcomes are susceptible to the sensitivity of the screening test and the efficacy of treatment. Reductions in these parameters would reduce the cost-effectiveness of scenarios in which treatment is based on screening. When only identified S. aureus carriers are treated costs of screening should be less than €6.23 to become the dominant strategy.

Conclusions

Preoperative screening and eradication of S. aureus carriage to prevent deep-seated S. aureus infections saves both life years and medical costs at the same time, although treating all patients without screening is the dominant strategy, resulting in most health gains and largest savings.  相似文献   

8.
9.

Background

Glycerol monolaurate (GML), a 12 carbon fatty acid monoester, inhibits Staphylococcus aureus growth and exotoxin production, but is degraded by S. aureus lipase. Therefore, dodecylglycerol (DDG), a 12 carbon fatty acid monoether, was compared in vitro and in vivo to GML for its effects on S. aureus growth, exotoxin production, and stability.

Methodology/Principal Findings

Antimicrobial effects of GML and DDG (0 to 500 µg/ml) on 54 clinical isolates of S. aureus, including pulsed-field gel electrophoresis (PFGE) types USA200, USA300, and USA400, were determined in vitro. A rabbit Wiffle ball infection model assessed GML and DDG (1 mg/ml instilled into the Wiffle ball every other day) effects on S. aureus (MN8) growth (inoculum 3×108 CFU/ml), toxic shock syndrome toxin-1 (TSST-1) production, tumor necrosis factor-α (TNF-α) concentrations and mortality over 7 days. DDG (50 and 100 µg/ml) inhibited S. aureus growth in vitro more effectively than GML (p<0.01) and was stable to lipase degradation. Unlike GML, DDG inhibition of TSST-1 was dependent on S. aureus growth. GML-treated (4 of 5; 80%) and DDG-treated rabbits (2 of 5; 40%) survived after 7 days. Control rabbits (5 of 5; 100%) succumbed by day 4. GML suppressed TNF-α at the infection site on day 7; however, DDG did not (<10 ng/ml versus 80 ng/ml, respectively).

Conclusions/Significance

These data suggest that DDG was stable to S. aureus lipase and inhibited S. aureus growth at lower concentrations than GML in vitro. However, in vivo GML was more effective than DDG by reducing mortality, and suppressing TNF-α, S. aureus growth and exotoxin production, which may reduce toxic shock syndrome. GML is proposed as a more effective anti-staphylococcal topical anti-infective candidate than DDG, despite its potential degradation by S. aureus lipase.  相似文献   

10.

Background

Staphylococcus aureus is a leading cause of healthcare-associated infections (HAIs), but the impact of S. aureus HAIs on the long-term survival and functional status of hospitalized patients remain unknown. This study aimed to examine whether S. aureus HAIs increase the risks for long-term mortality and disability.

Methods

We conducted a retrospective population-based matched cohort study of inpatients at 8 medical centers, 43 regional hospitals, and 63 local hospitals which participated in the Taiwan Nosocomial Infection Surveillance (TNIS). We individually matched 3070 patients with S. aureus HAIs to 6140 inpatients without HAIs at a 1∶2 ratio by age, gender, hospital, specialty, underlying diseases, and the length of stay before onset of the S. aureus HAI. Main outcome measures are one-year excess risks for mortality, new-onset chronic ventilator dependence, and new-onset dialysis-dependent end-stage renal disease.

Results

We found that patients with S. aureus HAIs had an excess one-year mortality of 20.2% compared with matched uninfected inpatients (P<0.001). The excess risk for new-onset chronic ventilator dependence and dialysis-dependent end-stage renal disease was 7.3% and 2.6%, respectively (Ps<0.001). S. aureus HAIs were also associated with an excess hospital stay of 12 days and an extra cost of $5978 (Ps<0.001).

Conclusion

S. aureus HAIs have substantial negative effect on the long-term outcome of hospitalized patients in terms of both mortality and disability, which should be taken into consideration in future cost-effectiveness studies of the control and prevention interventions for S. aureus HAIs.  相似文献   

11.

Background

Most information on invasive Staphylococcus aureus infections comes from temperate countries. There are considerable knowledge gaps in epidemiology, treatment, drug resistance and outcome of invasive S. aureus infection in the tropics.

Methods

A prospective, observational study of S. aureus bacteraemia was conducted in a 1000-bed regional hospital in northeast Thailand over 1 year. Detailed clinical data were collected and final outcomes determined at 12 weeks, and correlated with antimicrobial susceptibility profiles of infecting isolates.

