首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The object of this investigation was to evaluate the influence of (1) processing-induced decrease in drug crystallinity and (2) phase transformations during dissolution, on the performance of theophylline tablet formulations. Anhydrous theophylline underwent multiple transformations (anhydrate --> hydrate --> anhydrate) during processing. Although the crystallinity of the anhydrate obtained finally was lower than that of the unprocessed drug, it dissolved at a slower rate. This decrease in dissolution rate was attributed to the accelerated anhydrate to hydrate transformation during the dissolution run. Water vapor sorption studies proved to be a good predictor of powder dissolution behavior. While a decrease in crystallinity was brought about either by milling or by granulation, the effect on tablet dissolution was pronounced only in the latter. Tablet formulations prepared from the granules exhibited higher hardness, longer disintegration time, and slower dissolution than those containing the milled drug. The granules underwent plastic deformation during compression resulting in harder tablets, with delayed disintegration. The high hardness coupled with rapid anhydrate --> hydrate transformation during dissolution resulted in the formation of a hydrate layer on the tablet surface, which further delayed tablet disintegration and, consequently, dissolution. Phase transformations during processing and, more importantly, during dissolution influenced the observed dissolution rates. Product performance was a complex function of the physical state of the active and the processing conditions.  相似文献   

2.
The aim of the present study was to prepare and characterize extended-release matrix tablets of zidovudine using hydrophilic Eudragit RLPO and RSPO alone or their combination with hydrophobic ethyl cellulose. Release kinetics was evaluated by using United States Pharmacopeia (USP)-22 type I dissolution apparatus. Scanning electron microscopy was used to visualize the effect of dissolution medium on matrix tablet surface. Furthermore, the in vitro and in vivo newly formulated sustained-release zidovudine tablets were compared with conventional marketed tablet (Zidovir, Cipla Ltd, Mumbai, India). The in-vitro drug release study revealed that either Eudragit preparation was able to sustain the drug release only for 6 hours (94.3%±4.5% release). Combining Eudragit with ethyl cellulose sustained the drug release for 12 hours (88.1%±4.1% release). Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release. In vivo investigation in rabbits showed sustained-release pharmacokinetic profile of zidovudine from the matrix tablets formulated using combination of Eudragits and ethylcellulose. In conclusion, the results suggest that the developed sustained-release tablets of zidovudine could perform therapeutically better than conventional dosage forms, leading to improve efficacy and better patient compliance. Published: January 3, 2006  相似文献   

3.
Providing pH-independent oral release of weakly basic drugs with conventional matrix tablets can be challenging because of the pH-dependent solubility characteristics of the drugs and the changing pH environment along the gastrointestinal tract. The aim of the present study was to use a hydrophobic polymer to overcome the issue of pH-dependent release of weakly basic model drug verapamil hydrochloride from matrix tablets without the use of organic buffers in the matrix formulations. Silicone pressure-sensitive adhesive (PSA) polymer was evaluated because of its unique properties of low surface energy, hydrophobicity, low glass transition temperature, high electrical resistance, and barrier to hydrogen ion diffusion. Drug release, hydrogen ion diffusion, tablet contact angle, and internal tablet microenvironment pH with matrix tablets prepared using PSA were compared with those using water-insoluble ethyl cellulose (EC). Silicone PSA films showed higher resistance to hydrogen ion diffusion compared with EC films. Verapamil hydrochloride tablets prepared using silicone PSA showed higher hydrophobicity and lower water uptake than EC tablets. Silicone PSA tablets also showed pH-independent release of verapamil and decreased in dimensions during drug dissolution. By contrast, verapamil hydrochloride tablets prepared using EC did not achieve pH-independent release.  相似文献   

4.
The aim was to design a pH-sensitive pulsatile drug delivery system that allows for an on–off pulsed release of a drug using polyacrylic acid (PAA) blended with ethyl cellulose (EC) in different ratios. PAA, a polyelectrolyte polymer, exhibits a highly coiled conformation at low pH but a highly extended structure at high pH. Fumaric acid, which is an internal acidifying agent, was incorporated into the hydroxypropyl methylcellulose-based core tablets to create an acidic microenvironmental pH (pHM). The concentration of fumaric acid inside the core tablet and the ratio of PAA/EC in the coating layer were very crucial in modulating drug release behaviors. When the fumaric acid was retained in the core tablet, it gave a more acidic pHM, so that the PAA was kept in a highly coiled state in the coated film, which hindered drug release (“off” release pattern). Interestingly, the release profiles of the drug and fumaric acid from coated tablets showed the on–off pulsed pattern upon dissolution. Imaging analyses using scanning electron microscopy, near-infrared imaging, confocal laser scanning microscopy, and Fourier transform infrared spectroscopy confirmed this on–off release behavior of the drug and fumaric acid from coated tablets.  相似文献   

