首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Among the 11 human TLRs, a subfamily TLR7, TLR8, and TLR9 display similarities in structure and endosomal localization. Natural agonists consisting of nucleic acids, such as ssRNA or DNA with CpG motifs, activate the innate immune cells through these TLRs. Immune response modifiers (IRMs) of imidazoquinoline class compounds 3M-001, 3M-002, and 3M-003 have been shown to activate the innate immune system via TLR7, TLR8, and TLR7/8, respectively. In looking at the effect of the agonists of the TLR7, TLR8, and TLR9 on the activation of NF-kappaB of transfected HEK cells, we discovered that some oligodeoxynucleotides (ODNs) could modulate imidazoquinoline effects in a negative or positive manner. In this study we demonstrate that poly(T) ODNs can inhibit TLR7 and enhance TLR8 signaling events involving NF-kappaB activation in HEK cells and cytokine production (IFN-alpha, TNF, and IL-12) by human primary PBMC. In contrast, TLR3 agonist poly(I:C) does not affect imidazoquinoline-induced responses. The modulation of TLR7 and TLR8 responses is independent of CpG motifs or the nature of the ODN backbone structure. Furthermore, we show that to be an effective modulator, the ODNs need to be in the cell at the same time with either of the TLR7 or TLR8 agonist. We have also demonstrated that there is a physical interaction between IRMs and ODNs. The cross-talk between ODNs, IRMs, and TLR7 and TLR8 uncovered by this study may have practical implications in the field of microbial infections, vaccination, and tumor therapy.  相似文献   

2.
3.
TLRs sense components of microorganisms and are critical host mediators of inflammation during infection. Different TLR agonists can profoundly alter inflammatory effects of one another, and studies suggest that the sequence of exposure to TLR agonists may importantly impact on responses during infection. We tested the hypothesis that synergy, priming, and tolerance between TLR agonists follow a pattern that can be predicted based on differential engagement of the MyD88-dependent (D) and the MyD88-independent (I) intracellular signaling pathways. Inflammatory effects of combinations of D and I pathway agonists were quantified in vivo and in vitro. Experiments used several D-specific agonists, an I-specific agonist (poly(I:C)), and LPS, which acts through both the D and I pathways. D-specific agonists included: peptidoglycan-associated lipoprotein, Pam3Cys, flagellin, and CpG DNA, which act through TLR2 (peptidoglycan-associated lipoprotein and Pam3Cys), TLR5, and TLR9, respectively. D and I agonists were markedly synergistic in inducing cytokine production in vivo in mice. All of the D-specific agonists were synergistic with poly(I:C) in vitro in inducing TNF and IL-6 production by mouse bone marrow-derived macrophages. Pretreatment of bone marrow-derived macrophages with poly(I:C) led to a primed response to subsequent D-specific agonists and vice versa, as indicated by increased cytokine production, and increased NF-kappaB translocation. Pretreatment with a D-specific agonist augmented LPS-induced IFN-beta production. All D-specific agonists induced tolerance to one another. Thus, under the conditions studied here, simultaneous and sequential activation of both the D and I pathways causes synergy and priming, respectively, and tolerance is induced by agonists that act through the same pathway.  相似文献   

4.

Background

Newborns display distinct immune responses that contribute to susceptibility to infection and reduced vaccine responses. Toll-like receptor (TLR) agonists may serve as vaccine adjuvants, when given individually or in combination, but responses of neonatal leukocytes to many TLR agonists are diminished. TLR8 agonists are more effective than other TLR agonists in activating human neonatal leukocytes in vitro, but little is known about whether different TLR8 agonists may distinctly activate neonatal leukocytes. We characterized the in vitro immuno-stimulatory activities of a novel benzazepine TLR8 agonist, VTX-294, in comparison to imidazoquinolines that activate TLR8 (R-848; (TLR7/8) CL075; (TLR8/7)), with respect to activation of human newborn and adult leukocytes. Effects of VTX-294 and R-848 in combination with monophosphoryl lipid A (MPLA; TLR4) were also assessed.

