首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We report an integrated pipeline for efficient serum glycoprotein biomarker candidate discovery and qualification that may be used to facilitate cancer diagnosis and management. The discovery phase used semi-automated lectin magnetic bead array (LeMBA)-coupled tandem mass spectrometry with a dedicated data-housing and analysis pipeline; GlycoSelector (http://glycoselector.di.uq.edu.au). The qualification phase used lectin magnetic bead array-multiple reaction monitoring-mass spectrometry incorporating an interactive web-interface, Shiny mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny), for univariate and multivariate statistical analysis. Relative quantitation was performed by referencing to a spiked-in glycoprotein, chicken ovalbumin. We applied this workflow to identify diagnostic biomarkers for esophageal adenocarcinoma (EAC), a life threatening malignancy with poor prognosis in the advanced setting. EAC develops from metaplastic condition Barrett''s esophagus (BE). Currently diagnosis and monitoring of at-risk patients is through endoscopy and biopsy, which is expensive and requires hospital admission. Hence there is a clinical need for a noninvasive diagnostic biomarker of EAC. In total 89 patient samples from healthy controls, and patients with BE or EAC were screened in discovery and qualification stages. Of the 246 glycoforms measured in the qualification stage, 40 glycoforms (as measured by lectin affinity) qualified as candidate serum markers. The top candidate for distinguishing healthy from BE patients'' group was Narcissus pseudonarcissus lectin (NPL)-reactive Apolipoprotein B-100 (p value = 0.0231; AUROC = 0.71); BE versus EAC, Aleuria aurantia lectin (AAL)-reactive complement component C9 (p value = 0.0001; AUROC = 0.85); healthy versus EAC, Erythroagglutinin Phaseolus vulgaris (EPHA)-reactive gelsolin (p value = 0.0014; AUROC = 0.80). A panel of 8 glycoforms showed an improved AUROC of 0.94 to discriminate EAC from BE. Two biomarker candidates were independently verified by lectin magnetic bead array-immunoblotting, confirming the validity of the relative quantitation approach. Thus, we have identified candidate biomarkers, which, following large-scale clinical evaluation, can be developed into diagnostic blood tests. A key feature of the pipeline is the potential for rapid translation of the candidate biomarkers to lectin-immunoassays.Biomarkers play a central role in health care by enabling accurate diagnosis and prognosis; hence there is extensive research on the identification and development of novel biomarkers. However, despite numerous biomarker publications over the years (1), only a handful of new cancer biomarkers have successfully completed the journey from discovery, qualification, to verification and validation (24). One possible way to overcome this challenge is to develop an integrated biomarker pipeline that facilitates the smooth and successful transition from discovery to validation (510). The first and foremost consideration in an integrated pipeline is the sample source. In general, most of the proteomics based workflows use tissues or proximal fluids during the discovery phase, with the goal of extending the findings to plasma. Although this approach avoid the high complexity serum/plasma proteome and the associated requisite multi-dimensional sample separation in discovery stages, it often leads to failure when the candidates are not detected in plasma because of the limited sensitivity of the available analytical methods, or the absence of candidates in the plasma (11). To overcome this pitfall, we have developed an integrated glycoprotein biomarker pipeline, which can simply and rapidly isolate glycosylated proteins from serum to enable high throughput analysis of differentially glycosylated proteins in discovery and qualification stages.The workflow utilizes naturally occurring glycan binding proteins, lectins, in a semi-automated high throughput workflow called lectin magnetic bead array-tandem mass spectrometry (LeMBA-MS/MS)1 (12, 13). Although lectins have been well-utilized in glycobiology and biomarker discovery (1417), the LeMBA-MS/MS workflow demonstrates several unique features. First, serum glycoproteins are isolated in a single-step using 20 individual lectin-coated magnetic beads in microplate format. Second, we have optimized the concentrations of salts and detergents for sample denaturation to avoid co-isolation of protein complexes without adversely affecting lectin pull-down efficiency. Third, a liquid handler is used for sample processing to facilitate high-throughput screening and increase reproducibility. In addition, we have optimized on-bead trypsin digestion and incorporated lectin-exclusion lists during nano-LC-MS/MS to identify nonglycosylated peptides from the isolated glycoproteins. With these innovations, LeMBA-MS/MS demonstrates nanomolar sensitivity and linearity, and applicability across species (12). Compared with existing single, serial or multi-lectin affinity chromatography (18, 19), LeMBA-MS/MS offers the capability to simultaneously screen 20 lectins in a semi-automated, high throughput manner. On the other hand, because LeMBA-MS/MS identifies the nonglycosylated peptides, it cannot be used for glycan site assignment and glycan structure elucidation (2023). However, the main advantage of LeMBA, we believe, is as a part of an integrated translational biomarker pipeline leading to lectin immunoassays. The lack of glycan structure details is not critical for clinical translation, as exemplified by the alpha-fetoprotein-L3 (AFP-L3) test, which measures the Lens culinaris agglutinin (LCA) binding fraction of serum alpha-fetoprotein (24, 25), and has been approved by the U.S. Food and Drug Administration for detection of hepatocellular carcinoma.In this study, we report the extension of the glycoprotein biomarker pipeline to the qualification phase with LeMBA-MRM-MS, and introduce statistical analysis pipelines GlycoSelector (http://glycoselector.di.uq.edu.au/) and Shiny mixOmics (http://mixomics-projects.di.uq.edu.au/Shiny) for the discovery and qualification phases, respectively. The utility of this integrated serum glycoprotein biomarker pipeline is demonstrated using esophageal adenocarcinoma (EAC) with unmet clinical need for an in vitro diagnostic test. EAC is a lethal malignancy of the lower esophagus with very poor 5-year survival rate of less than 25% (26). EAC is becoming increasingly common and its incidence is associated with the prevalent precursor metaplastic condition Barrett''s esophagus (BE), but with a low annual conversion rate of up to 1% (27). A common set of risk factors are described for BE and EAC, include gastroesophageal reflux disease (GERD), obesity, male gender, and smoking (28, 29). The current endoscopy-biopsy based diagnosis is invasive and costly, leading to an ineffective surveillance program. A blood test employing serum biomarkers that can distinguish patients with EAC from those with either BE or healthy tissue would, potentially, change the paradigm for the way in which BE and EAC are managed in the population (30). Serum glycan profiling studies have shown differential expression of glycan structures between healthy, BE, early dysplastic and EAC patients (3135). However, diagnostic serum glycoproteins showing differential glycosylation hence differential lectin binding remain to be discovered, making it a suitable disease model for this study.  相似文献   

