共查询到20条相似文献,搜索用时 15 毫秒
1.
In sessile marine invertebrates, larval settlement is fundamental to population maintenance and persistence. Cues contributing to the settlement choices and metamorphosis of larvae have important implications for the success of individuals and populations, but cues mediating larval settlement for many marine invertebrates are largely unknown. This study assessed larval settlement in two common Great Barrier Reef sponges, Coscinoderma matthewsi and Rhopaloeides odorabile, to cues that enhance settlement and metamorphosis in various species of scleractinian coral larvae. Methanol extracts of the crustose coralline algae (CCA), Porolithon onkodes, corresponding to a range of concentrations, were used to determine the settlement responses of sponge larvae. Cnidarian neuropeptides (GLW-amide neuropeptides) were also tested as a settlement cue. Settlement in both sponge species was approximately two-fold higher in response to live chips of CCA and optimum concentrations of CCA extract compared to 0.2 μm filtered sea water controls. Metamorphosis also increased when larvae were exposed to GLW-amide neuropeptides; R. odorabile mean metamorphosis reached 42.0±5.8% compared to 16.0±2.4% in seawater controls and in C. matthewsi mean metamorphosis reached 68.3±5.4% compared to 36.7±3.3% in seawater controls. These results demonstrate the contributing role chemosensory communication plays in the ability of sponge larvae to identify suitable habitat for successful recruitment. It also raises the possibility that larvae from distinct phyla may share signal transduction pathways involved in metamorphosis. 相似文献
2.
Crustose coralline algae (CCA), a group of calcifying red algae found commonly in benthic marine ecosystems worldwide, perform essential ecological functions on coral reefs, including creating benthic substrate, stabilizing the reef structure and inducing coral settlement. An important feature of CCA is the ability to keep their surfaces free of epiphytic algae, thereby reducing algal overgrowth and allowing them access to light. However, the mechanisms by which CCA prevent settlement of opportunistic seaweeds (fleshy macroalgae) are not fully understood, nor is whether these mechanisms vary among CCA species. In our study based on the Great Barrier Reef, we demonstrate that three common CCA species ( Titanoderma pustulatum, Porolithon onkodes and Neogoniolithon sp.) have a remarkable ability to deter settlement of seaweed spores. We provide experimental evidence that the CCA use allelopathy and microbial inhibition against the settlement of spores of the brown seaweed Padina boergesenii. Methanol extracts of allelopathic compounds from T. pustulatum, Po. onkodes and Neogoniolithon sp. significantly reduced the settlement of Pa. boergesenii spores by 4.3 times, 3.0 and 3.8 times, respectively. Further, we found that microbial biofilms, while having a lower inhibitory effect than allelopathic compounds, also reduced seaweed settlement of Pa. boergesenii. Our study demonstrates that allelopathy and microbial inhibition, in addition to epithallial tissue sloughing, are mechanisms employed by CCA to prevent the settlement of epiphytic algae. Understanding the mechanisms by which CCA avoid seaweed overgrowth contributes to our understanding of the dynamics of seaweed proliferations on reefs and to the ecological knowledge of this important group of reef-building organisms. 相似文献
3.
Crustose coralline algae (CCA) are important components of many marine ecosystems. They aid in reef accretion and stabilization, create habitat for other organisms, contribute to carbon sequestration and are important settlement substrata for a number of marine invertebrates. Despite their ecological importance, little is known about the bacterial communities associated with CCA or whether differences in bacterial assemblages may have ecological implications. This study examined the bacterial communities on four different species of CCA collected in Belize using bacterial tag-encoded FLX amplicon pyrosequencing of the V1–V3 region of the 16S rDNA. CCA were dominated by Alphaproteobacteria, Gammaproteobacteria and Actinomycetes. At the operational taxonomic unit (OTU) level, each CCA species had a unique bacterial community that was significantly different from all other CCA species. Hydrolithon boergesenii and Titanoderma prototypum, CCA species that facilitate larval settlement in multiple corals, had higher abundances of OTUs related to bacteria that inhibit the growth and/or biofilm formation of coral pathogens. Fewer coral larvae settle on the surfaces of Paragoniolithon solubile and Porolithon pachydermum. These CCA species had higher abundances of OTUs related to known coral pathogens and cyanobacteria. Coral larvae may be able to use the observed differences in bacterial community composition on CCA species to assess the suitability of these substrata for settlement and selectively settle on CCA species that contain beneficial bacteria. 相似文献
4.
