首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Small heat shock proteins (sHSPs) are cytoskeletal chaperones constitutively expressed in the normal kidney but enhanced with beneficial roles during adverse stimuli. Cyclosporine A is an immunosuppressive drug with major adverse side effect such as severe nephrotoxicity. Among possible mechanisms of cyclosporine A-induced renal damage, oxidative stress and cytoskeletal damage have been suggested. Melatonin has been successfully used as antioxidant against many renal diseases. This in vivo study was performed to shed light on the protective effect of melatonin against cyclosporine A-induced renal alterations. We treated rats with cyclosporine A alone, or combined with melatonin, and with melatonin alone (as controls) for 40 days and analysed the renal abundance and distribution of two sHSPs, HSP25 and alpha B-crystallin. These data were correlated with the histopathological effects of the treatments. Cyclosporine A induced insoluble isoforms that moved to soluble fractions after melatonin coadministration as in controls. After cyclosporine A treatment, an intense signal for sHSPs was found within the glomeruli, nucleus and cytoplasm of cortical tubules, collecting ducts and vascular wall. After melatonin supply, the staining was faint, limited to the cytoplasm of cortical tubules, similar to controls. Both fibrosis and tubular alterations significantly decreased after melatonin coadministration. In conclusion, HSP25 and alpha B-crystallin are overexpressed in the rat kidney treated with cyclosporine A but are similar to controls after combined melatonin. This could be a consequence of the cytoprotective effect of melatonin in this nephrotoxic model so that a beneficial sHSPs response isbreak unnecessary.  相似文献   

2.
Impaired mitochondrial function and dysregulated energy metabolism have been shown to be involved in the pathological progression of kidney diseases such as acute kidney injury (AKI) and diabetic nephropathy. Hence, improving mitochondrial function is a promising strategy for treating renal dysfunction. NADH: ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an important subunit of mitochondrial complex I. In the present study, we found that NDUFV1 was reduced in kidneys of renal ischemia/reperfusion (I/R) mice. Meanwhile, renal I/R induced kidney dysfunction as evidenced by increases in BUN and serum creatinine, severe injury of proximal renal tubules, oxidative stress, and cell apoptosis. All these detrimental outcomes were attenuated by increased expression of NDUFV1 in kidneys. Moreover, knockdown of Ndufv1 aggravated cell insults induced by H2O2 in TCMK-1 cells, which further confirmed the renoprotective roles of NDUFV1. Mechanistically, NDUFV1 improved the integrity and function of mitochondria, leading to reduced oxidative stress and cell apoptosis. Overall, our data indicate that NDUFV1 has an ability to maintain mitochondrial homeostasis in AKI, suggesting therapies by targeting mitochondria are useful approaches for dealing with mitochondrial dysfunction associated renal diseases such as AKI.  相似文献   

3.
Cisplatin is a widely used antineoplastic agent. However, its major limitation is dose-dependent nephrotoxicity whose precise mechanism is poorly understood. Recent studies have suggested that mitochondrial dysfunction in tubular epithelium contributes to cisplatin-induced nephrotoxicity. Here the authors extend those findings by describing the role of an important electron transport chain enzyme, cytochrome c oxidase (COX). Immunohistochemistry for COX 1 protein demonstrated that, in response to cisplatin, expression was mostly maintained in focally damaged tubular epithelium. In contrast, COX enzyme activity in proximal tubules (by light microscopy) was decreased. Ultrastructural analysis of the cortex and outer stripe of the outer medulla showed decreased mitochondrial mass, disruption of cristae, and extensive mitochondrial swelling in proximal tubular epithelium. Functional electron microscopy showed that COX enzyme activity was decreased in the remaining mitochondria in the proximal tubules but maintained in distal tubules. In summary, cisplatin-induced nephrotoxicity is associated with structural and functional damage to the mitochondria. More broadly, using functional electron microscopy to measure mitochondrial enzyme activity may generate mechanistic insights across a spectrum of renal disorders.  相似文献   

