首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

During the 2009 pandemic influenza H1N1 (2009) virus (pH1N1) outbreak, school students were at an increased risk of infection by the pH1N1 virus. However, the estimation of the attack rate showed significant variability.

Methods

Two school outbreaks were investigated in this study. A questionnaire was designed to collect information by interview. Throat samples were collected from all the subjects in this study 6 times and sero samples 3 times to confirm the infection and to determine viral shedding. Data analysis was performed using the software STATA 9.0.

Findings

The attack rate of the pH1N1 outbreak was 58.3% for the primary school, and 52.9% for the middle school. The asymptomatic infection rates of the two schools were 35.8% and 37.6% respectively. Peak virus shedding occurred on the day of ARI symptoms onset, followed by a steady decrease over subsequent days (p = 0.026). No difference was found either in viral shedding or HI titer between the symptomatic and the asymptomatic infectious groups.

Conclusions

School children were found to be at a high risk of infection by the novel virus. This may be because of a heightened risk of transmission owing to increased mixing at boarding school, or a lack of immunity owing to socio-economic status. We conclude that asymptomatically infectious cases may play an important role in transmission of the pH1N1 virus.  相似文献   

2.
3.

Background

Pigs play a key epidemiologic role in the ecology of influenza A viruses (IAVs) emerging from animal hosts and transmitted to humans. Between 2008 and 2010, we investigated the health risk of occupational exposure to swine influenza viruses (SIVs) in Italy, during the emergence and spread of the 2009 H1N1 pandemic (H1N1pdm) virus.

Methodology/Principal Findings

Serum samples from 123 swine workers (SWs) and 379 control subjects (Cs), not exposed to pig herds, were tested by haemagglutination inhibition (HI) assay against selected SIVs belonging to H1N1 (swH1N1), H1N2 (swH1N2) and H3N2 (swH3N2) subtypes circulating in the study area. Potential cross-reactivity between swine and human IAVs was evaluated by testing sera against recent, pandemic and seasonal, human influenza viruses (H1N1 and H3N2 antigenic subtypes). Samples tested against swH1N1 and H1N1pdm viruses were categorized into sera collected before (n. 84 SWs; n. 234 Cs) and after (n. 39 SWs; n. 145 Cs) the pandemic peak. HI-antibody titers ≥10 were considered positive. In both pre-pandemic and post-pandemic peak subperiods, SWs showed significantly higher swH1N1 seroprevalences when compared with Cs (52.4% vs. 4.7% and 59% vs. 9.7%, respectively). Comparable HI results were obtained against H1N1pdm antigen (58.3% vs. 7.7% and 59% vs. 31.7%, respectively). No differences were found between HI seroreactivity detected in SWs and Cs against swH1N2 (33.3% vs. 40.4%) and swH3N2 (51.2 vs. 55.4%) viruses. These findings indicate the occurrence of swH1N1 transmission from pigs to Italian SWs.

Conclusion/Significance

A significant increase of H1N1pdm seroprevalences occurred in the post-pandemic peak subperiod in the Cs (p<0.001) whereas SWs showed no differences between the two subperiods, suggesting a possible occurrence of cross-protective immunity related to previous swH1N1 infections. These data underline the importance of risk assessment and occupational health surveillance activities aimed at early detection and control of SIVs with pandemic potential in humans.  相似文献   

4.
A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome seq...  相似文献   

5.
6.
陈则  方芳 《生命科学研究》2000,4(3):189-196
20世纪人类遭受了4次流感大流行,数千万人失去了生命,流感病毒分A、B、C三型,对其病毒学、流行病学和临床特征,以及流感病毒传统疫苗--灭活疫苗和新型疫苗--核酸疫苗的研究进展作了论述。  相似文献   

7.
In this work, nineteen influenza A/H3N2 viruses isolated in Mexico between 2003 and 2012 were studied. Our findings show that different human A/H3N2 viral lineages co-circulate within a same season and can also persist locally in between different influenza seasons, increasing the chance for genetic reassortment events. A novel minor cluster was also identified, named here as Korea, that circulated worldwide during 2003. Frequently, phylogenetic characterization did not correlate with the determined antigenic identity, supporting the need for the use of molecular evolutionary tools additionally to antigenic data for the surveillance and characterization of viral diversity during each flu season. This work represents the first long-term molecular epidemiology study of influenza A/H3N2 viruses in Mexico based on the complete genomic sequences and contributes to the monitoring of evolutionary trends of A/H3N2 influenza viruses within North and Central America.  相似文献   