Methods

TLR agonist specificity was assessed using TLR-transfected HEK293 cells expressing a NF-κB reporter gene. TLR agonist-induced cytokine production was measured in human newborn cord and adult peripheral blood using ELISA and multiplex assays. Newborn and adult monocytes were differentiated into monocyte-derived dendritic cells (MoDCs) and TLR agonist-induced activation assessed by cytokine production (ELISA) and co-stimulatory molecule expression (flow cytometry).

Results

VTX-294 was ∼100x more active on TLR8- than TLR7-transfected HEK cells (EC50, ∼50 nM vs. ∼5700 nM). VTX-294-induced TNF and IL-1β production were comparable in newborn cord and adult peripheral blood, while VTX-294 was ∼ 1 log more potent in inducing TNF and IL-1β production than MPLA, R848 or CL075. Combination of VTX-294 and MPLA induced greater blood TNF and IL-1β responses than combination of R-848 and MPLA. VTX-294 also potently induced expression of cytokines and co-stimulatory molecules HLA-DR and CD86 in human newborn MoDCs.

Conclusions

VTX-294 is a novel ultra-potent TLR8 agonist that activates newborn and adult leukocytes and is a candidate vaccine adjuvant in both early life and adulthood.  相似文献   

5.
Toll-like receptor 3 (TLR3) binds and signals in response to dsRNA and poly(I:C), a synthetic double stranded RNA analog. Activation of TLR3 triggers innate responses that may play a protective or detrimental role in viral infections or in immune-mediated inflammatory diseases through amplification of inflammation. Two monoclonal antibodies, CNTO4685 (rat anti-mouse TLR3) and CNTO5429 (CDRs from CNTO4685 grafted onto a mouse IgG1 scaffold) were generated and characterized. These mAbs bind the extracellular domain of mouse TLR3, inhibit poly(I:C)-induced activation of HEK293T cells transfected with mTLR3, and reduce poly(I:C)-induced production of CCL2 and CXCL10 by primary mouse embryonic fibroblasts. CNTO5429 decreased serum IL-6 and TNFα levels post-intraperitoneal poly(I:C) administration, demonstrating in vivo activity. In summary, specific anti-mTLR3 mAbs have been generated to assess TLR3 antagonism in mouse models of inflammation.  相似文献   

6.
TLRs play a critical role in early innate immune response to virus infection. TLR3 together with TLR7 and TLR8 constitute a powerful system to detect genetic material of RNA viruses. TLR3 has been shown to bind viral dsRNA whereas TLR7 and TLR8 are receptors for viral single-stranded RNA. In this report we show that TLR7 or TLR8 are not expressed in human epithelial A549 cells or in HUVECs. Accordingly, A549 cells and HUVECs were unresponsive to TLR7/8 ligand R848. TLR3 was expressed at a higher level in HUVECs than in A549 cells. The TLR3 ligand poly(I:C) up-regulated IFN-beta, IL-28, IL-29, STAT1, and TLR3 expression in HUVECs but not in A549 cells. An enhanced TLR3 expression by transfection or by IFN-alpha stimulation conferred poly(I:C) responsiveness in A549 cells. Similarly, IFN-alpha pretreatment strongly enhanced poly(I:C)-induced activation of IFN-beta, IL-28, and IL-29 genes also in HUVECs. In conclusion, our results suggest that IFN-alpha-induced up-regulation of TLR3 expression is involved in dsRNA activated antiviral response in human epithelial and endothelial cells.  相似文献   