2.
3.
Adenocarcinoma (AdC) is the most common lung cancer subtype and is often associated with pleural effusion (PE). Its poor prognosis is attributable to diagnostic delay and lack of effective treatments and there is a pressing need in discovering new biomarkers for early diagnosis or targeted therapies. To date, little is known about lung AdC proteome. We investigated protein expression of lung AdC in PE using the isobaric Tags for Relative and Absolute Quantification (iTRAQ) approach to identify possible novel diagnostic/prognostic biomarkers. This provided the identification of 109 of lung AdC-related proteins. We further analyzed lumican, one of the overexpressed proteins, in 88 resected lung AdCs and in 23 malignant PE cell-blocks (13 lung AdCs and 10 non-lung cancers) using immunohistochemistry. In AdC surgical samples, lumican expression was low in cancer cells, whereas it was strong and diffuse in the stroma surrounding the tumor. However, lumican expression was not associated with tumor grade, stage, and vascular/pleural invasion. None of the lung cancer cell-blocks showed lumican immunoreaction, whereas those of all the other tumors were strongly positive. Finally, immunoblotting analysis showed lumican expression in both cell lysate and conditioned medium of a fibroblast culture but not in those of A549 lung cancer cell line. PE is a valid source of information for proteomic analysis without many of the restrictions of plasma. The high lumican levels characterizing AdC PEs are probably due to its release by the fibroblasts surrounding the tumor. Despite the role of lumican in lung AdC is still elusive, it could be of diagnostic value.  相似文献   