Crustose coralline algae (CCA) are a critical component of coral reefs as they accrete carbonate for reef structure and act as settlement substrata for many invertebrates including corals. CCA host a diversity of microorganisms that can also play a role in coral settlement and metamorphosis processes. Although the sensitivity of CCA to ocean acidification (OA) is well established, the response of their associated microbial communities to reduced pH and increased CO 2 was previously not known. Here we investigate the sensitivity of CCA‐associated microbial biofilms to OA and determine whether or not OA adversely affects the ability of CCA to induce coral larval metamorphosis. We experimentally exposed the CCA Hydrolithon onkodes to four pH/ pCO 2 conditions consistent with current IPCC predictions for the next few centuries (pH: 8.1, 7.9, 7.7, 7.5, pCO 2: 464, 822, 1187, 1638 μatm). Settlement and metamorphosis of coral larvae was reduced on CCA pre‐exposed to pH 7.7 ( pCO 2 = 1187 μatm) and below over a 6‐week period. Additional experiments demonstrated that low pH treatments did not directly affect the ability of larvae to settle, but instead most likely altered the biochemistry of the CCA or its microbial associates. Detailed microbial community analysis of the CCA revealed diverse bacterial assemblages that altered significantly between pH 8.1 ( pCO 2 = 464 μatm) and pH 7.9 ( pCO 2 = 822 μatm) with this trend continuing at lower pH/higher pCO 2 treatments. The shift in microbial community composition primarily comprised changes in the abundance of the dominant microbes between the different pH treatments and the appearance of new (but rare) microbes at pH 7.5. Microbial shifts and the concomitant reduced ability of CCA to induce coral settlement under OA conditions projected to occur by 2100 is a significant concern for the development, maintenance and recovery of reefs globally. 相似文献
6.
Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat-light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r(2) = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat-light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming. 相似文献
7.
珊瑚藻是海洋红藻中的大型钙化藻类,全球分布623种,中国现有记录共77种。随着生态科学研究的广泛展开,人们越来越认识到,珊瑚藻在海洋生态系统中,尤其在维持珊瑚礁生态系统的生物多样性及生态功能中发挥着重要作用。目前,科研人员对有关珊瑚藻的初级生产力、钙化作用以及在诱导底栖无脊椎动物幼虫的附着与变态等方面已有多方面的研究和探索。然而,有关珊瑚藻生态功能的深层次机理问题有待进一步深入研究。文章着重围绕目前珊瑚藻研究中的一些热点问题,从近年来珊瑚藻在珊瑚礁生态系统中的生态功能方面的研究概况进行综述,以期加深人们对珊瑚藻的认识,并促进对珊瑚藻生态功能的进一步深入研究。 相似文献
8.
Crustose coralline algae (CCA) are important components of reef ecology contributing to reef framework construction. However, little is known about how seasonal upwelling systems influence growth and calcification of tropical CCA. We assessed marginal and vertical growth and net calcification rates of two dominant but morphologically different reef-building CCA, Porolithon antillarum and Lithophyllum cf. kaiseri, in a shallow coral reef of the Colombian Caribbean during upwelling and non-upwelling seasons. Growth and calcification rates varied seasonally with higher values during the upwelling compared to the non-upwelling (rainy) season. Annual vertical growth showed rates of 4.48 ± 1.58 and 4.31 ± 2.17 mm · y −1, net calcification using crust growth estimates of 0.75 ± 0.30 g and 0.68 ± 0.60 g CaCO 3 · cm −2 · y −1 and net calcification using the buoyant weight method of 1.49 ± 0.57 and 0.52 ± 0.11 g CaCO 3 · cm −2 · y −1 in P. antillarum and L. kaiseri, respectively. Seawater temperature was inversely related with growth and calcification; however, complex oceanographic interactions between temperature and resource availability (e.g., light, nutrients, and CO 2) are proposed to modulate CCA vital rates. Although CCA calcification rates are comparable to hard corals, CCA vertical accretion is much lower, suggesting that the main contribution of CCA to reef construction is via cementation processes. These results provide baseline data on CCA in the region and generate useful information for monitoring the impacts of environmental changes on tropical upwelling environments. 相似文献
9.