7.
Mannan binding lectin (MBL) functions as a pattern recognition molecule (PRM) which is able to initiate complement activation. Here, we characterize a previously unrecognized attribute of MBL as a double-stranded RNA (dsRNA) binding protein capable of modifying Toll like receptor 3 (TLR3) activation. MBL interacts with poly(I:C) and suppresses poly(I:C)-induced activation of TLR3 pathways and subsequent cytokine production. In addition, MBL binds to TLR3 directly. Surprisingly, disrupting the interaction between MBL and complement receptor 1 (CR1) or restraining the traffic of MBL to phagosome reversed the MBL limited TLR3 activation. We demonstrate the importance of MBL guided ligands intracellular localization, emphasizing the significance of understanding the dynamics of TLR agonists complexed with MBL or other PRMs inside the cell in immune defense.  相似文献   

8.
In addition to inducing apoptosis, caspase inhibition contributes to necroptosis and/or autophagy depending on the cell type and cellular context. In macrophages, necroptosis can be induced by co-treatment with Toll-like receptor (TLR) ligands (lipopolysaccharide [LPS] for TLR4 and polyinosinic-polycytidylic acid [poly I:C] for TLR3) and a cell-permeable pan-caspase inhibitor zVAD. Here, we elucidated the signaling pathways and molecular mechanisms of cell death. We showed that LPS/zVAD- and poly I:C/zVAD-induced cell death in bone marrow-derived macrophages (BMDMs) was inhibited by receptor-interacting protein kinase 1 (RIP1) inhibitor necrostatin-1 and autophagy inhibitor 3-methyladenine. Electron microscopic images displayed autophagosome/autolysosomes, and immunoblotting data revealed increased LC3II expression. Although zVAD did not affect LPS- or poly I:C-induced activation of IKK, JNK, and p38, it enhanced IRF3 and STAT1 activation as well as type I interferon (IFN) expression. In addition, zVAD inhibited ERK and Akt phosphorylation induced by LPS and poly I:C. Of note, zVAD-induced enhancement of the IRF3/IFN/STAT1 axis was abolished by necrostatin-1, while zVAD-induced inhibition of ERK and Akt was not. Our data further support the involvement of autocrine IFNs action in reactive oxygen species (ROS)-dependent necroptosis, LPS/zVAD-elicited ROS production was inhibited by necrostatin-1, neutralizing antibody of IFN receptor (IFNR) and JAK inhibitor AZD1480. Accordingly, both cell death and ROS production induced by TLR ligands plus zVAD were abrogated in STAT1 knockout macrophages. We conclude that enhanced TRIF-RIP1-dependent autocrine action of IFNβ, rather than inhibition of ERK or Akt, is involved in TLRs/zVAD-induced autophagic and necroptotic cell death via the JAK/STAT1/ROS pathway.  相似文献   

9.
Cell level inflammatory signalling is a combination of initiation at cell membrane receptors and modulation by cytoplasmic regulatory proteins. For keratinocytes, the predominant cell type in the epidermis, this would include toll-like receptors (TLR) and cytoplasmic proteins that propagate or dampen post-receptor signalling. We previously reported that increased levels of tumor necrosis factor α induced protein 3-interacting protein 1 (TNIP1) in HaCaT keratinocytes leads to decreased expression of stress response and inflammation-associated genes. This finding suggested decreased TNIP1 levels, as seen in some cutaneous disease states, may produce the opposite effect, sensitizing cells to triggers of inflammatory signalling including those sensed by TLR. In this study of TNIP1-deficient HaCaT keratinocytes we examined intracellular signalling consequences especially those expected to produce gene expression changes downstream of TLR3 or TLR2/6 activation by Poly (I:C) or FSL-1, agonists modeling skin relevant pathogens. We found TNIP1-deficient keratinocytes are hyper-sensitive to TLR activation compared to control cells with a normal complement of TNIP1 and receiving the same agonist stimulation. TNIP1-deficient keratinocytes have increased levels of activated (phosphorylated) cytoplasmic mediators such as JNK and p38 and greater nuclear translocation of NF-κB and phospho-p38 when exposed to TLR ligands. This is consistent with significantly increased expression of several inflammatory cytokines and chemokines, such as IL-6 and IL-8. These results describe how decreased TNIP1 levels promote a hyper-sensitive state in HaCaT keratinocytes evidenced by increased activation of signalling molecules downstream of TLR agonists and increased expression of pro-inflammatory mediators. TNIP1 keratinocyte deficiency as reported for some skin diseases may predispose these cells to excessive inflammatory signalling upon exposure to viral or bacterial ligands for TLR.  相似文献   

10.