5.
The purpose of the present study was characterization of microparticles obtained by adsorption of poorly water soluble drug, meloxicam, on a porous silicate carrier Florite RE (FLR) and development of a tablet formulation using these microparticles, with improved drug dissolution properties. The study also reveals the use of FLR as a pharmaceutical excipient. Meloxicam was adsorbed on the FLR in 2 proportions (1∶1 and 1∶3), by fast evaporation of solvent from drug solution containing dispersed FLR. Drug adsorbed FLR microparticles were evaluated for surface topography, thermal analysis, X-ray diffraction properties, infrared spectrum, residual solvent, micromeritic properties, drug content, solubility, and dissolution studies. Microparticles showed bulk density in the range of 0.10 to 0.12 g/cm3. Dissolution of drug from microparticles containing 1∶3, drug∶FLR ratio was faster than microparticles containing 1∶1, drug∶FLR ratio. These microparticles were used for formulating directly compressible tablets. Prepared tablets were compared with a commercial tablet. All the prepared tablets showed acceptable mechanical properties. Disintegration time of prepared tablets was in the range of 18 to 38 seconds, and drug dissolution was much faster in both acidic and basic medium from prepared tablets as compared with commercial tablet. The results suggest that FLR provides a large surface area for drug adsorption and also that a reduction in crystallinity of drug occurs. Increase in surface area and reduction in drug crystallinity result in improved drug dissolution from microparticles. Published: December 7, 2005  相似文献   

6.
Sugar end-capped poly-d,l-lactide (SPDLA) polymers were investigated as a potential release controlling excipient in oral sustained release matrix tablets. The SPDLA polymers were obtained by a catalytic ring-opening polymerization technique using methyl α-d-gluco-pyranoside as a multifunctional initiator in the polymerization. Polymers of different molecular weights were synthesized by varying molar ratios of monomer/catalyst. The matrix tablets were prepared by direct compression technique from the binary mixtures of SPDLA and microcrystalline cellulose, and theophylline was used as a model drug. The tablet matrices showed in vitro reproducible drug release profiles with a zero-order or diffusion-based kinetic depending on the SPDLA polymer grade used. Further release from the tablet matrices was dependent on the molecular weight of the SPDLA polymer applied. The drug release was the fastest with the lowest molecular weight SPDLA grade, and the drug release followed zero-order rate. With the higher molecular weight SPDLAs, more prolonged dissolution profiles for the matrix tablets (up to 8–10 h) were obtained. Furthermore, the prolonged drug release was independent of the pH of the dissolution media. In conclusion, SPDLAs are a novel type of drug carrier polymers applicable in oral controlled drug delivery systems.  相似文献   

7.
A system using light-induced fluorescence (LIF) technology was developed for rapid and nondestructive analysis of active pharmaceutical ingredients on tablet surfaces. Nonhomogenous tablets with defined layer of active ingredients were made by 3-Dimensional Printing technology to determine penetration depths of the light source and the resultant fluorescence responses. The LIF method of analysis showed penetration to depths of up to 3 mm into tablets. A correlation between LIF signals from analysis of tablet surfaces and the total drug content of the respective tablets was established. This method of surface analysis was verified with UV spectrometric methods for the total drug content of each respective tablet. The results from a small sample population of tablets made from both homogeneous and nonhomogeneous powder mixtures established good correlation between LIF surface monitoring and total tablet content. The use of on-line monitoring of the individual tablet for surface content demonstrated consistent LIF profiles from simulated production rates up to 3000 tablets a minute. The instrument was also field tested successfully on a tablet analyzer.  相似文献   

8.
The purpose of this study was to develop a once daily sustained release tablet of aceclofenac using chitosan and an enteric coating polymer (hydroxypropyl methylcellulose phthalate or cellulose acetate phthalate). Overall sustained release for 24 h was achieved by preparing a double-layer tablet in which the immediate release layer was formulated for a prompt release of the drug and the sustained release layer was designed to achieve a prolonged release of drug. The preformulation studies like IR spectroscopic and differential scanning calorimetry showed the absence of drug–excipient interactions. The tablets were found within the permissible limits for various physicochemical parameters. Scanning electron microscopy was used to visualize the surface morphology of the tablets and to confirm drug release mechanisms. Good equivalence in the drug release profile was observed when drug release pattern of the tablet containing chitosan and hydroxypropyl methylcellulose phthalate (M-7) was compared with that of marketed tablet. The optimized tablets were stable at accelerated storage conditions for 6 months with respect to drug content and physical appearance. The results of pharmacokinetic studies in human volunteers showed that the optimized tablet (M-7) exhibited no difference in the in vivo drug release in comparison with marketed tablet. No significant difference between the values of pharmacokinetic parameters of M-7 and marketed tablets was observed (p > 0.05; 95% confidence intervals). However the clinical studies in large scale and, long term and extensive stability studies at different conditions are required to confirm these results.Key words: aceclofenac, chitosan, matrix tablet, pharmacokinetics, sustained release  相似文献   