8.
《Cell host & microbe》2014,15(6):692-705
  1. Download : Download high-res image (275KB)
  2. Download : Download full-size image
  相似文献   

9.
10.
11.
Epidemiological and evolutionary dynamics of influenza B Victoria and Yamagata lineages remained poorly understood in the tropical Southeast Asia region, despite causing seasonal outbreaks worldwide. From 2012–2014, nasopharyngeal swab samples collected from outpatients experiencing acute upper respiratory tract infection symptoms in Kuala Lumpur, Malaysia, were screened for influenza viruses using a multiplex RT-PCR assay. Among 2,010/3,935 (51.1%) patients infected with at least one respiratory virus, 287 (14.3%) and 183 (9.1%) samples were tested positive for influenza A and B viruses, respectively. Influenza-positive cases correlate significantly with meteorological factors—total amount of rainfall, relative humidity, number of rain days, ground temperature and particulate matter (PM10). Phylogenetic reconstruction of haemagglutinin (HA) gene from 168 influenza B viruses grouped them into Yamagata Clade 3 (65, 38.7%), Yamagata Clade 2 (48, 28.6%) and Victoria Clade 1 (55, 32.7%). With neuraminidase (NA) phylogeny, 30 intra-clade (29 within Yamagata Clade 3, 1 within Victoria Clade 1) and 1 inter-clade (Yamagata Clade 2-HA/Yamagata Clade 3-NA) reassortants were identified. Study of virus temporal dynamics revealed a lineage shift from Victoria to Yamagata (2012–2013), and a clade shift from Yamagata Clade 2 to Clade 3 (2013–2014). Yamagata Clade 3 predominating in 2014 consisted of intra-clade reassortants that were closely related to a recent WHO vaccine candidate strain (B/Phuket/3073/2013), with the reassortment event occurred approximately 2 years ago based on Bayesian molecular clock estimation. Malaysian Victoria Clade 1 viruses carried H274Y substitution in the active site of neuraminidase, which confers resistance to oseltamivir. Statistical analyses on clinical and demographic data showed Yamagata-infected patients were older and more likely to experience headache while Victoria-infected patients were more likely to experience nasal congestion and sore throat. This study describes the evolution of influenza B viruses in Malaysia and highlights the importance of continuous surveillance for better vaccination policy in this region.  相似文献   

12.
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.  相似文献   

13.

Background

Influenza A viruses are characterised by their rapid evolution, and the appearance of point mutations in the viral hemagglutinin (HA) domain causes seasonal epidemics. The A(H3N2) virus has higher mutation rate than the A(H1N1) virus. The aim of this study was to reconstruct the evolutionary dynamics of the A(H3N2) viruses circulating in Italy between 2004 and 2012 in the light of the forces driving viral evolution.

Methods

Phylodinamic analyses were made using a Bayesian method, and codon-specific positive selection acting on the HA coding sequence was evaluated.

Results

Global and local phylogenetic analyses showed that the Italian strains collected between 2004 and 2012 grouped into five significant Italian clades that included viral sequences circulating in different epidemic seasons. The time of the most recent common ancestor (tMRCA) of the tree root was between May and December 2003. The tMRCA estimates of the major clades suggest that the origin of a new viral strain precedes the effective circulation of the strain in the Italian population by 6–31 months, thus supporting a central role of global migration in seeding the epidemics in Italy. The study of selection pressure showed that four codons were under positive selection, three of which were located in antigenic sites. Analysis of population dynamics showed the alternation of periods of exponential growth followed by a decrease in the effective number of infections corresponding to epidemic and inter-epidemic seasons.

Conclusions

Our analyses suggest that a complex interaction between the immune status of the population, migrations, and a few selective sweeps drive the influenza A(H3N2) virus evolution. Our findings suggest the possibility of the year-round survival of local strains even in temperate zones, a hypothesis that warrants further investigation.  相似文献   