Background

Pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs), recognize microbial components and trigger a host defense response. Respiratory tract infections are common causes of asthma exacerbations, suggesting a role for PRRs in this process. The present study aimed to examine the expression and function of PRRs on human airway smooth muscle cells (HASMCs).

Methods

Expression of TLR, NLR and RLR mRNA and proteins was determined using real-time RT-PCR, flow cytometry and immunocytochemistry. The functional responses to ligand stimulation were investigated in terms of cytokine and chemokine release, cell surface marker expression, proliferation and proteins regulating the contractile state.

Results

HASMCs expressed functional TLR2, TLR3, TLR4, TLR7 and NOD1. Stimulation with the corresponding agonists Pam3CSK4, poly(I:C), LPS, R-837 and iE-DAP, respectively, induced IL-6, IL-8 and GM-CSF release and up-regulation of ICAM-1 and HLA-DR, while poly(I:C) also affected the release of eotaxin and RANTES. The proliferative response was slightly increased by LPS. Stimulation, most prominently with poly(I:C), down-regulated myosin light chain kinase and cysteinyl leukotriene 1 receptor expression and up-regulated β2-adrenoceptor expression. No effects were seen for agonist to TLR2/6, TLR5, TLR8, TLR9, NOD2 or RIG-I/MDA-5.

Conclusion

Activation of TLR2, TLR3, TLR4, TLR7 and NOD1 favors a synthetic phenotype, characterized by an increased ability to release inflammatory mediators, acquire immunomodulatory properties by recruiting and interacting with other cells, and reduce the contractile state. The PRRs might therefore be of therapeutic use in the management of asthma and infection-induced disease exacerbations.  相似文献   

11.
12.
Activation of astrocytes and microglia and the production of proinflammatory cytokines and chemokines are often associated with virus infection in the CNS as well as a number of neurological diseases of unknown etiology. These inflammatory responses may be initiated by recognition of pathogen-associated molecular patterns (PAMPs) that stimulate TLRs. TLR7 and TLR8 were identified as eliciting antiviral effects when stimulated by viral ssRNA. In the present study, we examined the potential of TLR7 and/or TLR8 agonists to induce glial activation and neuroinflammation in the CNS by intracerebroventricular inoculation of TLR7 and/or TLR8 agonists in newborn mice. The TLR7 agonist imiquimod induced astrocyte activation and up-regulation of proinflammatory cytokines and chemokines, including IFN-beta, TNF, CCL2, and CXCL10. However, these responses were only of short duration when compared with responses induced by the TLR4 agonist LPS. Interestingly, some of the TLR7 and/or TLR8 agonists differed in their ability to activate glial cells as evidenced by their ability to induce cytokine and chemokine expression both in vivo and in vitro. Thus, TLR7 stimulation can induce neuroinflammatory responses in the brain, but individual TLR7 agonists may differ in their ability to stimulate cells of the CNS.  相似文献   

13.

Background

The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR) 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases.

Methods

TLR3 knock-out (KO) mice and C57B6 (WT) mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C).

Results

There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C)-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C), the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C)-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy.

Conclusion

These findings demonstrate that TLR3 activation by poly(I:C) modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.  相似文献   

14.

Background

The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.

Methods

We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.

Results

The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.