4.
Mercuric chloride (HgCl2) induces acute renal failure associated to tubular impairment in experimental animals and humans. Stress proteins are a superfamily of proteins, comprising heat- shock proteins (HSP) and glucose-regulated proteins (GRP), enhanced or induced in the kidney in response to stress. They act as molecular chaperones that protect organelles and repair essential proteins which have been denatured during adverse conditions. The involvement of stress proteins in mercury-nephrotoxicity has not yet been well clarified. This study was undertaken to detect the tubular distribution of four stress proteins (HSP25, HSP60, GRP75, HSP72) in the rat kidney injected with HgCl2 and to quantify lysosomal and mitochondrial changes in straight proximal tubules, the main mercury target. Sprague-Dawley rats were administered i.p. with progressive sublethal doses of HgCl2 (0.25 mg/kg, 0.5 mg/kg, 1 mg/kg and 3.5 mg/kg) or saline (as controls) and sacrificed after 24 h. In dosages over 0.50 mg/kg, stress proteins increased and changed localization in a dose-dependent manner. HSP25 was focally expressed in altered proximal tubules at 1 mg/kg but in the macula densa it was at 3.5 mg/kg. HSP60 and GRP75 were intense in the nucleus and cytoplasm of proximal tubules but moderate in distal tubules. HSP72 was induced in distal tubules after low exposures but in proximal tubules it happened at the highest dose. Moreover, a significant increase in lysosomal and total mitochondria (normal and with broken cristae) area and density were progressively found after HgCl2 treatments. Stress proteins could represent sensitive biomarkers that strongly correlate with the degree of oxidative injury induced by HgCl2 in the rat proximal tubules.  相似文献   

5.
Damage to mitochondria as a result of the intrinsic generation of free radicals is theoretically involved in the processes of cellular aging. Herein, we investigated whether acutely administered melatonin, due to its free radical scavenging activity, would influence mitochondrial metabolism. Mitochondrial respiratory activity and respiratory chain complex I and IV activities in liver mitochondria from a strain of senescence-accelerated-prone mice (SAMP8) and a strain of senescence-accelerated-resistant mice (SAMR1) were measured when the animals were 12 months of age. Respiratory control index (RCI), ADP/O ratio, State 3 respiration and dinitrophenol (DNP)-dependent uncoupled respiration were significantly lower in SAMP8 than in SAMR1. In contrast, State 4 respiration was significantly higher in SAMP8 than in SAMR1. Activities of complexes I and IV in SAMP8 were significantly lower than in SAMR1. Melatonin administration (10mg/kg body weight, intraperitoneally) 1h prior to sacrifice significantly increased RCI, ADP/O ratio, State 3 respiration and DNP-induced uncoupled respiration in SAMP8 while also significantly reducing State 4 respiration in SAMP8. The injection of melatonin also significantly increased complex I activity in both mouse strains and complex IV activity in the liver of SAMP8 mice. These results document an age-related decrease in hepatic mitochondrial function in SAM which can be modified by an acute pharmacological injection of melatonin; the indole stimulated mitochondrial respiratory chain activity which would likely reduce deteriorative oxidative changes in mitochondria that normally occur in advanced age.  相似文献   

6.
The convoluted proximal and straight distal tubules and the medullary collecting ducts in kidneys of rats with ischaemic renal hypertension and with genetic spontaneous hypertension were studied by means of electron microscopic morphometry. The volume of mitochondria, the area of their cristae, of the outer surface and of membranes of the intercellular labyrinth, and other ultrastructural characterisitcs were calculated. No significant differences were found in proximal tubules between experimental and control animals, although in the distal tubules in both experiments the coefficient characterizing the level of morphologic organization of mitochondria, which takes into account their basic morphometric parameters, was reduced in hypertensive animals as compared with the intact ones. The volume of mitochondria and the area of their cristae in collecting ducts, and also the area of membranes of the intercellular labyrinth were increased. Our results suggest that in hypertension the reabsorption of substances from the proximal tubules is essentially normal, that it is reduced at the beginning of the distal tubules but is intensified in the collecting ducts.  相似文献   