14.
15.
We analyzed the most likely cause of 687 bovine tuberculosis (bTB) breakdowns detected in Spain between 2009 and 2011 (i.e., 22% of the total number of breakdowns detected during this period). Seven possible causes were considered: i) residual infection; ii) introduction of infected cattle from other herds; iii) sharing of pastures with infected herds; iv) contiguous spread from infected neighbor herds; v) presence of infected goats in the farm; vi) interaction with wildlife reservoirs and vii) contact with an infected human. For each possible cause a decision tree was developed and key questions were included in each of them. Answers to these key questions lead to different events within each decision tree. In order to assess the likelihood of occurrence of the different events a qualitative risk assessment approach was used. For this purpose, an expert opinion workshop was organized and ordinal values, ranging from 0 to 9 (i.e., null to very high likelihood of occurrence) were assigned. The analysis identified residual infection as the most frequent cause of bTB breakdowns (22.3%; 95%CI: 19.4–25.6), followed by interaction with wildlife reservoirs (13.1%; 95%CI: 10.8–15.8). The introduction of infected cattle, sharing of pastures and contiguous spread from infected neighbour herds were also identified as relevant causes. In 41.6% (95%CI: 38.0–45.4) of the breakdowns the origin of infection remained unknown.Veterinary officers conducting bTB breakdown investigations have to state their opinion about the possible cause of each breakdown. Comparison between the results of our analysis and the opinion from veterinary officers revealed a slight concordance. This slight agreement might reflect a lack of harmonized criteria to assess the most likely cause of bTB breakdowns as well as different perceptions about the importance of the possible causes. This is especially relevant in the case of the role of wildlife reservoirs.  相似文献   

16.
Despite substantial efforts to control H5N1 avian influenza viruses (AIVs), the viruses have continued to evolve and cause disease outbreaks in poultry and infections in humans. In this report, we analyzed 51 representative H5N1 AIVs isolated from domestic poultry, wild birds, and humans in China during 2004 to 2009, and 21 genotypes were detected based on whole-genome sequences. Twelve genotypes of AIVs in southern China bear similar H5 hemagglutinin (HA) genes (clade 2.3). These AIVs did not display antigenic drift and could be completely protected against by the A/goose/Guangdong/1/96 (GS/GD/1/96)-based oil-adjuvanted killed vaccine and recombinant Newcastle disease virus vaccine, which have been used in China. In addition, antigenically drifted H5N1 viruses, represented by A/chicken/Shanxi/2/06 (CK/SX/2/06), were detected in chickens from several provinces in northern China. The CK/SX/2/06-like viruses are reassortants with newly emerged HA, NA, and PB1 genes that could not be protected against by the GS/GD/1/96-based vaccines. These viruses also reacted poorly with antisera generated from clade 2.2 and 2.3 viruses. The majority of the viruses isolated from southern China were lethal in mice and ducks, while the CK/SX/2/06-like viruses caused mild disease in mice and could not replicate in ducks. Our results demonstrate that the H5N1 AIVs circulating in nature have complex biological characteristics and pose a continued challenge for disease control and pandemic preparedness.The highly pathogenic H5N1 influenza viruses that emerged over a decade ago in southern China have evolved into over 10 distinct phylogenetic clades based on their hemagglutinin (HA) genes. The viruses have spread to over 63 countries and to multiple mammalian species, including humans, resulting in 498 cases of infection and 294 deaths by 6 May 2010 according to the World Health Organization (WHO) (http://www.who.int). To date, none of the different H5N1 clades has acquired the ability to consistently transmit among mammalian species. The currently circulating H5N1 viruses are unique in that they continue to circulate in avian species. All previous highly pathogenic H5 and H7 viruses have naturally “burned out” or were stamped out because of their high pathogenicity in domestic poultry. While there is growing complacency about the potential of H5N1 “bird flu” to attain consistent transmissibility in humans and develop pandemicity, it is worth remembering that we have no knowledge of the time that it took the 1918 Spanish, the 1957 Asian, the 1968 Hong Kong, and the 2009 North American pandemics to develop their pandemic potentials. We may therefore currently be witnessing in real time the evolution of an H5N1 pandemic influenza virus.H5N1 avian influenza viruses (AIVs) were first detected in sick geese in Guangdong province in 1996, and both nonpathogenic and highly pathogenic (HP) H5N1 viruses were described (18). In 1997, H5N1 reassortant viruses that derived the HA gene from A/goose/Guangdong/1/96 (GS/GD/1/96)-like viruses and the other genes from H6N1 and/or H9N2 viruses caused lethal outbreaks in poultry and humans in Hong Kong (6, 7). Since then, long-term active surveillance of influenza viruses in domestic poultry has been performed, and multiple subtypes of influenza viruses have been detected in chickens and ducks in China (16, 19, 37). H5N1 influenza viruses have been repeatedly detected in apparently healthy ducks in southern China since 1999 (4, 13) and were also detected in pigs in Fujian province in 2001 and 2003 (39).Since the beginning of 2004, there have been significant outbreaks of H5N1 avian influenza virus infection involving multiple poultry farm flocks in more than 20 provinces in China (2). H5N1 viruses resulted in the deaths of millions of domestic poultry, including chickens, ducks, and geese, as the result of infection or of culling and the deaths of thousands of wild birds (5, 20). Thirty-eight human cases of HP H5N1 infection with 25 fatalities have been associated with direct exposure to infected poultry (WHO; http://www.who.int). Since 2004, the vaccination of domestic poultry has been used for the control of HP H5N1 influenza virus in China. While this strategy has been effective at reducing the incidence of HP H5N1 in poultry and at markedly reducing the number of human cases, it is impossible to vaccinate every single bird due to the enormous poultry population. Outbreaks of H5N1 influenza virus still continue to occur in poultry although at a reduced frequency.A previous study by Smith et al. reported that a “Fujian-like” H5N1 influenza virus emerged in late 2005 and predominated in poultry in southern China (26). Those authors suggested that vaccination may have facilitated the selection of the “Fujian-like” sublineage. Here, we analyzed 51 representative H5N1 viruses that were isolated from wild birds, domestic poultry, and humans from 2004 to 2009 in China and described their genetic evolution and antigenicity profiles. Our results indicate that H5N1 influenza viruses in southern China, including the “Fujian-like” viruses, are complicated reassortants, which could be well protected against by GS/GD/1/96 virus-based vaccines. We documented the emergence of the latest variant of H5N1 (A/chicken/Shanxi/2/06 [CK/SX/2/06]) that broke through existing poultry vaccines. We show that this variant is less pathogenic in mice and ducks than the earlier strains and propose that the variant was not selected by the use of vaccines.  相似文献   

