首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gerstein AC  Lo DS  Otto SP 《Genetics》2012,192(1):241-252
Beneficial mutations are required for adaptation to novel environments, yet the range of mutational pathways that are available to a population has been poorly characterized, particularly in eukaryotes. We assessed the genetic changes of the first mutations acquired during adaptation to a novel environment (exposure to the fungicide, nystatin) in 35 haploid lines of Saccharomyces cerevisiae. Through whole-genome resequencing we found that the genomic scope for adaptation was narrow; all adapted lines acquired a mutation in one of four late-acting genes in the ergosterol biosynthesis pathway, with very few other mutations found. Lines that acquired different ergosterol mutations in the same gene exhibited very similar tolerance to nystatin. All lines were found to have a cost relative to wild type in an unstressful environment; the level of this cost was also strongly correlated with the ergosterol gene bearing the mutation. Interestingly, we uncovered both positive and negative effects on tolerance to other harsh environments for mutations in the different ergosterol genes, indicating that these beneficial mutations have effects that differ in sign among environmental challenges. These results demonstrate that although the genomic target was narrow, different adaptive mutations can lead populations down different evolutionary pathways, with respect to their ability to tolerate (or succumb to) other environmental challenges.  相似文献   

2.
It is unclear how historical adaptation versus maladaptation in a prior environment affects population evolvability in a novel habitat. Prior work showed that vesicular stomatitis virus (VSV) populations evolved at constant 37°C improved in cellular infection at both 29°C and 37°C; in contrast, those evolved under random changing temperatures between 29°C and 37°C failed to improve. Here, we tested whether prior evolution affected the rate of adaptation at the thermal‐niche edge: 40°C. After 40 virus generations in the new environment, we observed that populations historically evolved at random temperatures showed greater adaptability. Deep sequencing revealed that most of the newly evolved mutations were de novo. Also, two novel evolved mutations in the VSV glycoprotein and replicase genes tended to co‐occur in the populations previously evolved at constant 37°C, whereas this parallelism was not seen in populations with prior random temperature evolution. These results suggest that prior adaptation under constant versus random temperatures constrained the mutation landscape that could improve fitness in the novel 40°C environment, perhaps owing to differing epistatic effects of new mutations entering genetic architectures that earlier diverged. We concluded that RNA viruses maladapted to their previous environment could “leapfrog” over counterparts of higher fitness, to achieve faster adaptability in a novel environment.  相似文献   

3.
An often-returning question for not only HIV-1, but also other organisms, is how predictable evolutionary paths are. The environment, mutational history, and random processes can all impact the exact evolutionary paths, but to which extent these factors contribute to the evolutionary dynamics of a particular system is an open question. Especially in a virus like HIV-1, with a large mutation rate and large population sizes, evolution is expected to be highly predictable if the impact of environment and history is low, and evolution is not neutral. We investigated the effect of environment and mutational history by analyzing sequences from a long-term evolution experiment, in which HIV-1 was passaged on 2 different cell types in 8 independent evolutionary lines and 8 derived lines, 4 of which involved a switch of the environment. The experiments lasted for 240–300 passages, corresponding to approximately 400–600 generations or almost 3 years. The sequences show signs of extensive parallel evolution—the majority of mutations that are shared between independent lines appear in both cell types, but we also find that both environment and mutational history significantly impact the evolutionary paths. We conclude that HIV-1 evolution is robust to small changes in the environment, similar to a transmission event in the absence of an immune response or drug pressure. We also find that the fitness landscape of HIV-1 is largely smooth, although we find some evidence for both positive and negative epistatic interactions between mutations.

Analysis of the longest evolutionary experiment with HIV-1 to-date reveals continuous viral adaptation over several years. The authors quantify the environment-specific mutations that arise and determine the fraction of mutations that co-occur with significantly different frequencies than expected by chance.  相似文献   

