首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: CO-releasing molecules (CO-RMs) are potential therapeutic agents, able to deliver CO – a critical gasotransmitter – in biological environments. CO-RMs are also effective antimicrobial agents; although the mechanisms of action are poorly defined, haem-containing terminal oxidases are primary targets. Nevertheless, it is clear from several studies that the effects of CO-RMs on biological systems are frequently not adequately explained by the release of CO: CO-RMs are generally more potent inhibitors than is CO gas and other effects of the molecules are evident. Methods: Because sensitivity to CO-RMs cannot be predicted by sensitivity to CO gas, we assess the differential susceptibilities of strains, each expressing only one of the three terminal oxidases of E. coli — cytochrome bd-I, cytochrome bd-II and cytochrome bo′, to inhibition by CORM-3. We present the first sensitive measurement of the oxygen affinity of cytochrome bd-II (Km 0.24 μM) employing globin deoxygenation. Finally, we investigate the way(s) in which thiol compounds abolish the inhibitory effects of CORM-2 and CORM-3 on respiration, growth and viability, a phenomenon that is well documented, but poorly understood. Results: We show that a strain expressing cytochrome bd-I as the sole oxidase is least susceptible to inhibition by CORM-3 in its growth and respiration of both intact cells and membranes. Growth studies show that cytochrome bd-II has similar CORM-3 sensitivity to cytochrome bo′. Cytochromes bo′ and bd-II also have considerably lower affinities for oxygen than bd-I. We show that the ability of N-acetylcysteine to abrogate the toxic effects of CO-RMs is not attributable to its antioxidant effects, or prevention of CO targeting to the oxidases, but may be largely due to the inhibition of CO-RM uptake by bacterial cells. Conclusions: A strain expressing cytochrome bd-I as the sole terminal oxidase is least susceptible to inhibition by CORM-3. N-acetylcysteine is a potent inhibitor of CO-RM uptake by E. coli. General significance: Rational design and exploitation of CO-RMs require a fundamental understanding of their activity. CO and CO-RMs have multifaceted effects on mammalian and microbial cells; here we show that the quinol oxidases of E. coli are differentially sensitive to CORM-3. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

2.
The O-linked β-N-acetylglucosamine (O-GlcNAc) post-translational modification is an important, regulatory modification of cytosolic and nuclear enzymes. To date, no 3-dimensional structures of O-GlcNAc-modified proteins exist due to difficulties in producing sufficient quantities with either in vitro or in vivo techniques. Recombinant co-expression of substrate protein and O-GlcNAc transferase in Escherichia coli was used to produce O-GlcNAc-modified domains of human cAMP responsive element-binding protein (CREB1) and Abelson tyrosine-kinase 2 (ABL2). Recombinant expression in E. coli is an advantageous approach, but only small quantities of insoluble O-GlcNAc-modified protein were produced. Adding β-N-acetylglucosaminidase inhibitor, O-(2-acetamido-2-dexoy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc), to the culture media provided the first evidence that an E. coli enzyme cleaves O-GlcNAc from proteins in vivo. With the inhibitor present, the yields of O-GlcNAc-modified protein increased. The E. coli β-N-acetylglucosaminidase was isolated and shown to cleave O-GlcNAc from a synthetic O-GlcNAc-peptide in vitro. The identity of the interfering β-N-acetylglucosaminidase was confirmed by testing a nagZ knockout strain. In E. coli, NagZ natively cleaves the GlcNAc-β1,4-N-acetylmuramic acid linkage to recycle peptidoglycan in the cytoplasm and cleaves the GlcNAc-β-O-linkage of foreign O-GlcNAc-modified proteins in vivo, sabotaging the recombinant co-expression system.  相似文献   

3.
Escherichia coli RecX (RecXEc) is a negative regulator of RecA activities both in the bacterial cell and in vitro. In contrast, the Neisseria gonorrhoeae RecX protein (RecXNg) enhances all RecA-related processes in N. gonorrhoeae. Surprisingly, the RecXNg protein is not a RecA protein activator in vitro. Instead, RecXNg is a much more potent inhibitor of all RecANg and RecAEc activities than is the E. coli RecX ortholog. A series of RecXNg mutant proteins representing a gradient of functional deficiencies provide a direct correlation between RecANg inhibition in vitro and the enhancement of RecANg function in N. gonorrhoeae. Unlike RecXEc, RecXNg does not simply cap the growing ends of RecA filaments, but it directly facilitates a more rapid RecA filament disassembly. Thus, in N. gonorrhoeae, recombinational processes are facilitated by RecXNg protein-mediated limitations on RecANg filament presence and/or length to achieve maximal function.  相似文献   