4.
5.
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-of-function experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wild-type littermates, implying that malignant progression was dependent specifically upon tumor cell-derived fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude that fibulin-2 is a driver of malignant progression in lung adenocarcinoma and plays an unexpected role in collagen cross-linking and tumor cell adherence to collagen.  相似文献   

6.
Metastasis is still a major issue in cancer, and the discovery of biomarkers predicting metastatic capacity is essential for the development of better therapeutic strategies for treating lung adenocarcinoma. By using a proteomic approach, we aimed to identify novel predictors for lymph node metastasis in lung adenocarcinoma. Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 6 spots differentially expressed between lymph node metastasis-positive and lymph node metastasis-negative groups in a discovery set. Subsequent mass spectrometry showed that 2 of these spots were derived from galectin-4, and western blot analysis confirmed the overexpression of galectin-4 in metastatic samples. The predictive value of galectin-4 was confirmed by immunohistochemical analysis for a validation set consisting of 707 surgically resected specimens of lung adenocarcinomas (stages I to IV). We observed that 148 lung adenocarcinomas (20.9%) expressed galectin-4, which was significantly associated with variables of disease progression such as tumor size (p<0.0001), pleural invasion (p = 0.0071), venous invasion (p = 0.0178), nodal status (p = 0.0007), and TNM stage (p<0.0001). By the multivariate analysis, Galectin-4 expression was revealed as one of the independent predictor for lymph node metastasis, together with solid predominant and micropapillary histologic pattern. Furthermore, galectin-4 expression was revealed to be an independent predictor for lymph node metastasis and an adverse survival factor in patients with lung adenocarcinoma of acinar predominant type. Galectin-4 plays an important role in metastatic process of lung adenocarcinoma. Immunohistochemical testing for galectin-4 expression may be useful together with the detection of specific histology to predict the metastatic potential of lung adenocarcinoma.  相似文献   

7.
Recombinant human erythropoietins (rHuEPOs) are used to treat cancer-related anemia. Recent preclinical studies and clinical trials, however, have raised concerns about the potential tumor-promoting effects of these drugs. Because the clinical significance of erythropoietin receptor (EPOR) signaling in human non-small cell lung cancer (NSCLC) also remains controversial, our aim was to study whether EPO treatment modifies tumor growth and if EPOR expression has an impact on the clinical behavior of this malignancy. A total of 43 patients with stage III–IV adenocarcinoma (ADC) and complete clinicopathological data were included. EPOR expression in human ADC samples and cell lines was measured by quantitative real-time polymerase chain reaction. Effects of exogenous rHuEPOα were studied on human lung ADC cell lines in vitro. In vivo growth of human ADC xenografts treated with rHuEPOα with or without chemotherapy was also assessed. In vivo tumor and endothelial cell (EC) proliferation was determined by 5-bromo-2’-deoxy-uridine (BrdU) incorporation and immunofluorescent labeling. Although EPOR mRNA was expressed in all of the three investigated ADC cell lines, rHuEPOα treatment (either alone or in combination with gemcitabine) did not alter ADC cell proliferation in vitro. However, rHuEPOα significantly decreased tumor cell proliferation and growth of human H1975 lung ADC xenografts. At the same time, rHuEPOα treatment of H1975 tumors resulted in accelerated tumor endothelial cell proliferation. Moreover, in patients with advanced stage lung ADC, high intratumoral EPOR mRNA levels were associated with significantly increased overall survival. This study reveals high EPOR level as a potential novel positive prognostic marker in human lung ADC.  相似文献   