9.
Double-layered matrix tablets prepared from shellac wax-lutrol were fabricated using a molding technique, and the release of hydrochlorothiazide and propranolol HCl from the inner tablet or outer layer was studied. The simultaneous determination of dual drug release was measured with first derivative UV spectrophotometry. The tablet containing shellac wax as the outer tablet and lutrol as the inner tablet showed more appropriate drug release and the size of the inner layer influenced the rate of drug release. In addition, the aqueous solubility of the drug and the components of the inner tablet or outer layer affected the drug release behavior. Most of the double-layered tablets exhibited the drug-release pattern which fitted well with zero-order kinetic due to the restriction of the release surface. Biphasic drug release pattern was found in the tablet of which the outer layer rapidly eroded. The drug dissolution data from drug-loaded-outer layer could predict the dissolution time for the outer layer of drug-loaded inner part of double-layered matrix tablet. Incorporation of lutrol increased the drug release from shellac wax matrix, and the zero-order release was attained by fabricating it into a double-layered tablet.  相似文献   

10.
An extrusion-based 3D printer was used to fabricate paracetamol tablets with different geometries (mesh, ring and solid) from a single paste-based formulation formed from standard pharmaceutical ingredients. The tablets demonstrate that tunable drug release profiles can be achieved from this single formulation even with high drug loading (>?80% w/w). The tablets were evaluated for drug release using a USP dissolution testing type I apparatus. The tablets showed well-defined release profiles (from immediate to sustained release) controlled by their different geometries. The dissolution results showed dependency of drug release on the surface area/volume (SA/V) ratio and the SA of the different tablets. The tablets with larger SA/V ratios and SA had faster drug release. The 3D printed tablets were also evaluated for physical and mechanical properties including tablet dimension, drug content, weight variation and breaking force and were within acceptable range as defined by the international standards stated in the US Pharmacopoeia. X-ray powder diffraction, differential scanning calorimetry and attenuated total reflectance Fourier transform infrared spectroscopy were used to identify the physical form of the active and to assess possible drug-excipient interactions. These data again showed that the tablets meet USP requirement. These results clearly demonstrate the potential of 3D printing to create unique pharmaceutical manufacturing, and potentially clinical, opportunities. The ability to use a single unmodified formulation to achieve defined release profiles could allow, for example, relatively straightforward personalization of medicines for individuals with different metabolism rates for certain drugs and hence could offer significant development and clinical opportunities.  相似文献   

11.
A study has been carried out to assess the potential use of pectin in combination with two added hydrocolloids, i.e., hydroxy-propyl-methyl cellulose and hydroxyethyl cellulose in varied concentrations and coated with ethyl cellulose and cellulose acetate phthalate. The results of in vitro drug release showed that the matrix tablets prepared with pectin, hydroxy ethyl cellulose (20 percent) when coated with ethyl cellulose and cellulose acetate phthalate were found to be 63.0 percent, 8.4 percent, and 4.5 percent, respectively, in after eight hours during drug release study period. These results were confirmed with the results of roentgenographic studies in nine healthy human volunteers to find the shape and integrity of the dosage form. The X-ray photographs revealed that the enteric-coated tablet was visible only up to 5.5 hours and at the end of eighth hour, the photograph has not shown any presence of tablet indicating the loss of shape and size by the microflora present in the colon region. So, the results of in vitro and roentgenographic studies revealed that pectin, hydroxy ethyl cellulose (20 percent) base coated with ethyl cellulose and cellulose acetate phthalate was found to be a promising carrier for naproxen to colon.  相似文献   