4.
Nilsson AI  Kugelberg E  Berg OG  Andersson DI 《Genetics》2004,168(3):1119-1130
Experimental evolution is a powerful approach to study the dynamics and mechanisms of bacterial niche specialization. By serial passage in mice, we evolved 18 independent lineages of Salmonella typhimurium LT2 and examined the rate and extent of adaptation to a mainly reticuloendothelial host environment. Bacterial mutation rates and population sizes were varied by using wild-type and DNA repair-defective mutator (mutS) strains with normal and high mutation rates, respectively, and by varying the number of bacteria intraperitoneally injected into mice. After <200 generations of adaptation all lineages showed an increased fitness as measured by a faster growth rate in mice (selection coefficients 0.11-0.58). Using a generally applicable mathematical model we calculated the adaptive mutation rate for the wild-type bacterium to be >10(-6)/cell/generation, suggesting that the majority of adaptive mutations are not simple point mutations. For the mutator lineages, adaptation to mice was associated with a loss of fitness in secondary environments as seen by a reduced metabolic capability. During adaptation there was no indication that a high mutation rate was counterselected. These data show that S. typhimurium can rapidly and extensively increase its fitness in mice but this niche specialization is, at least in mutators, associated with a cost.  相似文献   

5.
It has been well established that populations of RNA viruses transmitted throughout serial bottlenecks suffer from significant fitness declines as a consequence of the accumulation of deleterious mutations by the onset of Muller's ratchet. Bottlenecks are unavoidably linked to different steps of the infectious cycle of most plant RNA viruses, such as vector-mediated transmissions and systemic colonization of new leaves. Here we report evidence for fitness declines by the accumulation of deleterious mutations in the potyvirus Tobacco etch virus (TEV). TEV was inoculated into the nonsystemic host Chenopodium quinoa, and local lesions were isolated and used to initiate 20 independent mutation accumulation lineages. Weekly, a random lesion from each lineage was isolated and used to inoculate the next set of plants. At each transfer, the Malthusian growth rate was estimated. After 11 consecutive transfers, all lineages suffered significant fitness losses, and one even became extinct. The average rate of fitness decline was 5% per day. The average pattern of fitness decline was consistent with antagonistic epistasis between deleterious mutations, as postulated for antiredundant genomes. Temporal fitness fluctuations were not explained by random noise but reflected more complex underlying processes related to emergence and self-organization phenomena.  相似文献   

6.
Neo-Darwinian evolution has presented a paradigm for population dynamics built on random mutations and selection with a clear separation of time-scales between single-cell mutation rates and the rate of reproduction. Laboratory experiments on evolving populations until now have concentrated on the fixation of beneficial mutations. Following the Darwinian paradigm, these experiments probed populations at low temporal resolution dictated by the rate of rare mutations, ignoring the intermediate evolving phenotypes. Selection however, works on phenotypes rather than genotypes. Research in recent years has uncovered the complexity of genotype-to-phenotype transformation and a wealth of intracellular processes including epigenetic inheritance, which operate on a wide range of time-scales. Here, by studying the adaptation dynamics of genetically rewired yeast cells, we show a novel type of population dynamics in which the intracellular processes intervene in shaping the population structure. Under constant environmental conditions, we measure a wide distribution of growth rates that coexist in the population for very long durations (>100 generations). Remarkably, the fastest growing cells do not take over the population on the time-scale dictated by the width of the growth-rate distributions and simple selection. Additionally, we measure significant fluctuations in the population distribution of various phenotypes: the fraction of exponentially-growing cells, the distributions of single-cell growth-rates and protein content. The observed fluctuations relax on time-scales of many generations and thus do not reflect noisy processes. Rather, our data show that the phenotypic state of the cells, including the growth-rate, for large populations in a constant environment is metastable and varies on time-scales that reflect the importance of long-term intracellular processes in shaping the population structure. This lack of time-scale separation between the intracellular and population processes calls for a new framework for population dynamics which is likely to be significant in a wide range of biological contexts, from evolution to cancer.  相似文献   

7.
Recent models of adaptation at the DNA sequence level assume that the fitness effects of new mutations show certain statistical properties. In particular, these models assume that the distribution of fitness effects among new mutations is in the domain of attraction of the so-called Gumbel-type extreme value distribution. This assumption has not, however, been justified on any biological or theoretical grounds. In this note, I study random mutation in one of the simplest models of mutation and adaptation-Fisher's geometric model. I show that random mutation in this model yields a distribution of mutational effects that belongs to the Gumbel type. I also show that the distribution of fitness effects among rare beneficial mutations in Fisher's model is asymptotically exponential. I confirm these analytic findings with exact computer simulations. These results provide some support for the use of Gumbel-type extreme value theory in studies of adaptation and point to a surprising connection between recent phenotypic- and sequence-based models of adaptation: in both, the distribution of fitness effects among rare beneficial mutations is approximately exponential.  相似文献   