7.
Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells.  相似文献   

8.
Activation of the farnesoid X receptor (FXR) has indicated a therapeutic potential for this nuclear bile acid receptor in the prevention of diabetic nephropathy and obesity-induced renal damage. Here, we investigated the protective role of FXR against kidney damage induced by obesity in mice that had undergone uninephrectomy, a model resembling the clinical situation of kidney donation by obese individuals. Mice fed a high-fat diet developed the core features of metabolic syndrome, with subsequent renal lipid accumulation and renal injury, including glomerulosclerosis, interstitial fibrosis, and albuminuria. The effects were accentuated by uninephrectomy. In human renal biopsies, staining of 4-hydroxynonenal (4-HNE), glucose-regulated protein 78 (Grp78), and C/EBP-homologous protein, markers of endoplasmic reticulum stress, was more prominent in the proximal tubules of 15 obese patients compared with 16 non-obese patients. In mice treated with the FXR agonist obeticholic acid, renal injury, renal lipid accumulation, apoptosis, and changes in lipid peroxidation were attenuated. Moreover, disturbed mitochondrial function was ameliorated and the mitochondrial respiratory chain recovered following obeticholic acid treatment. Culturing renal proximal tubular cells with free fatty acid and FXR agonists showed that FXR activation protected cells from free fatty acid-induced oxidative stress and endoplasmic reticulum stress, as denoted by a reduction in the level of reactive oxygen species staining and Grp78 immunostaining, respectively. Several genes involved in glutathione metabolism were induced by FXR activation in the remnant kidney, which was consistent with a decreased glutathione disulfide/glutathione ratio. In summary, FXR activation maintains endogenous glutathione homeostasis and protects the kidney in uninephrectomized mice from obesity-induced injury.  相似文献   

9.
Rhomboids, evolutionarily conserved integral membrane proteases, participate in crucial signaling pathways. Presenilin-associated rhomboid-like (PARL) is an inner mitochondrial membrane rhomboid of unknown function, whose yeast ortholog is involved in mitochondrial fusion. Parl-/- mice display normal intrauterine development but from the fourth postnatal week undergo progressive multisystemic atrophy leading to cachectic death. Atrophy is sustained by increased apoptosis, both in and ex vivo. Parl-/- cells display normal mitochondrial morphology and function but are no longer protected against intrinsic apoptotic death stimuli by the dynamin-related mitochondrial protein OPA1. Parl-/- mitochondria display reduced levels of a soluble, intermembrane space (IMS) form of OPA1, and OPA1 specifically targeted to IMS complements Parl-/- cells, substantiating the importance of PARL in OPA1 processing. Parl-/- mitochondria undergo faster apoptotic cristae remodeling and cytochrome c release. These findings implicate regulated intramembrane proteolysis in controlling apoptosis.  相似文献   

10.
A major feature of the injury sustained by the kidney during obstructive nephropathy is a profound induction of apoptosis in the tubular epithelium. In this study, we explored the central roles of mitochondria and the mechanism of the protective effect of the mitochondrial targeted peptides in tubular cell apoptosis and interstitial fibrosis during obstructive nephropathy. Unilateral ureter obstruction (UUO) was performed on rats, and the animals were randomly assigned to intravenous treatment with normal saline, rat serum albumin (RSA), or HOCl-rat serum albumin (HOCl-RSA) in the presence or absence of SS-31. A sham-operation control group was set up by left ureteral dissociation but not ligation. Compared with the control group, UUO animals displayed fibrotic abnormalities, accompanied by increased expression of collagen-I, fibronectin, α-SMA protein and mRNA in the renal interstitium. They also displayed oxidative stress, as evidenced by increased levels of HOCl-alb, TBARS, and mitochondrial reactive oxygen species (ROS) and a decrease in MnSOD activity in the renal homogenate. Damage to mitochondrial structure and functions was observed, as evidenced by a decrease in the mitochondrial membrane potential (MMP), ATP production, mtDNA copy number alterations and release of cytochrome C (cyto C) from the mitochondria to the cytoplasm. These changes were accompanied by activation of caspase-3, caspase-7, caspase-9, and PARP-1 and increased apoptotic cells in the proximal tubules. HOCl-RSA challenge further exacerbated the above biological effects in UUO animals, but these effects were prevented by administration of SS-31. These data suggested that accumulation of HOCl-alb may promote tubular cell apoptosis and interstitial fibrosis, probably related to mitochondrial oxidative stress and damage, and that SS-31 might contribute to apoptotic pathway suppression via scavenging of ROS in the mitochondria.  相似文献   