8.
9.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers, with a high mortality rate and poor prognosis. However, little is known concerning the molecular mechanism of PDAC at the proteomics level. Here we report a proteomics analysis of PDAC tumor and adjacent tissues by shotgun proteomics followed by label-free quantification, and in total, 3031 and 3306 proteins were identified in three pairs of PDAC tumor and adjacent tissues, respectively; 40 of them were differentially expressed for at least three-fold in PDAC tumor tissues. Ontological and interaction network analysis highlighted the dysregulation of a set of four proteins in the carboxypeptidase family: carboxypeptidase A1 (CPA1), A2 (CPA2), B1 (CPB1), and chymotrypsin C (CTRC). Western blotting confirmed the downregulation of the carboxypeptidase network in PDAC. Immunohistochemistry of tissue microarray from 90 PDAC patients demonstrated that CPB1 was downregulated 7.07-fold (P < .0001, n = 81) in tumor comparing with the peritumor tissue. Further 208 pancreatic tissues from PDAC tumor, peritumor, and pancreatis confirmed the downregulation of CPB1 in the PDAC patients. In summary, our results displayed that the expression of carboxypeptidase is significantly downregulated in PDAC tumor tissues and may be novel biomarker in the patient with PDAC.  相似文献   

10.
The study aims to determine the efficacy and feasibility of a novel folate receptor (FR)-based circulating tumor cell (CTC) detection method in the diagnosis of non-small cell lung cancer (NSCLC). CTCs were collected from 3 ml of blood based on negative enrichment by immunomagnetic beads and then labeled by a conjugate of a tumor-specific ligand folate and an oligonucleotide. After washing off redundant conjugates, the bound conjugates were removed and analyzed by quantitative polymerase chain reaction. The captured cells were validated as tumor cells by immunofluorescence staining. In the evaluation of clinical utility, the results showed that the CTC levels of 153 patients with NSCLC were significantly higher than the controls (49 healthy donors and 64 patients with benign lung diseases; P < .001). With a threshold of 8.64 CTC units, the method showed a sensitivity of 73.2% and a specificity of 84.1% in the diagnosis of NSCLC, especially a sensitivity of 67.2% in stage I disease. Compared with the existing clinical biomarkers such as neuron-specific enolase (NSE), carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), cyfra21-1, and squamous cell carcinoma antigen (SCC Ag), the method showed the highest diagnostic efficiency (area under the curve, 0.823; 95% confidence interval, 0.773–0.874). Together, our results demonstrated that FR-positive CTCs were feasible diagnostic biomarkers in patients with NSCLC, as well as in early-stage tumors.  相似文献   

11.
12.

Background and Objectives

Acute kidney injury (AKI) complicates the course of disease in critically ill patients. Efforts to change its clinical course have failed because of the fail in the early detection. This study was designed to assess whether heat shock protein (Hsp72) is an early and sensitive biomarker of acute kidney injury (AKI) compared with kidney injury molecule (Kim-1), neutrophil gelatinase-associated lipocalin (NGAL), and interleukin-18 (IL-18) biomarkers.

Methods

A total of 56 critically ill patients fulfilled the inclusion criteria. From these patients, 17 developed AKI and 20 were selected as controls. In AKI patients, Kim-1, IL-18, NGAL, and Hsp72 were measured from 3 days before and until 2 days after the AKI diagnosis and in no-AKI patients at 1, 5 and 10 days after admission. Biomarker sensitivity and specificity were determined. To validate the results obtained with ROC curves for Hsp72, a new set of critically ill patients was included, 10 with AKI and 12 with no-AKI patients.

Results

Urinary Hsp72 levels rose since 3 days before the AKI diagnosis in critically ill patients; this early increase was not seen with any other tested biomarkers. Kim-1, IL-18, NGAL, and Hsp72 significantly increased from 2 days before AKI and remained elevated during the AKI diagnosis. The best sensitivity/specificity was observed in Kim-1 and Hsp72: 83/95% and 100/90%, respectively, whereas 1 day before the AKI diagnosis, the values were 100/100% and 100/90%, respectively. The sensibility, specificity and accuracy in the validation test for Hsp72 were 100%, 83.3% and 90.9%, respectively.

Conclusions

The biomarker Hsp72 is enough sensitive and specific to predict AKI in critically ill patients up to 3 days before the diagnosis.  相似文献   

13.