12.
Kim CJ 《AAPS PharmSciTech》2005,6(3):E429-E436
The purpose of this research was to evaluate triple layer, donut-shaped tablets (TLDSTs) for extended release dosage forms. TLDSTs were prepared by layering 3 powders sequentially after pressing them with a punch. The core tablet consisted of enteric polymers, mainly hydroxypropyl methylcellulose acetate succinate, and the bottom and top layers were made of a water-insoluble polymer, ethyl cellulose. Drug release kinetics were dependent on the pH of the dissolution medium and the drug properties, such as solubility, salt forms of weak acid and weak base drugs, and drug loading. At a 10% drug loading level, all drugs, regardless of their type or solubility, yielded the same release profiles within an acceptable level of experimental error. As drug loading increased from 10% to 30%, the drug release rate of neutral drugs increased for all except sulfathiazole, which retained the same kinetics as at 10% loading. HCl salts of weak base drugs had much slower release rates than did those of neutral drugs (eg, theophylline) as drug loading increased. The release of labetalol HCl retarded as drug loading increased from 10% to 30%. On the other hand, Na salts of weak acid drugs had much higher release rates than did those of neutral drugs (eg, theophylline). Drug release kinetics were governed by the ionization/erosion process with slight drug diffusion, observing no perfect straight line. A mathematical expression for drug release kinetics (erosion-controlled system) of TLDSTs is presented. In summary, a TLDST is a good design to obtain zero-order or nearly zero-order release kinetics for a wide range of drug solubilities.  相似文献   

13.
A “simplex-centroid mixture design” was used to study the direct-compression properties of binary and ternary mixtures of chitin and two cellulosic direct-compression diluents. Native milled and fractioned (125–250 μm) crustacean chitin of lobster origin was blended with microcrystalline cellulose, MCC (Avicel® PH 102) and spray-dried lactose–cellulose, SDLC Cellactose® (composed of a spray-dried mixture of alpha-lactose monohydrate 75% and cellulose powder 25%). An instrumented single-punch tablet machine was used for tablet compactions. The flowability of the powder mixtures composed of a high percentage of chitin and SDLC was clearly improved. The fractioned pure chitin powder was easily compressed into tablets by using a magnesium stearate level of 0.1% (w/w) but, as the die lubricant level was 0.5% (w/w), the tablet strength collapsed dramatically. The tablets compressed from the binary mixtures of MCC and SDLC exhibited elevated mechanical strengths (>100 N) independent of the die lubricant level applied. In conclusion, fractioned chitin of crustacean origin can be used as an abundant direct-compression co-diluent with the established cellulosic excipients to modify the mechanical strength and, consequently, the disintegration of the tablets. Chitin of crustacean origin, however, is a lubrication-sensitive material, and this should be taken into account in formulating direct-compression tablets of it.  相似文献   

14.
This study presents a new approach to model powder compression during tableting. The purpose of this study is to introduce a new discrete element simulation model for particle–particle bond formation during tablet compression. This model served as the basis for calculating tablet strength distribution during a compression cycle. Simulated results were compared with real tablets compressed from microcrystalline cellulose/theophylline pellets with various compression forces. Simulated and experimental compression forces increased similarly. Tablet-breaking forces increased with the calculated strengths obtained from the simulations. The calculated bond strength distribution inside the tablets showed features similar to those of the density and pressure distributions in the literature. However, the bond strength distributions at the center of the tablets varied considerably between individual tablets.  相似文献   

15.
Gerhard Levy 《CMAJ》1964,90(16):978-979
The rate of gastrointestinal absorption and the physiologic availability of tolbutamide are functions of the dissolution rate of the drug in gastrointestinal fluids. This property can be modified markedly by pharmaceutical formulation factors. The in vitro dissolution rates of clinically efficacious and clinically inefficacious tolbutamide tablets have been determined, and it has been found that the former dissolved considerably more rapidly than the latter. Once diabetic patients have been “titrated” with a particular brand of tolbutamide they should not be switched to a different brand without “retitration.” There is need to establish an adequate in vitro test to assure the physiologic availability of tolbutamide from commercial tablets.  相似文献   

16.
Fibrous cellulose nanocomposites scaffolds were developed and evaluated for their potential as ligament or tendon substitute. The nanocomposites were prepared by partial dissolution of cellulose nanofiber networks using ionic liquid at 80 °C for different time intervals. Scanning electron microscopy study indicated that partial dissolution resulted in fibrous cellulose nanocomposites where the dissolved cellulose nanofibers formed the matrix phase and the undissolved or partially dissolved nanofibers formed the reinforcing phase. Mechanical properties of the composites in simulated body conditions (37 °C and 95% RH) after sterilization using gamma rays was comparable to those of natural ligaments and tendons. Stress relaxation studies showed stable performance towards cyclic loading and unloading, further confirming the possibility for using these composites as ligament/tendon substitute. In vitro biocompatibility showed a positive response concerning adhesion/proliferation and differentiation for both human ligament and endothelial cells. Prototypes based on the cellulose composite were developed in the form of tubules to be used for further studies.  相似文献   