11.
Mitochondrial dynamics play a critical role in deciding the fate of a cell under normal and diseased condition. Recent surge of studies indicate their regulatory role in meeting energy demands in renal cells making them critical entities in the progression of diabetic nephropathy. Diabetes is remarkably associated with abnormal fuel metabolism, a basis for free radical generation, which if left unchecked may devastate the mitochondria structurally and functionally. Impaired mitochondrial function and their aberrant accumulation have been known to be involved in the manifestation of diabetic nephropathy, indicating perturbed balance of mitochondrial dynamics, and mitochondrial turnover. Mitochondrial dynamics emphasize the critical role of mitochondrial fission proteins such as mitochondrial fission 1, dynamin-related protein 1 and mitochondrial fission factor and fusion proteins including mitofusin-1, mitofusin-2 and optic atrophy 1. Clearance of dysfunctional mitochondria is aided by translocation of autophagy machinery to the impaired mitochondria and subsequent activation of mitophagy regulating proteins PTEN-induced putative kinase 1 and Parkin, for which mitochondrial fission is a prior event. In this review, we discuss recent progression in our understanding of the molecular mechanisms targeting reactive oxygen species mediated alterations in mitochondrial energetics, mitophagy related disorders, impaired glucose transport, tubular atrophy, and renal cell death. The molecular cross talks linking autophagy and renoprotection through an intervention of 5′-AMP-activated protein kinase, mammalian target of rapamycin, and SIRT1 factors are also highlighted here, as in-depth exploration of these pathways may help in deriving therapeutic strategies for managing diabetes provoked end-stage renal disease.  相似文献   

12.
Kidney is one of the most important organs in maintaining the normal life activities. With the high abundance of mitochondria, renal tubular cell plays the vital role in functioning in the reabsorption and secretion of kidney. Reports have shown that mitochondrial dysfunction is of great importance to renal tubular cell senescence and subsequent kidney ageing. However, the underlying mechanisms are not elucidated. Cannabinoid receptor 2 is one of the two receptors responsible for the activation of endocannabinoid system. CB2 is primarily upregulated in renal tubular cells in chronic kidney diseases and mediates fibrogenesis. However, the role of CB2 in tubular mitochondrial dysfunction and kidney ageing has not been clarified. In this study, we found that CB2 was upregulated in kidneys in 24-month-old mice and d -galactose (d -gal)-induced accelerated ageing mice, accompanied by the decrease in mitochondrial mass. Furthermore, gene deletion of CB2 in d -gal-treated mice could greatly inhibit the activation of β-catenin signalling and restore the mitochondrial integrity and Adenosine triphosphate (ATP) production. In CB2 knockout mice, renal tubular cell senescence and kidney fibrosis were also significantly inhibited. CB2 overexpression or activation by the agonist AM1241 could sufficiently induce the decrease in PGC-1α and a variety of mitochondria-related proteins and trigger cellular senescence in cultured human renal proximal tubular cells. CB2-activated mitochondrial dysfunction and cellular senescence could be blocked by ICG-001, a blocker for β-catenin signalling. These results show CB2 plays a central role in renal tubular mitochondrial dysfunction and kidney ageing. The intrinsic mechanism may be related to its activation in β-catenin signalling.  相似文献   