8.
The evolution of mutation rates: separating causes from consequences   总被引:21,自引:0,他引:21  
Natural selection can adjust the rate of mutation in a population by acting on allelic variation affecting processes of DNA replication and repair. Because mutation is the ultimate source of the genetic variation required for adaptation, it can be appealing to suppose that the genomic mutation rate is adjusted to a level that best promotes adaptation. Most mutations with phenotypic effects are harmful, however, and thus there is relentless selection within populations for lower genomic mutation rates. Selection on beneficial mutations can counter this effect by favoring alleles that raise the mutation rate, but the effect of beneficial mutations on the genomic mutation rate is extremely sensitive to recombination and is unlikely to be important in sexual populations. In contrast, high genomic mutation rates can evolve in asexual populations under the influence of beneficial mutations, but this phenomenon is probably of limited adaptive significance and represents, at best, a temporary reprieve from the continual selection pressure to reduce mutation. The physiological cost of reducing mutation below the low level observed in most populations may be the most important factor in setting the genomic mutation rate in sexual and asexual systems, regardless of the benefits of mutation in producing new adaptive variation. Maintenance of mutation rates higher than the minimum set by this "cost of fidelity" is likely only under special circumstances.  相似文献   

9.
Beneficial mutations can become costly following an environmental change. Compensatory mutations can relieve these costs, while not affecting the selected function, so that the benefits are retained if the environment shifts back to be similar to the one in which the beneficial mutation was originally selected. Compensatory mutations have been extensively studied in the context of antibiotic resistance, responses to specific genetic perturbations, and in the determination of interacting gene network components. Few studies have focused on the role of compensatory mutations during more general adaptation, especially as the result of selection in fluctuating environments where adaptations to different environment components may often involve trade‐offs. We examine whether costs of a mutation in lacI, which deregulated the expression of the lac operon in evolving populations of Escherichia coli bacteria, were compensated. This mutation occurred in multiple replicate populations selected in environments that fluctuated between growth on lactose, where the mutation was beneficial, and on glucose, where it was deleterious. We found that compensation for the cost of the lacI mutation was rare, but, when it did occur, it did not negatively affect the selected benefit. Compensation was not more likely to occur in a particular evolution environment. Compensation has the potential to remove pleiotropic costs of adaptation, but its rarity indicates that the circumstances to bring about the phenomenon may be peculiar to each individual or impeded by other selected mutations.  相似文献   

10.
Orr HA 《Genetics》2000,155(2):961-968
I study the population genetics of adaptation in asexuals. I show that the rate of adaptive substitution in an asexual species or nonrecombining chromosome region is a bell-shaped function of the mutation rate: at some point, increasing the mutation rate decreases the rate of substitution. Curiously, the mutation rate that maximizes the rate of adaptation depends solely on the strength of selection against deleterious mutations. In particular, adaptation is fastest when the genomic rate of mutation, U, equals the harmonic mean of selection coefficients against deleterious mutations, where we assume that selection for favorable alleles is milder than that against deleterious ones. This simple result is independent of the shape of the distribution of effects among favorable and deleterious mutations, population size, and the action of clonal interference. In the course of this work, I derive an approximation to the probability of fixation of a favorable mutation in an asexual genome or nonrecombining chromosome region in which both favorable and deleterious mutations occur.  相似文献   