Principal Findings

Ninety-eight patients with S. aureus bacteraemia were recruited. The range of clinical manifestations was similar to that reported from temperate countries. The prevalence of endocarditis was 14%. The disease burden was highest at both extremes of age, whilst mortality increased with age. The all-cause mortality rate was 52%, with a mortality attributable to S. aureus of 44%. Methicillin-resistant S. aureus (MRSA) was responsible for 28% of infections, all of which were healthcare-associated. Mortality rates for MRSA and methicillin-susceptible S. aureus (MSSA) were 67% (18/27) and 46% (33/71), respectively (p = 0.11). MRSA isolates were multidrug resistant. Only vancomycin or fusidic acid would be suitable as empirical treatment options for suspected MRSA infection.

Conclusions

S. aureus is a significant pathogen in northeast Thailand, with comparable clinical manifestations and a similar endocarditis prevalence but higher mortality than industrialised countries. S. aureus bacteraemia is frequently associated with exposure to healthcare settings with MRSA causing a considerable burden of disease. Further studies are required to define setting-specific strategies to reduce mortality from S. aureus bacteraemia, prevent MRSA transmission, and to define the burden of S. aureus disease and emergence of drug resistance throughout the developing world.  相似文献   

12.

Background

Many Gram-positive pathogens aggregate and activate platelets in vitro and this has been proposed to contribute to virulence. Platelets can also form complexes with neutrophils but little is however known about platelet and platelet-neutrophil responses in bacterial infection.

Methodology/Principal Findings

We added isolates of Gram-positive bacteria from 38 patients with a bacteremic infection to blood drawn from the same patient. Aggregometry and flow cytometry were used to assess platelet aggregation and to quantify activation of platelets, neutrophils, and platelet-neutrophils complexes (PNCs) induced by the bacteria. Fifteen healthy persons served as controls. Most isolates of Staphylococcus aureus, beta hemolytic streptococci, and Enterococcus faecalis induced aggregation of platelets from their respective hosts, whereas pneumococci failed to do so. S. aureus isolates induced platelet aggregation more rapidly in patients than in controls, whereas platelet activation by S. aureus was lower in patients than in controls. PNCs were more abundant in baseline samples from patients than in healthy controls and most bacterial isolates induced additional PNC formation and neutrophil activation.

Conclusion/Significance

We have demonstrated for the first time that bacteria isolated from patients with Gram-positive bacteremia can induce platelet activation and aggregation, PNC formation, and neutrophil activation in the same infected host. This underlines the significance of these interactions during infection, which could be a target for future therapies in sepsis.  相似文献   

13.

Background

Caries and periodontitis are important human diseases associated with formation of multi-species biofilms. The involved bacteria are intensively studied to understand the molecular basis of the interactions in such biofilms. This study established a basic in vitro single and mixed-species culture model for oral bacteria combining three complimentary methods. The setup allows a rapid screening for effects in the mutual species interaction. Furthermore, it is easy to handle, inexpensive, and reproducible.

Methods

Streptococcus mitis, S. salivarius and S. sanguinis, typical inhabitants of the healthy oral cavity, S. mutans as main carriogenic species, and Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, S. intermedius and Aggregatibacter actinomycetemcomitans as periodontitis-associated bacteria, were investigated for their biofilm forming ability. Different liquid growth media were evaluated. Safranin-staining allowed monitoring of biofilm formation under the chosen conditions. Viable counts and microscopy permitted investigation of biofilm behavior in mixed-species and transwell setups.

Findings

S. mitis, F. nucleatum, P. gingivalis and P. micra failed to form biofilm structures. S. mutans, S. sanguinis, S. intermedius and S. salivarius established abundant biofilm masses in CDM/sucrose. A. actinomycetemcomitans formed patchy monolayers. For in depth analysis S. mitis, S. mutans and A. actinomycetemcomitans were chosen, because i) they are representatives of the physiological-, cariogenic and periodontitis-associated bacterial flora, respectively and ii) their difference in their biofilm forming ability. Microscopic analysis confirmed the results of safranin staining. Investigation of two species combinations of S. mitis with either S. mutans or A. actinomycetemcomitans revealed bacterial interactions influencing biofilm mass, biofilm structure and cell viability.

Conclusions

This setup shows safranin staining, microscopic analysis and viable counts together are crucial for basic examination and evaluation of biofilms. Our experiment generated meaningful results, exemplified by the noted S. mitis influence, and allows a fast decision about the most important bacterial interactions which should be investigated in depth.  相似文献   

14.
Kim PY  Kim YS  Koo IG  Jung JC  Kim GJ  Choi MY  Yu Z  Collins GJ 《PloS one》2011,6(8):e24104

Background

We investigate disinfection of a reconstructed human skin model contaminated with biofilm-formative Staphylococcus aureus employing plasma discharge in liquid.