4.
In a cold and oxygen-rich environment such as Antarctica, mechanisms for the defence against reactive oxygen and nitrogen species are needed and represent important components in the evolutionary adaptations. In the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, the presence of multiple genes encoding 2/2 haemoglobins and a flavohaemoglobin strongly suggests that these proteins fulfil important physiological roles, perhaps associated to the peculiar features of the Antarctic habitat. In this work, the putative role of Ph-2/2HbO, encoded by the PSHAa0030 gene, was investigated by in vivo and in vitro experiments in order to highlight its involvement in NO detoxification mechanisms. The PSHAa0030 gene was cloned and then over-expressed in a flavohaemoglobin-deficient mutant of Escherichia coli, unable to metabolise NO, and the resulting strain was studied analysing its growth properties and oxygen uptake in the presence of NO. We here demonstrate that Ph-2/2HbO protects growth and cellular respiration of the heterologous host from the toxic effect of NO-donors. Unlike in Mycobacterium tuberculosis 2/2 HbN, the deletion of the N-terminal extension of Ph-2/2HbO does not seem to reduce the NO scavenging activity, showing that the N-terminal extension is not a requirement for efficient NO detoxification. Moreover, the ferric form of Ph-2/2HbO was shown to catalyse peroxynitrite isomerisation in vitro, confirming its potential role in the scavenging of reactive nitrogen species. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   

5.
We report here that the expression of protein complexes in vivo in Escherichia coli can be more convenient than traditional reconstitution experiments in vitro. In particular, we show that the poor solubility of Escherichia coli DNA polymerase III ε subunit (featuring 3’-5’ exonuclease activity) is highly improved when the same protein is co-expressed with the α and θ subunits (featuring DNA polymerase activity and stabilizing ε, respectively). We also show that protein co-expression in E. coli can be used to efficiently test the competence of subunits from different bacterial species to associate in a functional protein complex. We indeed show that the α subunit of Deinococcus radiodurans DNA polymerase III can be co-expressed in vivo with the ε subunit of E. coli. In addition, we report on the use of protein co-expression to modulate mutation frequency in E. coli. By expressing the wild-type ε subunit under the control of the araBAD promoter (arabinose-inducible), and co-expressing the mutagenic D12A variant of the same protein, under the control of the lac promoter (inducible by isopropyl-thio-β-D-galactopyranoside, IPTG), we were able to alter the E. coli mutation frequency using appropriate concentrations of the inducers arabinose and IPTG. Finally, we discuss recent advances and future challenges of protein co-expression in E. coli.  相似文献   

6.
Mahon V  Fagan RP  Smith SG 《Biochimie》2012,94(9):2058-2061
Here we show that the Rns regulator of Escherichia coli dimerises in vivo and in vitro. Furthermore, we demonstrate that Rns forms aggregates in vitro and describe a methodology to ameliorate aggregation thus permitting the analysis of Rns by cross-linking.  相似文献   

7.
During Escherichia coli urinary tract infections, cells in the human urinary tract release the antimicrobial protein siderocalin (SCN; also known as lipocalin 2, neutrophil gelatinase-associated lipocalin/NGAL, or 24p3). SCN can interfere with E. coli iron acquisition by sequestering ferric iron complexes with enterobactin, the conserved E. coli siderophore. Here, we find that human urinary constituents can reverse this relationship, instead making enterobactin critical for overcoming SCN-mediated growth restriction. Urinary control of SCN activity exhibits wide ranging individual differences. We used these differences to identify elevated urinary pH and aryl metabolites as key biochemical host factors controlling urinary SCN activity. These aryl metabolites are well known products of intestinal microbial metabolism. Together, these results identify an innate antibacterial immune interaction that is critically dependent upon individualistic chemical features of human urine.  相似文献   