Larval settlement is a critical bottleneck in the process of coral sexual propagation. Promoting coral larval settlement by inducers is a promising strategy in coral reef restoration engineering. In this study, the settlement-promoting effect of Ca2+ on larvae of the brooding coral Pocillopora damicornis was investigated for the first time. Treatment with 40 mM CaCl2 for 24 h effectively promoted coral larval settlement (~ 80%). Moreover, CaCl2 is comparable with the natural inducer, crustose coralline algae (CCA), in both promoting coral larval settlement and post-settlement growth. CaCl2 showed toxic effects on larval survival and growth at high concentrations, and this could be minimized by optimizing CaCl2 concentration and shortening the exposure period. Our study suggests that applying Ca2+ to effectively and efficiently induce coral larval settlement is viable for laboratory research and small-scale aquaculture systems, and it might become a useful tool in future coral reef restoration engineering. 相似文献
10.
For many species, the outcome of competition for space in homogeneous habitats depends upon relative rates of growth and overgrowth. Size dependence in competition occurs when this balance shifts due to the growth of one or both species. For example, the ability of coral to compete with certain species of crustose coralline algae (CCA) may depend on whether coral colonies are large enough to avoid being overgrown. Spatially implicit models suggest size refuges from competition can improve the persistence of species with a vulnerable life stage. We use spatially explicit simulation models to explore size dependence in competition between coral and competitively dominant CCA in well lit habitat. We determine what conditions allow coral to use size refuges and whether refuges improve the recovery of coral after disturbance. Local interactions in explicit space prevent the maturation of coral into size refuges unless coral grows more rapidly than CCA or coral colonies are allowed to fuse, and mortality mechanisms can limit long‐term persistence even if the refuge is achieved. We contrast results with analogous differential equation models, with and without an explicit maturation delay, to demonstrate how the predicted outcome of competition is frequently reversed when local interactions and individual‐based dynamics are included in models of size‐dependent competition. 相似文献
11.
Removing predatory fishes has effects that cascade through ecosystems via interactions between species and functional groups.
In Kenyan reef lagoons, fishing-induced trophic cascades produce sea urchin-dominated grazing communities that greatly reduce
the overall cover of crustose coralline algae (CCA). Certain species of CCA enhance coral recruitment by chemically inducing
coral settlement. If sea urchin grazing reduces cover of settlement-inducing CCA, coral recruitment and hence juvenile coral
abundance may also decline on fished reefs. To determine whether fishing-induced changes in CCA influence coral recruitment
and abundance, we compared (1) CCA taxonomic compositions and (2) taxon-specific associations between CCA and juvenile corals
under three fisheries management systems: closed, gear-restricted, and open-access. On fished reefs (gear-restricted and open-access),
abundances of two species of settlement-inducing CCA, Hydrolithon reinboldii and H. onkodes, were half those on closed reefs. On both closed and fished reefs, juveniles of four common coral families (Poritidae, Pocilloporidae,
Agariciidae, and Faviidae) were more abundant on Hydrolithon than on any other settlement substrate. Coral densities were positively correlated with Hydrolithon spp. cover and were significantly lower on fished than on closed reefs, suggesting that fishing indirectly reduces coral
recruitment or juvenile success over large spatial scales via reduction in settlement-inducing CCA. Therefore, managing reefs
for higher cover of settlement-inducing CCA may enhance coral recruitment or juvenile survival and help to maintain the ecological
and structural stability of reefs. 相似文献
12.
Basidiomycota constitute a group of fungi with highly diverse ecological strategies from ectomycorrhizas and plant pathogens to saprotrophic fungi. We used 454 sequencing to obtain sequences of Basidiomycota from a cultivated and an adjacent fallow field, to investigate the influence of soil cultivation on the species composition and distribution patterns. Nonparametric multidimensional scaling (NMS) clearly segregated the basidiomycetes communities in the two fields, though some species were shared. Axis 1 and 2 of the ordination correlated with soil organic matter content and pH respectively. Most OTUs had affinity to known species, but some unknown clades were seen in both fields. Spatial analysis demonstrated higher spatial autocorrelation (up to 50 m) in the managed field in comparison with the fallow field. The study showed that agricultural soils have considerable species richness, and that community composition and turn-over potentially is influenced both by land use and spatial scale. 相似文献
13.