Conclusion

These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.  相似文献   

15.
The development of effective immunoprophylaxis against tuberculosis (TB) remains a global priority, but is hampered by a partially protective Bacillus Calmette-Guérin (BCG) vaccine and an incomplete understanding of the mechanisms of immunity to Mycobacterium tuberculosis. Although host genetic factors may be a primary reason for BCG''s variable and inadequate efficacy, this possibility has not been intensively examined. We hypothesized that Toll-like receptor (TLR) variation is associated with altered in vivo immune responses to BCG. We examined whether functionally defined TLR pathway polymorphisms were associated with T cell cytokine responses in whole blood stimulated ex vivo with BCG 10 weeks after newborn BCG vaccination of South African infants. In the primary analysis, polymorphism TLR6_C745T (P249S) was associated with increased BCG-induced IFN-γ in both discovery (n = 240) and validation (n = 240) cohorts. In secondary analyses of the combined cohort, TLR1_T1805G (I602S) and TLR6_G1083C (synonymous) were associated with increased IFN-γ, TLR6_G1083C and TLR6_C745T were associated with increased IL-2, and TLR1_A1188T was associated with increased IFN-γ and IL-2. For each of these polymorphisms, the hypo-responsive allele, as defined by innate immunity signaling assays, was associated with increased production of TH1-type T cell cytokines (IFN-γ or IL-2). After stimulation with TLR1/6 lipopeptide ligands, PBMCs from TLR1/6-deficient individuals (stratified by TLR1_T1805G and TLR6_C745T hyporesponsive genotypes) secreted lower amounts of IL-6 and IL-10 compared to those with responsive TLR1/6 genotypes. In contrast, no IL-12p70 was secreted by PBMCs or monocytes. These data support a mechanism where TLR1/6 polymorphisms modulate TH1 T-cell polarization through genetic regulation of monocyte IL-10 secretion in the absence of IL-12. These studies provide evidence that functionally defined innate immune gene variants are associated with the development of adaptive immune responses after in vivo vaccination against a bacterial pathogen in humans. These findings could potentially guide novel adjuvant vaccine strategies as well as have implications for IFN-γ-based diagnostic testing for TB.  相似文献   

16.
Toll-like Receptor 3 (TLR3) detects double-stranded (ds) RNAs to activate innate immune responses. While poly(I:C) is an excellent agonist for TLR3 in several cell lines and in human peripheral blood mononuclear cells, viral dsRNAs tend to be poor agonists, leading to the hypothesis that additional factor(s) are likely required to allow TLR3 to respond to viral dsRNAs. TLR3 signaling was examined in a lung epithelial cell line by quantifying cytokine production and in human embryonic kidney cells by quantifying luciferase reporter levels. Recombinant 1b hepatitis C virus polymerase was found to enhance TLR3 signaling in the lung epithelial BEAS-2B cells when added to the media along with either poly(I:C) or viral dsRNAs. The polymerase from the genotype 2a JFH-1 HCV was a poor enhancer of TLR3 signaling until it was mutated to favor a conformation that could bind better to a partially duplexed RNA. The 1b polymerase also co-localizes with TLR3 in endosomes. RNA-binding capsid proteins (CPs) from two positive-strand RNA viruses and the hepadenavirus hepatitis B virus (HBV) were also potent enhancers of TLR3 signaling by poly(I:C) or viral dsRNAs. A truncated version of the HBV CP that lacked an arginine-rich RNA-binding domain was unable to enhance TLR3 signaling. These results demonstrate that several viral RNA-binding proteins can enhance the dsRNA-dependent innate immune response initiated by TLR3.  相似文献   