8.
Ex vivo antioxidant, anti-inflammatory, anticancer and antibacterial activities of the essential oil from Tunisian Nigella sativa seeds and its main terpenes (p-cymene, γ-terpinene, thymoquinone, β-pinene, carvacrol, terpinen-4-ol and longifolene) were determined. The essential oil exhibited strong ex vivo antioxidant activity, inhibiting DCFH oxidation with an IC50 of 1.0 µg/ml, and high anti-inflammatory activity, inhibiting NO radical excretion with an IC50 value of 6.3 µg/ml. Thymoquinone was found to be the most active to decrease DCFH oxidation and NO excretion. The oil was found to significantly inhibit the growth of A-549 and DLD-1 cancer cell lines (IC50 values of 43.0 and 46.0 µg/ml, respectively) and to exert antibacterial activity against Staphylococcus aureus and Escherichia coli with IC50 values of 12.0 and 62.0 µg/ml. The anticancer and antibacterial activities could be mainly due to the action of thymoquinone and longifolene.  相似文献   

9.
Oxygen sensitivity of hydrogenase is a critical issue in efficient biological hydrogen production. In the present study, oxygen-tolerant [NiFe]-hydrogenase from the marine bacterium, Hydrogenovibrio marinus, was heterologously expressed in Escherichia coli, for the first time. Recombinant E. coli BL21 expressing H. marinus [NiFe]-hydrogenase actively produced hydrogen, but the parent strain did not. Recombinant H. marinus hydrogenase required both nickel and iron for biological activity. Compared to the recombinant E. coli [NiFe]-hydrogenase 1 described in our previous report, recombinant H. marinus [NiFe]-hydrogenase displayed 1.6- to 1.7-fold higher hydrogen production activity in vitro. Importantly, H. marinus [NiFe]-hydrogenase exhibited relatively good oxygen tolerance in analyses involving changes of surface aeration and oxygen proportion within a gas mixture. Specifically, recombinant H. marinus [NiFe]-hydrogenase produced ∼7- to 9-fold more hydrogen than did E. coli [NiFe]-hydrogenase 1 in a gaseous environment containing 5-10% (v/v) oxygen. In addition, purified H. marinus [NiFe]-hydrogenase displayed a hydrogen evolution activity of ∼28.8 nmol H2/(min mg protein) under normal aerobic purification conditions. Based on these results, we suggest that oxygen-tolerant H. marinus [NiFe]-hydrogenase can be employed for in vivo and in vitro biohydrogen production without requirement for strictly anaerobic facilities.  相似文献   

10.
The catalytic inactivation of Escherichia coli (E. coli) in water by silver loaded alumina as catalyst was investigated. Ag/Al2O3 and AgCl/Al2O3 catalysts exhibited high bactericidal activity at room temperature in water with no need for any light or electrical power input. Dissolved oxygen which can be catalyzed to reactive oxygen species (ROS) was found to be essential for the strong bactericidal activities of the catalysts. Decomposition of the cell wall leading to leakage of the intracellular component and the complete lysis of the whole cell were directly observed by transmission electron microscopy (TEM). The resultant change in cell permeability was confirmed by potassium ion leakage. The different morphological changes between E. coli cells treated with the catalysts and Ag+ were also observed. The formation of ROS involved in the bactericidal process by AgCl/Al2O3 was confirmed by addition of catalase and OH scavenger. Higher temperature and pH value were found to have positive effect on the bactericidal activity of AgCl/Al2O3. All these results indicated that the bactericidal effect of the catalyst was a synergic action of ROS and Ag+, not an additive one. A possible mechanism is proposed.  相似文献   