Background and Aim

Aberrant hypermethylation of cancer-related genes has emerged as a promising strategy for the development of diagnostic, prognostic and predictive biomarkers in human cancer, including colorectal cancer (CRC). The aim of this study was to perform a systematic and comprehensive analysis of a panel of CRC-specific genes as potential diagnostic, prognostic and predictive biomarkers in a large, population-based CRC cohort.

Patients and Methods

Methylation status of the SEPT9, TWIST1, IGFBP3, GAS7, ALX4 and miR137 genes was studied by quantitative bisulfite pyrosequencing in a population-based cohort of 425 CRC patients.

Results

Methylation levels of all genes analyzed were significantly higher in tumor tissues compared to normal mucosa (p<0.0001); however, cancer-associated hypermethylation was most frequently observed for miR137 (86.7%) and IGFBP3 (83%) in CRC patients. Methylation analysis using the combination of these two genes demonstrated greatest accuracy for the identification of colonic tumors (sensitivity 95.5%; specificity 90.5%). Low levels of IGFBP3 promoter methylation emerged as an independent risk factor for predicting poor disease free survival in stage II and III CRC patients (HR = 0.49, 95% CI: 0.28–0.85, p = 0.01). Our results also suggest that stage II & III CRC patients with high levels of IGFBP3 methylation do not benefit from adjuvant 5FU-based chemotherapy.

Conclusion

By analyzing a large, population-based CRC cohort, we demonstrate the potential clinical significance of miR137 and IGFBP3 hypermethylation as promising diagnostic biomarkers in CRC. Our data also revealed that IGFBP3 hypermethylation may serve as an independent prognostic and predictive biomarker in stage II and III CRC patients.  相似文献   

14.
MRI phase imaging in multiple sclerosis (MS) patients and in autopsy tissue have demonstrated the presence of iron depositions in white matter lesions.The accumulation of iron in some but not all lesions suggests a specific, potentially disease-relevant process, however; its pathophysiological significance remains unknown.Here, we explore the role of lesional iron in multiple sclerosis using multiple approaches: immunohistochemical examination of autoptic MS tissue, an in vitro model of iron-uptake in human cultured macrophages and ultra-highfield phase imaging of highly active and of secondary progressive MS patients.Using Perls'' stain and immunohistochemistry, iron was detected in MS tissue sections predominantly in non-phagocytosing macrophages/microglia at the edge of established, demyelinated lesions. Moreover, iron-containing macrophages but not myelin-laden macrophages expressed markers of proinflammatory (M1) polarization.Similarly, in human macrophage cultures, iron was preferentially taken up by non-phagocytosing, M1-polarized macrophages and induced M1 (super) polarization. Iron uptake was minimal in myelin-laden macrophages and active myelin phagocytosis led to depletion of intracellular iron.Finally, we demonstrated in MS patients using GRE phase imaging with ultra-highfield MRI that phase hypointense lesions were significantly more prevalent in patients with active relapsing than with secondary progressive MS.Taken together, our data provide a basis to interpret iron-sensitive GRE phase imaging in MS patients: iron is present in non-phagocytosing, M1-polarized microglia/macrophages at the rim of chronic active white matter demyelinating lesions. Phase imaging may therefore visualize specific, chronic proinflammatory activity in established MS lesions and thus provide important clinical information on disease status and treatment efficacy in MS patients.  相似文献   

15.
16.

Background

The chromodomain helicase/adenosine triphosphatase DNA binding protein 1–like gene (CHD1L) is a recently identified oncogene localized at 1q21. CHD1L protein over-expression in primary hepatocellular carcinoma is correlated with enhanced apoptosis inhibition, reduced chemosensitivity and shortened patient survival. However, CHD1L protein status or mRNA expression in breast cancer and its clinical significance remain obscure.