Coral recruitment is important in sustaining coral reef ecosystems and contributing to their recovery after disturbances. Despite widespread acceptance that crustose coralline algae (CCA) positively influence coral recruitment success, especially by enhancing coral settlement and early post-settlement stages, there are no experimental data on the effects of CCA species on late post-settlement survival and growth of corals. This study tested the impact of four common, thick-crusted CCA species from two habitats (exposed and subcryptic) on the survival and growth of two recruit size categories of the coral genus Pocillopora. Coral recruits and CCA were transplanted adjacent to each other using epoxy in Petri dishes directly attached to the reef substratum on the forereef of Moorea (French Polynesia) in a 1-year field experiment. In the subcryptic habitat, survival of small-sized recruits adjacent to subcryptic CCA (0–5%) was lower than adjacent to dead CCA (35%), while in the exposed habitat, survival of small-sized recruits adjacent to exposed CCA (20–25%) was higher than adjacent to dead CCA (5%). None of the CCA species affected the survival of large-sized recruits within exposed or subcryptic habitats. However, the growth of large-sized recruits adjacent to subcryptic CCA was lower than adjacent to dead CCA. Recruits adjacent to exposed CCA died less from competition with turf algae relative to dead CCA, while recruits adjacent to subcryptic CCA frequently died from overgrowth by CCA. These results suggest that, in subcryptic habitats, CCA can reduce the survival and/or growth of coral recruits via direct competitive overgrowth, while in exposed habitats, they can enhance coral recruit survival by alleviating competition with turf algae. Importantly, our study demonstrates that not all CCA species are beneficial to the survival and growth of coral recruits and that there is considerable variability in both the outcome and process of competition between CCA and corals. 相似文献
14.
The surfaces of non-geniculate coralline algae (NCA) are known to induce the settlement and metamorphosis of disparate marine taxa. In this study we investigate the responsiveness of larvae of Herdmania curvata (Ascidiacea: Stolidobranchia) to three species of NCA (Neogoniolithon brassica-florida, Hydrolithon onkodes, and Lithothamnium prolifer) that cohabit the slope and crest of Heron Reef, Great Barrier Reef. H. curvata larvae were first exposed to these NCA at or within 2 h of hatching, which is 1 to 2 h prior to attaining competence, and then cultured continuously with the NCA for 12 to 14 h. Rates of settlement and metamorphosis of H. curvata cultured in laboratory chambers in the presence of the different NCA were significantly lower than spontaneous rates in seawater. The limited settlement in treatments containing NCA were confined entirely to the chamber periphery, and settlement never occurred on the surface of the NCA. The inhibitory effect was dose-dependent and was stronger in N. brassica-florida and H. onkodes than in L. prolifer. Larvae that did not settle in treatments with NCA had rounded anterior trunks and, in extreme cases, kinked tails with rounded and dissociated tail muscle cells. In some individuals, we observed the anterior chemosensory papillae being sloughed off the larval body. Morphological analysis of trunk ectodermal and mesenchymal nuclei of larvae cultured in the presence of the NCA revealed that general necrotic cell death was occurring. Importantly, H. curvata larvae that were exposed to NCA could not subsequently be induced to metamorphose in KCl-elevated seawater, whereas larvae not exposed to NCA metamorphosed at high rates in KCl-elevated seawater. 相似文献
15.
Bacterial biofilms are increasingly seen as important for the successful settlement of marine invertebrate larvae. Here we
tested the effects of biofilms on settlement of the sea urchin Heliocidaris erythrogramma. Larvae settled on many surfaces including various algal species, rocks, sand and shells. Settlement was reduced by autoclaving
rocks and algae, and by treatment of algae with antibiotics. These results, and molecular and culture-based analyses, suggested
that the bacterial community on plants was important for settlement. To test this, approximately 250 strains of bacteria were
isolated from coralline algae, and larvae were exposed to single-strain biofilms. Many induced rates of settlement comparable
to coralline algae. The genus Pseudoalteromonas dominated these highly inductive strains, with representatives from Vibrio, Shewanella, Photobacterium and Pseudomonas also responsible for a high settlement response. The settlement response to different bacteria was species specific, as low
inducers were also dominated by species in the genera Pseudoalteromonas and Vibrio. We also, for the first time, assessed settlement of larvae in response to characterised, monospecific biofilms in the field.
Larvae metamorphosed in higher numbers on an inducing biofilm, Pseudoalteromonas luteoviolacea, than on either a low-inducing biofilm, Pseudoalteromonas rubra, or an unfilmed control. We conclude that the bacterial community on the surface of coralline algae is important as a settlement
cue for H. erythrogramma larvae. This study is also an example of the emerging integration of molecular microbiology and more traditional marine eukaryote
ecology. 相似文献
16.