11.
The effectiveness of allogeneic graft-versus-leukemia (GVL) activity in control of acute lymphoblastic leukemia is generally regarded as poor. One possible factor is dynamic adaptation of the leukemia cell to the allogeneic environment. This work tested the hypothesis that the pattern of gene expression in acute lymphoblastic leukemia cells in an allogeneic environment would differ from that in a non-allogeneic environment. Expression microarray studies were performed in murine B lineage acute lymphoblastic leukemia cells recovered from mice that had undergone allogeneic MHC-matched but minor histocompatibility antigen mismatched transplants. A limited number of genes were found to be differentially expressed in ALL cells surviving in the allogeneic environment. Functional analysis demonstrated that genes related to immune processes, antigen presentation, ubiquitination and GTPase function were significantly enriched. Several genes with known immune activities potentially relevant to leukemia survival (Ly6a/Sca-1, TRAIL and H2-T23) were examined in independent validation experiments. Increased expression in vivo in allogeneic hosts was observed, and could be mimicked in vitro with soluble supernatants of mixed lymphocyte reactions or interferon-gamma. The changes in gene expression were reversible when the leukemia cells were removed from the allogeneic environment. These findings suggest that acute lymphoblastic leukemia cells respond to cytokines present after allogeneic transplantation and that these changes may reduce the effectiveness of GVL activity.  相似文献   

12.
Population subdivision limits competition between individuals, which can have a profound effect on adaptation. Subdivided populations maintain more genetic diversity at any given time compared to well-mixed populations, and thus "explore" larger parts of the genotype space. At the same time, beneficial mutations take longer to spread in such populations, and thus subdivided populations do not "exploit" discovered mutations as efficiently as well-mixed populations. Whether subdivision inhibits or promotes adaptation in a given environment depends on the relative importance of exploration versus exploitation, which in turn depends on the structure of epistasis among beneficial mutations. Here we investigate the relative importance of exploration versus exploitation for adaptation by evolving 976 independent asexual populations of budding yeast with several degrees of geographic subdivision. We find that subdivision systematically inhibits adaptation: even the luckiest demes in subdivided populations on average fail to discover genotypes that are fitter than those discovered by well-mixed populations. Thus, exploitation of discovered mutations is more important for adaptation in our system than a thorough exploration of the mutational neighborhood, and increasing subdivision slows adaptation.  相似文献   

13.
Ro S  Rannala B 《EMBO reports》2004,5(9):914-920
The investigation of cell lineages and clonal organization in tissues is facilitated by techniques that allow labelling of clonal cell lineages. Here, we describe a novel transgenic mouse that allows clonal cell lineages to be traced in virtually any tissue. A green fluorescent cell lineage is generated by a random mutation at an enhanced green fluorescent protein gene that carries a premature stop codon, ensuring clonality. The transgenic system allows efficient detection of mutations and stem-cell fate mapping in the epidermis using live mice, as well as in the kidney and liver post-mortem. Cell lineages that descended from single epidermal stem cells were found to be capable of generating three adjacent corneocytes using the system, providing evidence for horizontal migration of epidermal cells between epidermal proliferative units (EPUs), in contrast to the classical EPU model. The transgenic mouse system is expected to provide a novel tool for stem-cell lineage studies.  相似文献   

14.
Incremental selection within a population, defined as limited fitness changes following mutation, is an important aspect of many evolutionary processes. Strongly advantageous or deleterious mutations are detected using the synonymous to non-synonymous mutations ratio. However, there are currently no precise methods to estimate incremental selection. We here provide for the first time such a detailed method and show its precision in multiple cases of micro-evolution. The proposed method is a novel mixed lineage tree/sequence based method to detect within population selection as defined by the effect of mutations on the average number of offspring. Specifically, we propose to measure the log of the ratio between the number of leaves in lineage trees branches following synonymous and non-synonymous mutations. The method requires a high enough number of sequences, and a large enough number of independent mutations. It assumes that all mutations are independent events. It does not require of a baseline model and is practically not affected by sampling biases. We show the method''s wide applicability by testing it on multiple cases of micro-evolution. We show that it can detect genes and inter-genic regions using the selection rate and detect selection pressures in viral proteins and in the immune response to pathogens.  相似文献   

15.
The phenotypic effects of random mutations depend on both the architecture of the genome and the gene-trait relationships. Both levels thus play a key role in the mutational variability of the phenotype, and hence in the long-term evolutionary success of the lineage. Here, by simulating the evolution of organisms with flexible genomes, we show that the need for an appropriate phenotypic variability induces a relationship between the deleteriousness of gene mutations and the quantity of non-coding sequences maintained in the genome. The more deleterious the gene mutations, the shorter the intergenic sequences. Indeed, in a shorter genome, fewer genes are affected by rearrangements (duplications, deletions, inversions, translocations) at each replication, which compensates for the higher impact of each gene mutation. This spontaneous adjustment of genome structure allows the organisms to retain the same average fitness loss per replication, despite the higher impact of single gene mutations. These results show how evolution can generate unexpected couplings between distinct organization levels.  相似文献   