Material and Methods

In this study, immunohistochemical staining for CHD1L expression was performed on tissue microarrays containing 179 primary invasive breast cancers and 65 matched normal breast tissue specimens. Clinico-pathological features were collected and compared between different CHD1L statuses. Kaplan-Meier curves were applied to estimate disease-free survival (DFS) and overall survival (OS). Cox regression was used to identify independent prognostic factors. Also, quantitative real-time polymerase chain reaction (QRT-PCR) was employed to evaluate the mRNA level expression of CHD1L in six breast cancer cell lines.

Results

Presence of CHD1L over-expression was observed in 87 of the 179 patients (48.6%), which associated with a younger age (P = 0.011), higher grade (P = 0.004), higher Ki-67 index (P = 0.018) and HER2 over-expression/amplification (P = 0.037). After a median follow-up of 55 months, patients with presence of CHD1L over-expression had significantly poorer DFS (82.6% Vs 76.3%, P = 0.035), but not OS (87.0% Vs 94.9%, P = 0.439). In multivariate analysis, CHD1L status (HR = 2.169, [95%CI, 1.029–4.573], P = 0.042), triple negative subtype (HR = 2.809, [95%CI 1.086–7.264], P = 0.033) and HER2 positive subtype (HR = 5.221, [95%CI 1.788–15.240], P = 0.002) were identified as independent prognostic factors for DFS. In vitro study indicated that relative mRNA expression level of CHD1L was higher in breast cancer cell lines, especially in MDA-MB-231 and LM2-4175, when compared to normal breast epithelial cell line.

Conclusions

Presence of CHD1L over-expression is probably associated with aggressive tumor biology in breast cancer. CHD1L status might be a novel prognostic biomarker for patients with breast cancer.  相似文献   

17.
In spite of the prevalence of prostatic adenocarcinoma, the development and natural history of this malignancy is poorly understood. This paper reviews the current knowledge of biomarker expression during the development and progression of prostatic adenocarcinoma. Emphasis is placed on the comparison of biomarker expression in benign prostatic epithelium, intraepithelial neoplasia (PIN), a putative preinvasive lesion, and prostatic adenocarcinoma. Within the benign epithelium, the proliferative potential is restricted to the basal cells as demonstrated by the expression of proliferating cellular nuclear antigen (PCNA). The strong expression of the bcl-2 protein, an inhibitor of apoptosis, supports the concept that the basal cells or a subpopulation of the basal cells represent the stem cell of the epithelium. In addition, the strong expression of growth factor receptors such as the epidermal growth factor receptor (EGFr), p185erbB-2, p180erbB-3, and c-met suggests that the growth of the basal cells is regulated by autocrine or paracrine factors. The luminal cells express secretory products such as prostate specific antigen and prostatic acid phosphatase, but demonstrate little expression of PCNA as well as growth factor receptors and proto-oncogene products. These observations are consistent with the theory that the luminal cell population is derived from the differentiation of the basal cells. In contrast to the normal epithelium, PCNA expression is frequently detected in the dysplastic luminal cells of the PIN lesion. Likewise, strong expression of p185erbB-2, p180erbB-3 and the c-met proto-oncogene product is also detected in the luminal cells of PIN lesions. Other factors which are strongly expressed by the dysplastic luminal cells include the nm23-Hl gene product, tumor associated glycoprotein-72 (TAG-72), fatty acid synthetase (FASE) and proteolytic enzymes. These findings suggest that PIN lesions are derived from an impairment of the differentiation of basal cells. The majority of biomarkers such as PCNA, p185erbB-2, p180erbB-3, TAG-72, nm23-Hl and FASE which are strongly expressed in PIN lesions are also expressed in prostatic adenocarcinoma supporting the concept that PIN is a preinvasive lesion. Mutations of the p53 tumor suppressor gene, as well as strong expression of transforming growth factor a and bcl-2 typically occur in advanced stage prostatic adenocarcinomas and therefore likely represent late events in the development of prostatic adenocarcinoma.  相似文献   