17.
Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.The zoonotic potential of swine influenza viruses is well recognized (18), and pigs have been considered a leading candidate for the role of intermediate host in the generation of reassortant influenza A viruses with pandemic potential. This has been largely based on genomic analysis of influenza A viruses isolated from swine and the fact that α2,3-linked sialic acid (avian-like) and α2,6-linked sialic acid (human-like) receptors are both abundant in the swine respiratory tract (12). Despite this, there is no direct evidence that the reassortment of the 1957 and the 1968 human pandemic viruses occurred in pigs (28). Furthermore, it is very likely that the 1918 pandemic virus was introduced to pigs from humans (8, 31). The origins of influenza A viruses that have been isolated from pigs include those that are wholly human or avian, as well as reassortants containing swine, human, and avian genes (2, 20, 29). Although there have been several instances of swine-to-human transmission, for example, that of triple-reassortant swine influenza (H1) viruses (rH1N1), which appeared after 1998, they did not lead to establishment of sustained transmission in the human population (23).In the early spring of 2009, Mexico and the United States reported clusters of human pneumonia cases caused by a novel H1N1 influenza A virus. This virus subsequently spread across the globe at an unprecedented rate, prompting the WHO to declare a pandemic in June 2009. Phylogenetic analysis has inferred that the virus is likely a reassortant between a North American triple-reassortant swine H1N1 or H1N2 virus and a Eurasian lineage H1N1 swine influenza virus (7, 19). Bayesian molecular-clock analysis of each gene of this novel H1N1 virus (24) concluded that the mean evolutionary rate is typical of that of swine influenza viruses but that the duration of unsampled diversity for each gene segment had means that ranged from 9.24 to 17.15 years, suggesting that the proposed ancestors of this virus may have been circulating undetected for nearly a decade. Inadequate surveillance and characterization of influenza A viruses that circulate in swine have been blamed for this evolutionary gap.On 28 April 2009 the Canadian Food Inspection Agency (CFIA) became involved in a suspected outbreak of swine influenza on a pig farm in Leslieville, Alberta, Canada. The farm was a 220-sow farrow-to-finish operation consisting of approximately 2,200 animals that ranged from newborn piglets to market weight pigs. The animals were not vaccinated against swine influenza, and although there had been prior problems with porcine reproductive and respiratory syndrome virus and Mycoplasma hypopneumoniae, two etiologic agents of the swine respiratory disease complex, the herd had been stable with respect to respiratory disease. Beginning 20 April, approximately 25% of the pregrower and grower pigs in two of the barns exhibited respiratory problems with clinical signs that included an acute onset of coughing, lethargy, and loss of appetite. These clinical signs were preceded by the hiring of a carpenter on 14 April to work on the ventilation system in the same two barns. This individual had been ill for 2 days after his return from Mexico on 12 April (10). Given the evolving situation in Mexico and the United States, the CFIA and Alberta Agriculture and Rural Development decided to place the herd under quarantine and to carry out a full epidemiological and laboratory investigation.Here, we report on the characterization of the first pandemic H1N1 2009 viruses to be isolated from a naturally infected pig herd. Genetic sequence data from several viruses isolated from this outbreak have provided a glimpse into the mutation frequencies associated with replication of the virus in the swine host. Experimental infections of pigs comparing one of these swine isolates with the human isolate A/Mexico/InDRE4487/2009(H1N1) were also carried out and have provided insights into the pathobiological behavior of these viruses in pigs.  相似文献   