16.
This paper reviews the experimental results showing that a prior exposure to a low dose of ionsing radiation induces an adaptive response expressed as a reduction of gene mutation in various cell systems. The data show that the mutagenic adaptation shares common features with the clastogenic adaptation, i.e., priming dose level, kinds of conditioning agents, time interval between conditioning and challenging treatments, degree of induced protective effect (40–75%), transitory response and inhibition by 3-aminobenzamide, a DNA repair inhibitor. Moreover, the deletion-type mutations are predominantly reduced in adapted cells, suggesting that the mechanism underlying mutagenic adaptation preferentially facilitates the removal of the DNA lesions leading to deletion-type mutations. These lesions are thought to be double-strand breaks which are likely to be also involved in the production of chromosomal damage. Recent findings on the molecular processes implicated in the cellular response to rediation provide some clues for the mechanisms that could be triggered by low-dose exposure and ultimately contribute to the protective effect. These is some evidence that the protein kinase C-mediated signalling pathway is a key step for the transduction of the low-dose-induced signal. Several recent reports indicate that the low-dose triggers changes in the expression of several genes whose products, though most of them are still not identified, would be related to DNA repair and/or control of cell cycle progression.  相似文献   

17.
Convergent evolution of similar phenotypic features in similar environmental contexts has long been taken as evidence of adaptation. Nonetheless, recent conceptual and empirical developments in many fields have led to a proliferation of ideas about the relationship between convergence and adaptation. Despite criticism from some systematically minded biologists, I reaffirm that convergence in taxa occupying similar selective environments often is the result of natural selection. However, convergent evolution of a trait in a particular environment can occur for reasons other than selection on that trait in that environment, and species can respond to similar selective pressures by evolving nonconvergent adaptations. For these reasons, studies of convergence should be coupled with other methods-such as direct measurements of selection or investigations of the functional correlates of trait evolution-to test hypotheses of adaptation. The independent acquisition of similar phenotypes by the same genetic or developmental pathway has been suggested as evidence of constraints on adaptation, a view widely repeated as genomic studies have documented phenotypic convergence resulting from change in the same genes, sometimes even by the same mutation. Contrary to some claims, convergence by changes in the same genes is not necessarily evidence of constraint, but rather suggests hypotheses that can test the relative roles of constraint and selection in directing phenotypic evolution.  相似文献   

18.
Stress-directed adaptive mutations and evolution   总被引:1,自引:0,他引:1  
  相似文献   

19.
20.
Adaptation from de novo mutation can produce so-called soft selective sweeps, where adaptive alleles of independent mutational origin sweep through the population at the same time. Population genetic theory predicts that such soft sweeps should be likely if the product of the population size and the mutation rate toward the adaptive allele is sufficiently large, such that multiple adaptive mutations can establish before one has reached fixation; however, it remains unclear how demographic processes affect the probability of observing soft sweeps. Here we extend the theory of soft selective sweeps to realistic demographic scenarios that allow for changes in population size over time. We first show that population bottlenecks can lead to the removal of all but one adaptive lineage from an initially soft selective sweep. The parameter regime under which such “hardening” of soft selective sweeps is likely is determined by a simple heuristic condition. We further develop a generalized analytical framework, based on an extension of the coalescent process, for calculating the probability of soft sweeps under arbitrary demographic scenarios. Two important limits emerge within this analytical framework: In the limit where population-size fluctuations are fast compared to the duration of the sweep, the likelihood of soft sweeps is determined by the harmonic mean of the variance effective population size estimated over the duration of the sweep; in the opposing slow fluctuation limit, the likelihood of soft sweeps is determined by the instantaneous variance effective population size at the onset of the sweep. We show that as a consequence of this finding the probability of observing soft sweeps becomes a function of the strength of selection. Specifically, in species with sharply fluctuating population size, strong selection is more likely to produce soft sweeps than weak selection. Our results highlight the importance of accurate demographic estimates over short evolutionary timescales for understanding the population genetics of adaptation from de novo mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号