11.
Murein peptide ligase (Mpl) is an enzyme found in Gram-negative bacteria. It catalyses the addition of tripeptide l-Ala-γ-d-Glu-meso-diaminopimelate to nucleotide precursor UDP-N-acetylmuramic acid during the recycling of peptidoglycan. Although not essential, this enzyme represents an interesting target for antibacterial compounds through the synthesis of alternate substrates whose incorporation into peptidoglycan might be deleterious for the bacterial cell. Therefore, we have synthesised 10 tripeptides l-Ala-γ-d-Glu-Xaa in which Xaa represents amino acids different from diaminopimelic acid. Tripeptide with Xaa = ε-d-Lys proved to be an excellent substrate of Escherichia coli Mpl in vitro. Tripeptides with Xaa = p-amino- or p-nitro-l-phenylalanine were poor substrates, while tripeptides with Xaa = d- or l-2-aminopimelate, dl-2-aminoheptanoic acid, l-Glu, l-norleucine, l-norvaline, l-2-aminobutyric acid or l-Ala were not substrates at all. Although a good Mpl substrate, the d-Lys-containing tripeptide was devoid of antibacterial activity against E. coli, presumably owing to poor uptake.  相似文献   

12.

Background

Traditional antibacterial photocatalysts are primarily induced by ultraviolet light to elicit antibacterial reactive oxygen species. New generation visible-light responsive photocatalysts were discovered, offering greater opportunity to use photocatalysts as disinfectants in our living environment. Recently, we found that visible-light responsive platinum-containing titania (TiO2–Pt) exerted high performance antibacterial property against soil-borne pathogens even in soil highly contaminated water. However, its physical and photocatalytic properties, and the application in vivo have not been well-characterized.

Methods

Transmission electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, ultraviolet–visible absorption spectrum and the removal rate of nitrogen oxides were therefore analyzed. The antibacterial performance under in vitro and in vivo conditions was evaluated.

Results

The apparent quantum efficiency for visible light illuminated TiO2–Pt is relatively higher than several other titania photocatalysts. The killing effect achieved approximately 2 log reductions of pathogenic bacteria in vitro. Illumination of injected TiO2–Pt successfully ameliorated the subcutaneous infection in mice.

Conclusions

This is the first demonstration of in vivo antibacterial use of TiO2–Pt nanoparticles. When compared to nanoparticles of some other visible-light responsive photocatalysts, TiO2–Pt nanoparticles induced less adverse effects such as exacerbated platelet clearance and hepatic cytotoxicity in vivo.

General significance

These findings suggest that the TiO2–Pt may have potential application on the development of an antibacterial material in both in vitro and in vivo settings.  相似文献   

13.
Carbon monoxide (CO), produced during the degradation of heme by the enzyme heme oxygenase, is an important signaling mediator in mammalian cells. Here we show that precise delivery of CO to isolated heart mitochondria using a water-soluble CO-releasing molecule (CORM-3) uncouples respiration. Addition of low-micromolar concentrations of CORM-3 (1–20 μM), but not an inactive compound that does not release CO, significantly increased mitochondrial oxygen consumption rate (State 2 respiration) in a concentration-dependent manner. In contrast, higher concentrations of CORM-3 (100 μM) suppressed ADP-dependent respiration through inhibition of cytochrome c oxidase. The uncoupling effect mediated by CORM-3 was inhibited in the presence of the CO scavenger myoglobin. Moreover, this effect was associated with a gradual decrease in membrane potential (ψ) over time and was partially reversed by malonate, an inhibitor of complex II activity. Similarly, inhibition of uncoupling proteins or blockade of adenine nucleotide transporter attenuated the effect of CORM-3 on both State 2 respiration and Δψ. Hydrogen peroxide (H2O2) produced by mitochondria respiring from complex I-linked substrates (pyruvate/malate) was increased by CORM-3. However, respiration initiated via complex II using succinate resulted in a fivefold increase in H2O2 production and this effect was significantly inhibited by CORM-3. These findings disclose a counterintuitive action of CORM-3 suggesting that CO at low levels acts as an important regulator of mitochondrial respiration.  相似文献   

