首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sympathetic neurons undergo apoptosis when deprived of nerve growth factor (NGF). Inhibitors of RNA or protein synthesis block this death, suggesting that gene expression is important for apoptosis in this system. We have identified SM-20 as a new gene that increases in expression in sympathetic neurons after NGF withdrawal. Expression of SM-20 also increases during neuronal death caused by cytosine arabinoside or the phosphatidylinositol 3-kinase inhibitor LY294002. In addition, SM-20 protein synthesis is elevated in NGF-deprived neurons compared with neurons maintained with NGF. Importantly, expression of SM-20 in sympathetic neurons causes cell death in the presence of NGF. These results suggest that SM-20 may function to regulate cell death in neurons.  相似文献   

4.
The signaling pathways that mediate the ability of NGF to support survival of dependent neurons are not yet completely clear. However previous work has shown that the c-Jun pathway is activated after NGF withdrawal, and blocking this pathway blocks neuronal cell death. In this paper we show that over-expression in sympathetic neurons of phosphatidylinositol (PI) 3-kinase or its downstream effector Akt kinase blocks cell death after NGF withdrawal, in spite of the fact that the c-Jun pathway is activated. Yet, neither the PI 3-kinase inhibitor LY294002 nor a dominant negative PI 3-kinase cause sympathetic neurons to die if they are maintained in NGF. Thus, although NGF may regulate multiple pathways involved in neuronal survival, stimulation of the PI 3-kinase pathway is sufficient to allow cells to survive in the absence of this factor.  相似文献   

5.
6.
To examine whether multiple pathways of cell death exist in sympathetic neurons, we studied the cell death pathway induced by staurosporine (STS) in sympathetic neurons and compared it with the well-characterized NGF deprivation-induced death pathway. Increasing concentrations of STS were found to induce sympathetic neuronal death with different biochemical and morphological characteristics. One hundred nM STS induced metabolic changes, loss of cytochrome c, and caspase-dependent morphological degeneration which closely resembled the apoptotic death induced by NGF deprivation. In contrast, sympathetic neurons treated with 1 microM STS showed no loss of cytochrome c but exhibited extensive, caspase-independent, chromatin changes that were not TUNEL positive. One microM STS-treated sympathetic neurons had greatly reduced metabolic activities and became committed to die rapidly, yet maintained soma structure and appeared viable by other criteria even up to 48 h after STS treatment, illustrating the need to assess cell death by multiple criteria. Lastly, in contrast to the cell death-inducing activities of 100 nM STS or 1 microM STS, very low concentrations of STS (1 nM STS) inhibited sympathetic neuronal death by acting either at or prior to c-jun phosphorylation in the NGF deprivation-induced PCD pathway.  相似文献   

7.
《The Journal of cell biology》1996,135(5):1341-1354
Sympathetic neurons undergo programmed cell death (PCD) when deprived of NGF. We used an inhibitor to examine the function of interleukin-1 beta-converting enzyme (ICE) family proteases during sympathetic neuronal death and to assess the metabolic and genetic status of neurons saved by such inhibition. Bocaspartyl(OMe)-fluoromethylketone (BAF), a cell-permeable inhibitor of the ICE family of cysteine proteases, inhibited ICE and CPP32 (IC50 approximately 4 microM) in vitro and blocked Fas-mediated apoptosis in thymocytes (EC50 approximately 10 microM). At similar concentrations, BAF also blocked the NGF deprivation-induced death of rat sympathetic neurons in culture. Compared to NGF-maintained neurons, BAF-saved neurons had markedly smaller somas and maintained only basal levels of protein synthesis; readdition of NGF restored growth and metabolism. Although BAF blocked apoptosis in sympathetic neurons, it did not prevent the fall in protein synthesis or the increase in the expression of c-jun, c- fos, and other mRNAs that occur during neuronal PCD, implying that the ICE-family proteases function downstream of these events during PCD.NGF and BAF rescued sympathetic neurons with an identical time course, suggesting that NGF, in addition to inhibiting metabolic and genetic events associated with neuronal PCD, can act posttranslationally to abort apoptosis at a time point indistinguishable from the activation of cysteine proteases. Both poly-(ADP ribose) polymerase and pro-ICE and Ced-3 homolog-1 (ICH-1) appear to be cleaved in a BAF-inhibitable manner, although the majority of pro-CPP32 appears unchanged, suggesting that ICH-1 is activated during neuronal PCD. Potential implications of these findings for anti-apoptotic therapies are discussed.  相似文献   