13.
The effects of high-potency statins on renal function are controversial. To address the impact of statins on renal morpho-functional aspects, normotensive young mice were treated with rosuvastatin (Rvs). Moreover, because statins may impair mitochondrial function, mice received either dietary supplementation with an amino acid mixture enriched in essential amino acids (EAAm), which we previously demonstrated to increase mitochondrial biogenesis in muscle or an unsupplemented control diet for 1 month. Mitochondrial biogenesis and function, apoptosis, and insulin signaling pathway events were studied, primarily in cortical proximal tubules. By electron microscopy analysis, mitochondria were more abundant and more heterogeneous in size, with dense granules in the inner matrix, in Rvs- and Rvs plus EAAm-treated animals. Rvs administration increased protein kinase B and endothelial nitric oxide synthase phosphorylation, but the mammalian target of rapamycin signaling pathway was not affected. Rvs increased the expression of sirtuin 1, peroxisome proliferator-activated receptor γ coactivator-1α, cytochrome oxidase type IV, cytochrome c, and mitochondrial biogenesis markers. Levels of glucose-regulated protein 75 (Grp75), B-cell lymphoma 2, and cyclin-dependent kinase inhibitor 1 were increased in cortical proximal tubules, and expression of the endoplasmic reticulum–mitochondrial chaperone Grp78 was decreased. EAAm supplementation maintained or enhanced these changes. Rvs promotes mitochondrial biogenesis, with a probable anti-apoptotic effect. EAAm boosts these processes and may contribute to the efficient control of cellular energetics and survival in the mouse kidney. This suggests that appropriate nutritional interventions may enhance the beneficial actions of Rvs, and could potentially prevent chronic renal side effects.  相似文献   

14.
The existence of an inducible mitochondrial nitric oxide synthase has been recently related to the nitrosative/oxidative damage and mitochondrial dysfunction that occurs during endotoxemia. Melatonin inhibits both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase activities, a finding related to the antiseptic properties of the indoleamine. Hence, we examined the changes in inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase expression and activity, bioenergetics and oxidative stress in heart mitochondria following cecal ligation and puncture-induced sepsis in wild-type (iNOS(+/+)) and inducible nitric oxide synthase-deficient (iNOS(-/-)) mice. We also evaluated whether melatonin reduces the expression of inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase, and whether this inhibition improves mitochondrial function in this experimental paradigm. The results show that cecal ligation and puncture induced an increase of inducible mitochondrial nitric oxide synthase in iNOS(+/+) mice that was accompanied by oxidative stress, respiratory chain impairment, and reduced ATP production, although the ATPase activity remained unchanged. Real-time PCR analysis showed that induction of inducible nitric oxide synthase during sepsis was related to the increase of inducible mitochondrial nitric oxide synthase activity, as both inducible nitric oxide synthase and inducible mitochondrial nitric oxide synthase were absent in iNOS(-/-) mice. The induction of inducible mitochondrial nitric oxide synthase was associated with mitochondrial dysfunction, because heart mitochondria from iNOS(-/-) mice were unaffected during sepsis. Melatonin treatment blunted sepsis-induced inducible nitric oxide synthase/inducible mitochondrial nitric oxide synthase isoforms, prevented the impairment of mitochondrial homeostasis under sepsis, and restored ATP production. These properties of melatonin should be considered in clinical sepsis.  相似文献   