14.
Shewanella species are a group of facultative Gram-negative microorganisms with remarkable respiration abilities that allow the use of a diverse array of terminal electron acceptors (EA). Like most bacteria, S. oneidensis possesses multiple terminal oxidases, including two heme-copper oxidases (caa3- and cbb3-type) and a bd-type quinol oxidase. As aerobic respiration is energetically favored, mechanisms underlying the fact that these microorganisms thrive in redox-stratified environments remain vastly unexplored. In this work, we discovered that the cbb3-type oxidase is the predominant system for respiration of oxygen (O2), especially when O2 is abundant. Under microaerobic conditions, the bd-type quinol oxidase has a significant role in addition to the cbb3-type oxidase. In contrast, multiple lines of evidence suggest that under test conditions the caa3-type oxidase, an analog to the mitochondrial enzyme, has no physiological significance, likely because of its extremely low expression. In addition, expression of both cbb3- and bd-type oxidases is under direct control of Crp (cAMP receptor protein) but not the well-established redox regulator Fnr (fumarate nitrate regulator) of canonical systems typified in Escherichia coli. These data, collectively, suggest that adaptation of S. oneidensis to redox-stratified environments is likely due to functional loss of the caa3-type oxidase and switch of the regulatory system for respiration.  相似文献   

15.
In Gram-negative bacteria, type I protein secretion systems and tripartite drug efflux pumps have a periplasmic membrane fusion protein (MFP) as an essential component. MFPs bridge the outer membrane factor and an inner membrane transporter, although the oligomeric state of MFPs remains unclear. The most characterized MFP AcrA connects the outer membrane factor TolC and the resistance-nodulation-division-type efflux transporter AcrB, which is a major multidrug efflux pump in Escherichia coli. MacA is the periplasmic MFP in the MacAB-TolC pump, where MacB was characterized as a macrolide-specific ATP-binding-cassette-type efflux transporter. Here, we report the crystal structure of E. coli MacA and the experimentally phased map of Actinobacillus actinomycetemcomitans MacA, which reveal a domain orientation of MacA different from that of AcrA. Notably, a hexameric assembly of MacA was found in both crystals, exhibiting a funnel-like structure with a central channel and a conical mouth. The hexameric MacA assembly was further confirmed by electron microscopy and functional studies in vitro and in vivo. The hexameric structure of MacA provides insight into the oligomeric state in the functional complex of the drug efflux pump and type I secretion system.  相似文献   

16.
17.
Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0647-3) contains supplementary material, which is available to authorized users.  相似文献   

18.
Water-soluble sulfated polysaccharides extracted from Enteromorpha prolifera and fractionated using ion-exchange chromatography (crude, F1, F2 and F3 fractions) were investigated to determine their in vitro and in vivo immunomodulatory activities. The sulfated polysaccharides, especially the F1 and F2 fractions, stimulated a macrophage cell line, Raw 264.7, inducing considerable nitric oxide (NO) and various cytokine production via up-regulated mRNA expression. The in vivo experiment results show that the sulfated polysaccharides (the crude and F2 fractions) significantly increased Con A-induced splenocyte proliferation, revealing their potential comitogenic activity. In addition, IFN-γ and IL-2 secretions were considerably increased by the F2 fraction without altering the release of IL-4 and IL-5. This implies that the F2 fraction can activate T cells by up-regulating Th-1 response and that Th-1 cells might be the main target cells of the F2 fraction. These in vitro and in vivo results suggest that the sulfated polysaccharides are strong immunostimulators.  相似文献   

19.
20.
Enterococcus hirae vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain (V1; NtpA3-B3-D-G) and an integral membrane domain (V0; NtpI-K10) connected by a central and peripheral stalk(s) (NtpC and NtpE-F). Here we examined the nucleotide binding of NtpA monomer, NtpB monomer or NtpD-G heterodimer purified by using Escherichia coli expression system in vivo or in vitro, and the reconstitution of the V1 portion with these polypeptides. The affinity of nucleotide binding to NtpA was 6.6 μM for ADP or 3.1 μM for ATP, while NtpB or NtpD-G did not show any binding. The NtpA and NtpB monomers assembled into NtpA3-B3 heterohexamer in nucleotide binding-dependent manner. NtpD-G bound NtpA3-B3 forming V1 (NtpA3-B3-D-G) complex independent of nucleotides. The V1 formation from individual NtpA and NtpB monomers with NtpD-G heterodimer was absolutely dependent on nucleotides. The ATPase activity of reconstituted V1 complex was as high as that of native V1-ATPase purified from the V0V1 complex by EDTA treatment of cell membrane. This in vitro reconstitution system of E. hirae V1 complex will be valuable for characterizing the subunit-subunit interactions and assembly mechanism of the V1-ATPase complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号