17.
Several clinical studies have reported increased placental miR-210 expression in women with PE compared to normotensive women, but whether miR-210 plays a role in the etiology of PE is unknown. We reported that activation of TLR3 produces the PE-like symptoms of hypertension, endothelial dysfunction, and proteinuria in mice only when pregnant, but whether TLR3 activation in pregnant mice and human cytotrophoblasts (CTBs) increases miR-210 and modulates its targets related to inflammation are unknown. Placental miR-210 levels were increased significantly in pregnant mice treated with the TLR3 agonist poly I:C (P-PIC). Both HIF-1α and NF-κBp50, known to bind the miR-210 promoter and induce its expression, were also increased significantly in placentas of P-PIC mice. Target identification algorithms and gene ontology predicted STAT6 as an inflammation-related target of miR-210 and STAT6 was decreased significantly in placentas of P-PIC mice. IL-4, which is regulated by STAT6 and increases during normotensive pregnancy, failed to increase in serum of P-PIC mice. P-PIC TLR3 KO mice did not develop hypertension and placental HIF-1α, NF-κBp50, miR-210, STAT6, and IL-4 levels were unchanged. To determine the placental etiology, treatment of human CTBs with poly I:C significantly increased HIF-1α, NF-κBp50, and miR-210 levels and decreased STAT6 and IL-4 levels. Overexpression of miR-210 in CTBs decreased STAT6 and IL-4 while inhibition of miR-210 increased STAT6 and IL-4. These findings demonstrate that TLR3 activation induces placental miR-210 via HIF-1α and NF-κBp50 leading to decreased STAT6 and IL-4 levels and this may contribute to the development of PE.  相似文献   

18.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

19.
Preeclampsia (PE) is a pregnancy-specific hypertensive syndrome characterized by excessive maternal immune system activation, inflammation, and endothelial dysfunction. Toll-like receptor (TLR) 3 activation by double-stranded RNA (dsRNA) and TLR7/8 activation by single-stranded RNA (ssRNA) expressed by viruses and/or released from necrotic cells initiates a pro-inflammatory immune response; however it is unknown whether viral/endogenous RNA is a key initiating signal that contributes to the development of PE. We hypothesized that TLR3/7/8 activation will be evident in placentas of women with PE, and sufficient to induce PE-like symptoms in mice. Placental immunoreactivity and mRNA levels of TLR3, TLR7, and TLR8 were increased significantly in women with PE compared to normotensive women. Treatment of human trophoblasts with the TLR3 agonist polyinosine-polycytidylic acid (poly I:C), the TLR7-specific agonist imiquimod (R-837), or the TLR7/8 agonist CLO97 significantly increased TLR3/7/8 levels. Treatment of mice with poly I:C, R-837, or CLO97 caused pregnancy-dependent hypertension, endothelial dysfunction, splenomegaly, and placental inflammation. These data demonstrate that RNA-mediated activation of TLR3 and TLR7/8 plays a key role in the development of PE.  相似文献   

20.
Lysophosphatidic acid (LPA) is an important phospholipid mediator in inflammation and immunity. However, the mechanism of LPA regulation during inflammatory response is largely unknown. Autotaxin (ATX) is the key enzyme to produce extracellular LPA from lysophosphatidylcholine (LPC). In this study, we found that ATX was induced in monocytic THP-1 cells by TLR4 ligand lipopolysaccharide (LPS), TLR9 ligand CpG oligonucleotide, and TLR3 ligand poly(I:C), respectively. The ATX induction by TLR ligand was abolished by the neutralizing antibody against IFN-β or the knockdown of IFNAR1, indicating that type I IFN autocrine loop is responsible for the ATX induction upon TLR activation. Both IFN-β and IFN-α were able to induce ATX expression via the JAK-STAT and PI3K-AKT pathways but with different time-dependent manners. The ATX induction by IFN-β was dramatically enhanced by IFN-γ, which had no significant effect on ATX expression alone, suggesting a synergy effect between type I and type II IFNs in ATX induction. Extracellular LPA levels were significantly increased when THP-1 cells were treated with IFN-α/β or TLR ligands. In addition, the type I IFN-mediated ATX induction was identified in human monocyte-derived dendritic cells (moDCs) stimulated with LPS or poly(I:C), and IFN-α/β could induce ATX expression in human peripheral blood mononuclear cells (PBMCs) and monocytes isolated form blood samples. These results suggest that, in response to TLR activation, ATX is induced through a type I INF autocrine-paracrine loop to enhance LPA generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号