18.
目的:分析探讨2009~2012年武威市流行性感冒(简称流感)的流行特征,为流感的防控提供科学依据。方法:收集2009年6月~2012年12月武威市流感样病例及病原学监测资料,分析流感样病例就诊比(ILI%)的变化规律、流感样病例的年龄分布和流感病毒各亚型的变化。结果:2009~2012年,武威市的ILI%分别是1.94%、1.55%、1.12%、1.15%,ILI%高峰分别出现在6月(2009年)、7月(2010年)和10月~次年3月(2011年和2012年)。ILI年龄构成显示病例以15岁以下人群为主。2009~2012年,ILI样本病原学检测阳性率为19.00%;2009年,甲型H1N1为优势毒株,构成比是76.64%,2010年为季节性H3(60.00%)、B型(29.23%)混合流行;2011年主要是甲型H1N1(26.47%)、季节性H3(29.41%)、A未分型(29.41%);2012年为季节性H3(31.78%)、B型(53.49%)混合流行。结论:2009年甲型H1N1流感大流行之后,武威市流感的活动较为平稳,流行优势毒株不断发生变化。  相似文献   

19.
We report on life history characteristics, temporal, and age-related effects influencing the frequency of occurrence of avian influenza (AI) viruses in four species of migratory geese breeding on the Yukon-Kuskokwim Delta, Alaska. Emperor geese (Chen canagica), cackling geese (Branta hutchinsii), greater white-fronted geese (Anser albifrons), and black brant (Branta bernicla), were all tested for active infection of AI viruses upon arrival in early May, during nesting in June, and while molting in July and August, 2006–2010 (n = 14,323). Additionally, prior exposure to AI viruses was assessed via prevalence of antibodies from sera samples collected during late summer in 2009 and 2010. Results suggest that geese are uncommonly infected by low pathogenic AI viruses while in Alaska. The percent of birds actively shedding AI viruses varied annually, and was highest in 2006 and 2010 (1–3%) and lowest in 2007, 2008, and 2009 (<0.70%). Contrary to findings in ducks, the highest incidence of infected birds was in late spring when birds first arrived from staging and wintering areas. Despite low prevalence, most geese were previously exposed to AI viruses, as indicated by high levels of seroprevalence during late summer (47%–96% across species; n = 541). Seroprevalence was >95% for emperor geese, a species that spends part of its life cycle in Asia and is endemic to Alaska and the Bering Sea region, compared to 40–60% for the other three species, whose entire life cycles are within the western hemisphere. Birds <45 days of age showed little past exposure to AI viruses, although antibodies were detected in samples from 5-week old birds in 2009. Seroprevalence of known age black brant revealed that no birds <4 years old had seroconverted, compared to 49% of birds ≥4 years of age.  相似文献   

20.
2017-2018年间,流感病毒在我国流行态势严重,为探讨佛山地区流感病毒的流行特征,为佛山市流感的防控提供科学依据,本研究搜集2019年佛山市流感监测哨点医院采集的流感样病例标本,采用实时荧光RT-PCR检测流感病毒核酸,分析佛山市流感流行病学数据库病人详细信息,分析流行趋势及病毒流行的类型,为制定流感的防控提供科学依据.结果显示:2019年共检测流感样病例咽拭子标本1356例,流感病毒核酸检测阳性率为25.52%,甲型流感病毒阳性率为19.17%,乙型流感病毒阳性率为6.34%.不同职业人群共18个,小学生(7.67%),幼托儿童(3.17%)流感病毒核酸检测阳性率较高.把年龄分成5个年龄段进行分析,流感阳性率最高的是25~59岁组与5~14岁组.2019年佛山地区主要检出新甲H1型、季H3型、BV型三种型别,1月份,12月份为流感活跃的两个高峰,各型别在不同的时间交替或共同流行.不同性别的人群流感阳性率差异无统计学意义.不同型别病毒株在不同性别人群间阳性率差异无统计学意义.本研究结果提示佛山地区主要以甲型流感流行为主,优势亚型为新甲H1型,季H3型,部分乙型流感患者,以BV型为主.流感病毒感染的重点人群是小学生与幼托儿童,不同类型的流感病毒,在不同性别人群间感染无差异.通过对2019年佛山市流感流行特征的分析可以为佛山市流感的防控提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号