Since it has been reported that microorganisms can affect painting pigments, Paleolithic painting microbiology deserves attention. The present study is the first report on the bacterial colonization of the valuable Paleolithic paintings in the famous Altamira cave (Spain). One sample taken from a painting area in the Polychromes Hall was analyzed culture-independently. This was the first time microbiologists were allowed to take sample material directly from Altamira paintings. Identification methods included PCR amplification of 16S rRNA genes (16S rDNA) and community fingerprinting by denaturing gradient gel electrophoresis (DGGE). The applied approach gave insight into a great bacterial taxonomic diversity, and allowed the detection of unexpected and unknown bacteria with potential effects on the conservation of the painting. Regarding the number of 29 visible DGGE bands in the community fingerprint, the numbers of analyzed clones described about 72% of the phylogenetic diversity present in the sample. Thirty-eight percent of the sequences analyzed were phylogenetically most closely related to cultivated bacteria, while the majority (62%) were most closely related to environmental 16S rDNA clones. Bacteria identified in Altamira were related with sequence similarities between 84.8 and 99.4% to members of the cosmopolitan Proteobacteria (52.3%), to members of the Acidobacterium division (23.8%), Cytophaga/Flexibacter/Bacteroides phylum (9.5%), green non-sulfur bacteria (4.8%), Planctomycetales (4.8%) and Actinobacteria (4.8%). The high number of clones most closely related to environmental 16S rDNA clones showed the broad spectrum of unknown and yet to be cultivated bacteria in Altamira cave. 相似文献
17.
Coral Reefs - Many benthic larvae rely on ambient flow and turbulence for their dispersal to settlement sites. After reaching the seafloor, larvae must prevent predation as well as overcome flow... 相似文献
18.
The bacterial biota associated with the cuticle surface of healthy benthic samples of crustose nonarticulated coralline algae from the east coast of Tasmania (Australia) was examined by bacteriological cultivation and electron microscopy. In 32 samples studied, the viable count on Zobell's marine agar (supplemented with vitamins) was 3.3×10 6 bacteria g –1 wet wt. (range 2.9×10 4–2.7×10 7). Of 732 strains isolated from 16 out of 32 samples and identified to genus level, Moraxella was the predominant genus (66%). In contrast, Moraxella comprised only 11% of 217 strains isolated from benthic seawater samples collected at the same time as coralline algae. In 22 out of 32 algal samples examined by scanning electron microscopy, the total count was 1.6 × 10 7 bacteria g –1 wet wt. (range 5.1× 10 6–3.8×107); the major morphotype was cocco-bacilli (80%). Several environmental factors did not significantly influence the viable count or generic distribution, or the total count or morphotypic distribution of bacteria on the cuticle. These factors included geographical site, season, storage of samples in aquarium conditions, and the presence or absence of abalone from shells that the coralline algae encrusted. The microbiota, consisting mostly of the nonmotile bacterial genus Moraxella, appeared to be highly adapted to its calcerous plant host. 相似文献
19.
Flowing water delivers planktonic larvae to surfaces, but also dislodges them. This paper reviews experiments in the field and in laboratory flumes, as well as mathematical models, which have revealed how the interaction of ambient water motion with a developing fouling community affects larval settlement. Although mean current velocities across fouling communities in harbours are low, instantaneous velocities can be much higher due to turbulence and to the velocity oscillations of wind chop and ship wakes. As a fouling community develops, its topography becomes more complex and the range of flow microhabitats on the spatial scale of larvae increases. In spite of the prevalence of waves in shallow coastal habitats, and in spite of the importance to settlement of the fine-scale instantaneous velocities encountered by larvae, most studies of flow effects on larval settlement have focused on unidirectional currents and on temporally- and spatially-averaged aspects of the flow. 相似文献
20.
Abstract Flowing water delivers planktonic larvae to surfaces, but also dislodges them. This paper reviews experiments in the field and in laboratory flumes, as well as mathematical models, which have revealed how the interaction of ambient water motion with a developing fouling community affects larval settlement. Although mean current velocities across fouling communities in harbours are low, instantaneous velocities can be much higher due to turbulence and to the velocity oscillations of wind chop and ship wakes. As a fouling community develops, its topography becomes more complex and the range of flow microhabitats on the spatial scale of larvae increases. In spite of the prevalence of waves in shallow coastal habitats, and in spite of the importance to settlement of the fine-scale instantaneous velocities encountered by larvae, most studies of flow effects on larval settlement have focused on unidirectional currents and on temporally- and spatially-averaged aspects of the flow. 相似文献
|