17.
The purpose of this study was to prepare and evaluate a taste-masked berberine hydrochloride orally disintegrating tablet for enhanced patient compliance. Taste masking was performed by coating berberine hydrochloride with Eudragit E100 using a fluidized bed. It was found that microcapsules with a drug–polymer ratio of 1:0.8 masked the bitter taste obviously. The microcapsules were formulated to orally disintegrating tablets and the optimized tablets containing 6% (w/w) crospovidone XL and 15% (w/w) microcrystalline cellulose showed the fastest disintegration, within 25.5 s, and had a pleasant taste. The dissolution profiles revealed that the taste-masked orally disintegrating tablets released the drug faster than commercial tablets in the first 10 min. However, their dissolution profiles were very similar after 10 min. The prepared taste-masked tablets remained stable after 6 months of storage. The pharmacokinetics of the taste-masked and commercial tablets was evaluated in rabbits. The Cmax, Tmax, and AUC0−24 values were not significantly different from each other, suggesting that the taste-masked orally disintegrating tablets are bioequivalent to commercial tablets in rabbits. These tablets will enhance patient compliance by masking taste and improve patients’ quality of life.KEY WORDS: berberine hydrochloride, microcapsule, orally disintegrating tablet, taste masking  相似文献   

18.
Process analytical technology has elevated the role of sensors in pharmaceutical manufacturing. Often the ideal technology must be selected from many suitable candidates based on limited data. Net analyte signal (NAS) theory provides an effective platform for method characterization based on multivariate figures of merit (FOM). The objective of this work was to demonstrate that these tools can be used to characterize the performance of 2 dissimilar analyzers based on different underlying spectroscopic principles for the analysis of pharmaceutical compacts. A fully balanced, 4-constituent mixture design composed of anhydrous theophylline, lactose monohydrate, microcrystalline cellulose, and starch was generated; it consisted of 29 design points. Six 13-mm tablets were produced from each mixture at 5 compaction levels and were analyzed by near-infrared and Raman spectroscopy. Partial least squares regression and NAS analyses were performed for each component, which allowed for the computation of FOM. Based on the calibration error statistics, both instruments were capable of accurately modeling all constituents. The results of this work indicate that these statistical tools are a suitable platform for comparing dissimilar analyzers and illustrate the complexity of technology selection.  相似文献   

19.
The purpose of this study was to develop a once daily sustained release tablet of aceclofenac using chitosan and an enteric coating polymer (hydroxypropyl methylcellulose phthalate or cellulose acetate phthalate). Overall sustained release for 24 h was achieved by preparing a double-layer tablet in which the immediate release layer was formulated for a prompt release of the drug and the sustained release layer was designed to achieve a prolonged release of drug. The preformulation studies like IR spectroscopic and differential scanning calorimetry showed the absence of drug–excipient interactions. The tablets were found within the permissible limits for various physicochemical parameters. Scanning electron microscopy was used to visualize the surface morphology of the tablets and to confirm drug release mechanisms. Good equivalence in the drug release profile was observed when drug release pattern of the tablet containing chitosan and hydroxypropyl methylcellulose phthalate (M-7) was compared with that of marketed tablet. The optimized tablets were stable at accelerated storage conditions for 6 months with respect to drug content and physical appearance. The results of pharmacokinetic studies in human volunteers showed that the optimized tablet (M-7) exhibited no difference in the in vivo drug release in comparison with marketed tablet. No significant difference between the values of pharmacokinetic parameters of M-7 and marketed tablets was observed (p > 0.05; 95% confidence intervals). However the clinical studies in large scale and, long term and extensive stability studies at different conditions are required to confirm these results.  相似文献   

20.
The purpose of this study was to prepare and evaluate layered matrix tablets of propranolol HCl containing HPMC and phytowax as matrix component using direct compression technique. Layering with this polymeric matrix could prolong the release of drug and shift the release pattern approach to zero order as described from the least square curve fitting. Increasing the amount of coating layer could apparently prolong the drug release. The longer lag time of drug release from one planar apparently when the amount of coating layer was increased. HPMC concentration and compression force did not affect the drug release from this three-layer tablet. The drug release from this three-layer tablet was influenced by hydrodynamic force. An increase in stirring rate was a corresponding increasing in the release rate. From photoimage and SEM, gel mass of HPMC was increased with time during dissolution and covered the core surface, therefore dissolved drug molecules were allowed to diffuse out from the core through the polymer network of gel layer containing the porous structure. This suggested that HPMC and phytowax could be fabricated into the layered matrix tablet exhibiting sustained drug release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号