15.
Mitophagy eliminates dysfunctional mitochondria and thus plays a cardinal role in diabetic cardiomyopathy (DCM). We observed the favourable effects of melatonin on cardiomyocyte mitophagy in mice with DCM and elucidated their underlying mechanisms. Electron microscopy and flow cytometric analysis revealed that melatonin reduced the number of impaired mitochondria in the diabetic heart. Other than decreasing mitochondrial biogenesis, melatonin increased the clearance of dysfunctional mitochondria in mice with DCM. Melatonin increased LC3 II expression as well as the colocalization of mitochondria and lysosomes in HG‐treated cardiomyocytes and the number of typical autophagosomes engulfing mitochondria in the DCM heart. These results indicated that melatonin promoted mitophagy. When probing the mechanism, increased Parkin translocation to the mitochondria may be responsible for the up‐regulated mitophagy exerted by melatonin. Parkin knockout counteracted the beneficial effects of melatonin on the cardiac mitochondrial morphology and bioenergetic disorders, thus abolishing the substantial effects of melatonin on cardiac remodelling with DCM. Furthermore, melatonin inhibited Mammalian sterile 20‐like kinase 1 (Mst1) phosphorylation, thus enhancing Parkin‐mediated mitophagy, which contributed to mitochondrial quality control. In summary, this study confirms that melatonin rescues the impaired mitophagy activity of DCM. The underlying mechanism may be attributed to activation of Parkin translocation via inhibition of Mst1.  相似文献   

16.
We explored the renal protective effects by a gut peptide, Ghrelin. Daily peritoneal injection with Ghrelin ameliorated renal damages in continuously angiotensin II (AngII)-infused C57BL/6 mice as assessed by urinary excretion of protein and renal tubular markers. AngII-induced increase in reactive oxygen species (ROS) levels and senescent changes were attenuated by Ghrelin. Ghrelin also inhibited AngII-induced upregulations of transforming growth factor-β (TGF-β) and plasminogen activator inhibitor-1 (PAI-1), ameliorating renal fibrotic changes. These effects were accompanied by concomitant increase in mitochondria uncoupling protein, UCP2 as well as in a key regulator of mitochondria biosynthesis, PGC1α. In renal proximal cell line, HK-2 cells, Ghrelin reduced mitochondria membrane potential and mitochondria-derived ROS. The transfection of UCP2 siRNA abolished the decrease in mitochondria-derived ROS by Ghrelin. Ghrelin ameliorated AngII-induced renal tubular cell senescent changes and AngII-induced TGF-β and PAI-1 expressions. Finally, Ghrelin receptor, growth hormone secretagogue receptor (GHSR)-null mice exhibited an increase in tubular damages, renal ROS levels, renal senescent changes and fibrosis complicated with renal dysfunction. GHSR-null mice harbored elongated mitochondria in the proximal tubules. In conclusion, Ghrelin suppressed AngII-induced renal damages through its UCP2 dependent anti-oxidative stress effect and mitochondria maintenance. Ghrelin/GHSR pathway played an important role in the maintenance of ROS levels in the kidney.  相似文献   

17.
Summary The fine structure of the zona reticularis of adult Syrian hamsters was studied and compared with that of hamsters given subcutaneous injections of ACTH (10 units daily) for three days. The general ultrastructural features of the cells of the reticularis were described. The major emphasis however, was placed upon the mitochondria which underwent alterations following ACTH injections. Untreated hamsters exhibited elongated mitochondria, attenuated in their middle parts, which formed wrappings around structures, frequently other mitochondria. The tubular cristae of the majority of the mitochondria projected only part of the way into the matrix so that the interior were relatively free of tubules. In many cases the tubules were arranged parallel with the surface so that the mitochondria appeared to be surrounded by numerous membranes. The animals treated with ACTH very rarely showed elongated, attenuated mitochondria: The mitochondria were more nearly equal in size compared with those of untreated animals and the tubular cristae occupied the majority of the interior of the mitochondria. The possible relationship between the mitochondrial changes and increased steroid synthesis was discussed.Research supported by USPHS Grant AM 08222-02, NB 05665-01 and Anatomy Training Grant 5 T 1 GM 459-05.Appreciation is extended to Doctor Donald Duncan whose research is supported by USPHS Grant NB 00690-10 S 1 for the use of the electron microscope and to Mr. Joe Mascorro for technical assistance.  相似文献   