8.
9.
Shortly after neurons begin to innervate their targets in the developing vertebrate nervous system they become dependent on the supply of a neurotrophic factor, such as nerve growth factor (NGF) for survival. Recently, Martin et al. (1988) have shown that inhibiting protein synthesis prevents the death of NGF-deprived sympathetic neurons, suggesting that NGF promotes neuronal survival by suppressing an active cell death program. To determine if other neurotrophic factors may regulate neuronal survival by a similar mechanism we examined the effects of inhibiting protein and RNA synthesis in other populations of embryonic neurons that require different neurotrophic factors, namely: 1) trigeminal mesencephalic neurons, a population of proprioceptive neurons that are supported by brain-derived neurotrophic factor; 2) dorsomedial trigeminal ganglion neurons, a population of cutaneous sensory neurons that are supported by NGF; 3) and ciliary ganglion neurons, a population of parasympathetic neurons that are supported by ciliary neuronotrophic factor. Blocking either protein or RNA synthesis rescued all three populations of neurons from cell death induced by neurotrophic factor deprivation in vitro. Thus, at least three different neurotrophic factors appear to promote survival by a similar mechanism that may involve the suppression of an endogenous cell death program.  相似文献   

10.
11.
12.
Naturally occurring sympathetic neuron death is the result of two apoptotic signaling events: one normally suppressed by NGF/TrkA survival signals, and a second activated by the p75 neurotrophin receptor. Here we demonstrate that the p53 tumor suppressor protein, likely as induced by the MEKK-JNK pathway, is an essential component of both of these apoptotic signaling cascades. In cultured neonatal sympathetic neurons, p53 protein levels are elevated in response to both NGF withdrawal and p75NTR activation. NGF withdrawal also results in elevation of a known p53 target, the apoptotic protein Bax. Functional ablation of p53 using the adenovirus E1B55K protein inhibits neuronal apoptosis as induced by either NGF withdrawal or p75 activation. Direct stimulation of the MEKK-JNK pathway using activated MEKK1 has similar effects; p53 and Bax are increased and the subsequent neuronal apoptosis can be rescued by E1B55K. Expression of p53 in sympathetic neurons indicates that p53 functions downstream of JNK and upstream of Bax. Finally, when p53 levels are reduced or absent in p53+/− or p53−/− mice, naturally occurring sympathetic neuron death is inhibited. Thus, p53 is an essential common component of two receptor-mediated signal transduction cascades that converge on the MEKK-JNK pathway to regulate the developmental death of sympathetic neurons.  相似文献   

13.
Nerve growth factor (NGF) acutely modulates synaptic transmission between sympathetic neurons and their cardiac myocyte targets. NGF also has developmental effects in establishing the level of synaptic transmission between sympathetic neurons and myocytes in culture, although little is known about the mechanisms by which NGF influences this synaptic connectivity. Here we report that NGF acts in conjunction with factors produced by cardiac myocytes to promote neuronal contact with the target and the extension of synaptic vesicle‐containing growth cones. In conjunction with previously published results showing that NGF has long‐term effects on synaptic transmission between sympathetic neurons and myocytes, this work suggests that NGF acts to promote sympathetic neurotransmission by increasing the number of sympathetic fibers establishing target contact. Further, we found that developmental changes in cardiac myocytes led to an increase in the density of synaptic vesicle–containing variocosities along sympathetic fibers, a process regulated by NGF. Thus, as myocytes mature they produce factors that promote the formation of sympathetic presynaptic structures. These results argue that multiple target interactions regulate the extent of synapse formation between sympathetic neurons and cardiac cells and suggest that NGF promotes presynaptic development by increasing neuronal contact with myocyte‐derived cell surface or matrix‐associated factors. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 460–476, 2000  相似文献   

14.
We have previously shown that nerve growth factor (NGF) withdrawal-induced death requires the activity of the small GTP-binding protein Cdc42 and that overexpression of an active form of Cdc42 is sufficient to mediate neuronal apoptosis via activation of the c-Jun pathway. Recently, a new mitogen-activated protein (MAP) kinase kinase kinase, apoptosis signal-regulating kinase 1 (ASK1) which activates both the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways and plays pivotal roles in tumor necrosis factor- and Fas-induced apoptosis, has been identified. Therefore, we investigated the role of ASK1 in neuronal apoptosis by using rat pheochromocytoma (PC12) neuronal cells and primary rat sympathetic neurons (SCGs). Overexpression of ASK1-DeltaN, a constitutively active mutant of ASK1, activated JNK and induced apoptosis in differentiated PC12 cells and SCG neurons. Moreover, in differentiated PC12 cells, NGF withdrawal induced a four- to fivefold increase in the activity of endogenous ASK1. Finally, expression of a kinase-inactive ASK1 significantly blocked both NGF withdrawal- and Cdc42-induced death and activation of c-jun. Taken together, these results demonstrate that ASK1 is a crucial element of NGF withdrawal-induced activation of the Cdc42-c-Jun pathway and neuronal apoptosis.  相似文献   