18.
Hemorrhagic stroke remains an important health challenge. Adrenomedullin (AM) is a vasoactive peptide with an important role in cardiovascular diseases, including stroke. Serum AM and nitrate–nitrite and S-nitroso compounds (NOx) levels were measured and compared between healthy volunteers (n = 50) and acute hemorrhagic stroke patients (n = 64). Blood samples were taken at admission (d0), 24 h later (d1), and after 7 days or at the time of hospital discharge (d7). Neurological severity (NIHSS) and functional prognosis (mRankin) were measured as clinical outcomes. AM levels were higher in stroke patients at all times when compared with healthy controls (p < 0.0001). A receiving operating characteristic curve analysis identified that AM levels at admission > 69.0 pg/mL had a great value as a diagnostic biomarker (area under the curve = 0.89, sensitivity = 80.0%, specificity = 100%). Furthermore, patients with a favorable outcome (NIHSS ≤ 3; mRankin ≤ 2) experienced an increase in AM levels from d0 to d1, and a decrease from d1 to d7, whereas patients with unfavorable outcome had no significant changes over time. NOx levels were lower in patients at d0 (p = 0.04) and d1 (p < 0.001) than in healthy controls. In conclusion, AM levels may constitute a new diagnostic and prognostic biomarker for this disease, and identify AM as a positive mediator for hemorrhagic stroke resolution.  相似文献   

19.

Background

Lung transplantation exposes the donated lung to a period of anoxia. Re-establishing the circulation after ischemia stimulates inflammation causing organ damage. Since our published data established that activin A is a key pro-inflammatory cytokine, we assessed the roles of activin A and B, and their binding protein, follistatin, in patients undergoing lung transplantation.

Methods

Sera from 46 patients participating in a published study of remote ischemia conditioning in lung transplantation were used. Serum activin A and B, follistatin and 11 other cytokines were measured in samples taken immediately after anaesthesia induction, after remote ischemia conditioning or sham treatment undertaken just prior to allograft reperfusion and during the subsequent 24 hours.

Results

Substantial increases in serum activin A, B and follistatin occurred after the baseline sample, taken before anaesthesia induction and peaked immediately after the remote ischemia conditioning/sham treatment. The levels remained elevated 15 minutes after lung transplantation declining thereafter reaching baseline 2 hours post-transplant. Activin B and follistatin concentrations were lower in patients receiving remote ischemia conditioning compared to sham treated patients but the magnitude of the decrease did not correlate with early transplant outcomes.

Conclusions

We propose that the increases in the serum activin A, B and follistatin result from a combination of factors; the acute phase response, the reperfusion response and the use of heparin-based anti-coagulants.  相似文献   

20.
Preoperative diagnostics of ovarian neoplasms rely on ultrasound imaging and the serum biomarkers CA125 and HE4. However, these markers may be elevated in non-neoplastic conditions and may fail to identify most non-serous epithelial cancer subtypes. The objective of this study was to identify histotype-specific serum biomarkers for mucinous ovarian cancer. The candidate genes with mucinous histotype specific expression profile were identified from publicly available gene-expression databases and further in silico data mining was performed utilizing the MediSapiens database. Candidate biomarker validation was done using qRT-PCR, western blotting and immunohistochemical staining of tumor tissue microarrays. The expression level of the candidate gene in serum was compared to the serum CA125 and HE4 levels in a patient cohort of prospectively collected advanced ovarian cancer. Database searches identified REG4 as a potential biomarker with specificity for the mucinous ovarian cancer subtype. The specific expression within epithelial ovarian tumors was further confirmed by mRNA analysis. Immunohistochemical staining of ovarian tumor tissue arrays showed distinctive cytoplasmic expression pattern only in mucinous carcinomas and suggested differential expression between benign and malignant mucinous neoplasms. Finally, an ELISA based serum biomarker assay demonstrated increased expression only in patients with mucinous ovarian cancer. This study identifies REG4 as a potential serum biomarker for histotype-specific detection of mucinous ovarian cancer and suggests serum REG4 measurement as a non-invasive diagnostic tool for postoperative follow-up of patients with mucinous ovarian cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号