18.
Disruptions of the circadian rhythm and reduced circulating levels of the circadian hormone melatonin predispose to ischemic stroke. Although the nuclear receptor RORα is considered as a circadian rhythm regulator and a mediator of certain melatonin effects, its potential role in cerebral ischemia-reperfusion (CI/R) injury and in the neuroprotective effects of melatonin remain undefined. Here, we observed that CI/R injury in RORα-deficient mice was associated with greater cerebral infarct size, brain edema, and cerebral apoptosis compared with wild-type model. In contrast, transgenic mice with brain-specific overexpression of RORα versus non-transgenic controls exerted significantly reduced infarct volume, brain edema and apoptotic response induced by CI/R. Mechanistically, RORα deficiency was found to exacerbate apoptosis pathways mediated by endoplasmic-reticulum stress and mitochondria and aggravate oxidative/nitrative stress after CI/R. Further studies revealed that RORα deficiency intensified the activation of nuclear factor-κB signaling induced by CI/R. Given the emerging evidence of RORα as an essential melatonin activity mediator, we further investigated the RORα roles in melatonin-exerted neuroprotection against acute ischemic stroke. Melatonin treatment significantly decreased infarct volume and cerebral apoptosis; mitigated endoplasmic reticulum stress and mitochondrial dysfunction; and inhibited CI/R injury-induced oxidative/nitrative stress and nuclear factor-κB activation, which was eradicated in RORα-deficient mice. Collectively, current findings suggest that RORα is a novel endogenous neuroprotective receptor, and a pivotal mediator of melatonin's suppressive effects against CI/R injury.  相似文献   

19.
The structure of the kidney of the Swiss albino mouse changes progressively during the first 2 weeks after birth. Cells proliferate to form new nephrons, cells differentiate by acquiring specialized membranous components, and certain cytological features which are present at birth diminish in abundance or disappear. The differentiation of the cells of the cortical tubules has been studied using the light and electron microscopes. The tubules are partially and variably differentiated at birth. During the first 2 weeks after birth the brush border develops in the proximal tubules by the accumulation of numerous microvilli on the apical cell margins. Basal striations develop in proximal and distal tubules as an alignment of mitochondria, the result of what appears to be progressive interlocking of adjacent fluted cells. The mitochondria increase in number and size, accumulate homogeneous matrix, and acquire small, very dense granules. The collecting ducts develop tight pleating of the basal cell membranes, and dark cells containing numerous small cytoplasmic vesicles and microvilli appear. At birth there are dense irregular cytoplasmic inclusions presumed to be lipide in renal cells, the cytoplasmic granules of Palade are abundant, and there are large round bodies in the cells of the proximal tubules. The lipide inclusions disappear a few days after birth, and the cytoplasmic granules of Palade diminish in abundance as the cells differentiate. The large round bodies in the proximal tubules consist of an amorphous material and contain concentrically lamellar structures and mitochondria. They resemble the cytoplasmic droplets produced in the proximal tubules of adult rats and mice by the administration of proteins. The large round bodies disappear from the proximal tubules of infant mice during the first week after birth, but the concentric lamellar structures may be found in adult mice.  相似文献   

20.
Blue native polyacrylamide gel electrophoresis (BN-PAGE) analyses of detergent mitochondrial extracts have provided evidence that the yeast ATP synthase could form dimers. Cross-linking experiments performed on a modified version of the i-subunit of this enzyme indicate the existence of such ATP synthase dimers in the yeast inner mitochondrial membrane. We also show that the first transmembrane segment of the eukaryotic b-subunit (bTM1), like the two supernumerary subunits e and g, is required for dimerization/oligomerization of ATP synthases. Unlike mitochondria of wild-type cells that display a well-developed cristae network, mitochondria of yeast cells devoid of subunits e, g, or bTM1 present morphological alterations with an abnormal proliferation of the inner mitochondrial membrane. From these observations, we postulate that an anomalous organization of the inner mitochondrial membrane occurs due to the absence of ATP synthase dimers/oligomers. We provide a model in which the mitochondrial ATP synthase is a key element in cristae morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号