Principal Findings

We observed statistically significant 3.83-log10 (p<0.001) and 1.59-log10 (p<0.05) decreases in colony forming units of adherent S. aureus bacteria and 24 h S. aureus biofilm culture with plasma treatment. Plasma treatment was associated with minimal changes in histological morphology and tissue viability determined by means of MTT assay. Spectral analysis of the plasma discharge indicated the presence of highly reactive atomic oxygen radicals (777 nm and 844 nm) and OH bands in the UV region. The contribution of these and other plasma-generated agents and physical conditions to the reduction in bacterial load are discussed.

Conclusions

These findings demonstrate the potential of liquid plasma treatment as a potential adjunct therapy for chronic wounds.  相似文献   

15.
16.

Background and Aim

Recurrence and metastasis are associated with poor prognosis in hepatocellular carcinoma even in the patients who have undergone radical resection. Therefore, effective treatment is urgently needed for improvement of patients'' survival. Previously, we reported that nanosecond pulse electric fields (nsPEFs) can ablate melanoma by induction of apoptosis and inhibition of angiogenesis. This study aims to investigate the in vivo ablation strategy by comparing the dose effect of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma.

Materials and Methods

Four hepatocellular carcinoma cell lines HepG2, SMMC7721, Hep1-6, and HCCLM3 were pulsed to test the anti-proliferation and anti-migration ability of 100 ns nsPEFs in vitro. The animal model of human subdermal xenograft HCCLM3 cells into BALB/c nude mouse was used to test the anti-tumor growth and macrophage infiltration in vivo.

Results

In vitro assays showed anti-tumor effect of nsPEFs is dose-dependant. But the in vivo study showed the strategy of low dose and multiple treatments is superior to high dose single treatment. The macrophages infiltration significantly increased in the tumors which were treated by multiple low dose nsPEFs.

Conclusion

The low dose multiple nsPEFs application is more efficient than high dose single treatment in inhibiting the tumor volume in vivo, which is quite different from the dose-effect relationship in vitro. Beside the electric field strength, the macrophage involvement must be considered to account for effect variability and toxicology in vivo.  相似文献   

17.

Background

Intra-lesional injections of corticosteroids, interferon, and chemotherapeutic drugs are currently the most popular treatments of hypertrophic scar formation. However, these drugs can only be used after HS is formed, and not during the inflammatory phase of wound healing, which regulates the HS forming process.

Objective

To investigate a new, effective, combining therapeutic and safe drug for early intervention and treatment for hypertrophic scars.

Methods

Cell viability assay and flow cytometric analysis were studied in vitro. Animal studies were done to investigate the combining therapeutic effects of 20(S)-ginsenoside Rg3 (Rg3) on the inflammatory phase of wound healing and HS formation.

Results

In vitro studies showed that Rg3 can inhibit HS fibroblasts proliferation and induce HSF apoptosis in a concentration-dependent manner. In vivo studies demonstrated that Rg3 can limit the exaggerated inflammation, and do not delay the wound healing process, which indicates that Rg3 could be used as an early intervention to reduce HS formation. Topical injection of 4 mg/mL Rg3 can reduce HS formation by 34%. Histological and molecular studies revealed that Rg3 injection inhibits fibroblasts proliferation thus reduced the accumulation of collagen fibers, and down-regulates VEGF expression in the HS tissue.

Conclusion

Rg3 can be employed as an early intervention and a combining therapeutic drug to reduce inflammation and HS formation as well.  相似文献   

18.

Background

Daptomycin remains one of our last-line anti-staphylococcal agents. This study aims to characterize the genetic evolution to daptomycin resistance in S. aureus.

Methods

Whole genome sequencing was performed on a unique collection of isogenic, clinical (21 strains) and laboratory (12 strains) derived strains that had been exposed to daptomycin and developed daptomycin-nonsusceptibility. Electron microscopy (EM) and lipid membrane studies were performed on selected isolates.

Results

On average, six coding region mutations were observed across the genome in the clinical daptomycin exposed strains, whereas only two mutations on average were seen in the laboratory exposed pairs. All daptomycin-nonsusceptible strains had a mutation in a phospholipid biosynthesis gene. This included mutations in the previously described mprF gene, but also in other phospholipid biosynthesis genes, including cardiolipin synthase (cls2) and CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase (pgsA). EM and lipid membrane composition analyses on two clinical pairs showed that the daptomycin-nonsusceptible strains had a thicker cell wall and an increase in membrane lysyl-phosphatidylglycerol.

Conclusion

Point mutations in genes coding for membrane phospholipids are associated with the development of reduced susceptibility to daptomycin in S. aureus. Mutations in cls2 and pgsA appear to be new genetic mechanisms affecting daptomycin susceptibility in S. aureus.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号