15.
The p75 neurotrophin receptor (p75NTR) is a death domain (DD) containing receptor of the TNF/FAS(APO-1) family. p75NTR has recently been shown to mediate apoptosis in certain types of neurons as well as in oligodendrocytes. The molecular mechanisms by which p75NTR stimulates apoptosis are still unknown. Here, we have tested whether overexpression of p75NTR could modulate survival of sympathetic neurons cultured in the presence or absence of NGF. Moreover, using the yeast two-hybrid system, we tested whether p75NTR intracellular domain was able to dimerize or interact with known DD-containing proteins including FADD, RIP, RAIDD and TRADD. We found that over-expression of p75NTR had no effect on the survival of sympathetic neurons cultured in the presence of NGF but instead delayed neuronal death following NGF deprivation. These results strongly support the finding that p75NTR is not involved in the apoptosis process induced by NGF deprivation in sympathetic neurons. We also foun d that the intracellular domain of p75NTR failed to associate either with itself or with other known DD-containing proteins. This suggests that the mechanisms by which p75NTR triggers apoptosis in certain cell types are different from those used by other receptors of the TNF/FAS family.  相似文献   

16.
To study molecular mechanisms underlying neuronal cell death, we have used sympathetic neurons from superior cervical ganglia which undergo programmed cell death when deprived of nerve growth factor. These neurons have been microinjected with expression vectors containing cDNAs encoding selected proteins to test their regulatory influence over cell death. Using this procedure, we have shown previously that sympathetic neurons can be protected from NGF deprivation by the protooncogene Bcl-2. We now report that the E1B19K protein from adenovirus and the p35 protein from baculovirus also rescue neurons. Other adenoviral proteins, E1A and E1B55K, have no effect on neuronal survival. E1B55K, known to block apoptosis mediated by p53 in proliferative cells, failed to rescue sympathetic neurons suggesting that p53 is not involved in neuronal death induced by NGF deprivation. E1B19K and p35 were also coinjected with Bcl-Xs which blocks Bcl-2 function in lymphoid cells. Although Bcl-Xs blocked the ability of Bcl- 2 to rescue neurons, it had no effect on survival that was dependent upon expression of E1B19K or p35.  相似文献   

17.
Nerve growth factor (NGF) acutely modulates synaptic transmission between sympathetic neurons and their cardiac myocyte targets. NGF also has developmental effects in establishing the level of synaptic transmission between sympathetic neurons and myocytes in culture, although little is known about the mechanisms by which NGF influences this synaptic connectivity. Here we report that NGF acts in conjunction with factors produced by cardiac myocytes to promote neuronal contact with the target and the extension of synaptic vesicle-containing growth cones. In conjunction with previously published results showing that NGF has long-term effects on synaptic transmission between sympathetic neurons and myocytes, this work suggests that NGF acts to promote sympathetic neurotransmission by increasing the number of sympathetic fibers establishing target contact. Further, we found that developmental changes in cardiac myocytes led to an increase in the density of synaptic vesicle-containing variocosities along sympathetic fibers, a process regulated by NGF. Thus, as myocytes mature they produce factors that promote the formation of sympathetic presynaptic structures. These results argue that multiple target interactions regulate the extent of synapse formation between sympathetic neurons and cardiac cells and suggest that NGF promotes presynaptic development by increasing neuronal contact with myocyte-derived cell surface or matrix-associated factors.  相似文献   

18.
Sympathetic neurons depend on nerve growth factor (NGF) for their survival both in vivo and in vitro. In culture, the neurons die after NGF withdrawal by an autonomous cell death program but whether these neurons die by apoptosis is under debate. Using vital DNA stains and in situ nick translation, we show here that extensive chromatin condensation and DNA fragmentation occur before plasma membrane breakdown during the death of NGF-deprived rat sympathetic neurons in culture. Furthermore, kinetic analysis of chromatin condensation events within the cell population is consistent with a model which postulates that after NGF deprivation nearly all of the neurons die in this manner. Although the dying neurons display membrane blebbing, cell fragmentation into apoptotic bodies does not occur. Apoptotic events proceed rapidly at around the time neurons become committed to die, regardless of neuronal culture age. However the duration of NGF deprivation required to commit neurons to die, and the rate at which apoptosis occurs, increase with culture age. Thus, within the first week of culture, apoptosis is the predominant form of cell death in sympathetic neurons.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号