首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
To determine the structural origins of diverse ligand response specificities among metabotropic glutamate receptors (mGluRs), we combined computational approaches with mutagenesis and ligand response assays to identify specificity-determining residues in the group I receptor, mGluR1, and the group III receptors, mGluR4 and mGluR7. Among these, mGluR1 responds to l-glutamate effectively, whereas it binds weakly to another endogenous ligand, l-serine-O-phosphate (l-SOP), which antagonizes the effects of l-glutamate. In contrast, mGluR4 has in common with other group III mGluR that it is activated with higher potency and efficacy by l-SOP. mGluR7 differs from mGluR4 and other group III mGluR in that l-glutamate and l-SOP activate it with low potency and efficacy. Enhanced versions of the evolutionary trace (ET) algorithm were used to identify residues that when swapped between mGluR1 and mGluR4 increased the potency of l-SOP inhibition relative to the potency of l-glutamate activation in mGluR1 mutants and others that diminished the potency/efficacy of l-SOP for mGluR4 mutants. In addition, combining ET identified swaps from mGluR4 with one identified by computational docking produced mGluR7 mutants that respond with dramatically enhanced potency/efficacy to l-SOP. These results reveal that an early functional divergence between group I/II and group III involved variation at positions primarily at allosteric sites located outside of binding pockets, whereas a later divergence within group III occurred through sequence variation both at the ligand-binding pocket and at loops near the dimerization interface and interlobe hinge region. They also demonstrate the power of ET for identifying allosteric determinants of evolutionary importance.  相似文献   

2.
Mechanically isolated Asparagus sprengeri Regel mesophyll cells cause alkalinization of the suspension medium on the addition of l-glutamate or its analog l-methionine-d,l-sulfoximine. Using a radiolabeled pH probe, it was found that both compounds caused internal acidification whereas l-aspartate did not. Fusicoccin stimulated H+ efflux from the cells by 111% and the uptake of l-[U-14C]glutamate by 55%. Manometric experiments demonstrated that, unlike l-methionine-d,l-sulfoximine, l-glutamate stimulated CO2 evolution from nonilluminated cells. Simultaneous measurements of medium alkalinization and 14CO2 evolution upon the addition of labeled l-glutamate showed that alkalinization was immediate and reached a maximum value after 45 minutes whereas 14CO2 evolution exhibited a lag before its appearance and continued in a linear manner for at least 100 minutes. Rates of alkalinization and uptake of l-[U-14C]glutamate were higher in the light while rates of 14CO2 evolution were higher in the dark. The major labeled product of glutamate decarboxylation, γ-aminobutyric acid, was found in the cells and the suspension medium. Its addition to the cell suspension did not result in medium alkalinization and evidence indicates that it is lost from the cell to the medium. The data suggest that the origin of medium alkalinization is co-transport not metabolism, and that the loss of labeled CO2 and γ-aminobutyric acid from the cell result in an overestimation of the stoichiometry of the H+/l-glutamate uptake process.  相似文献   

3.
The nicotinamide adenine dinucleotide-specific glutamate dehydrogenase (l-glutamate:NAD+ oxidoreductase, EC 1.4.1.2) of Chlorella sorokiniana was purified 1,000-fold to electrophoretic homogeneity. The native enzyme was shown to have a molecular weight of 180,000 and to be composed of four identical subunits with a molecular weight of 45,000. The N-terminal amino acid was determined to be lysine. The pH optima for the aminating and deaminating reactions were approximately 8 and 9, respectively. The Km values for α-ketoglutarate, NADH, NH4+, NAD+, and l-glutamate were 2 mm, 0.15 mm, 40 mm, 0.15 mm, and 60 mm, respectively. Whereas the Km for α-ketoglutarate and l-glutamate increased 10-fold, 1 pH unit above or below the pH optima for the aminating or deaminating reactions, respectively, the Km values for NADH and NAD+ were independent of change in pH from 7 to 9.6. By initial velocity, product inhibition, and equilibrium substrate exchange studies, the kinetic mechanism of enzyme was shown to be consistent with a bi uni uni uni ping-pong addition sequence. Although this kinetic mechanism differs from that reported for any other glutamate dehydrogenase, the chemical mechanism still appears to involve the formation of a Schiff base between α-ketoglutarate and an ε-amino group of a lysine residue in the enzyme. The physical, chemical, and kinetic properties of this enzyme differ greatly from those reported for the NH4+-inducible glutamate dehydrogenase in this organism.  相似文献   

4.
The analysis of the urine contents can be informative of physiological homoeostasis, and it has been speculated that the levels of urinary d-serine (d-ser) could inform about neurological and renal disorders. By analysing the levels of urinary d-ser using a d-ser dehydratase (DSD) enzyme, Ito et al. (Biosci. Rep.(2021) 41, BSR20210260) have described abundant levels of l-erythro-β-hydroxyasparagine (l-β-EHAsn), a non-proteogenic amino acid which is also a newly described substrate for DSD. The data presented support the endogenous production l-β-EHAsn, with its concentration significantly correlating with the concentration of creatinine in urine. Taken together, these results could raise speculations that l-β-EHAsn might have unexplored important biological roles. It has been demonstrated that l-β-EHAsn also inhibits serine racemase with Ki values (40 μM) similar to its concentration in urine (50 μM). Given that serine racemase is the enzyme involved in the synthesis of d-ser, and l-β-EHAsn is also a substrate for DSD, further investigations could verify if this amino acid would be involved in the metabolic regulation of pathways involving d-ser.  相似文献   

5.
Properties of an Aminotransferase of Pea (Pisum sativum L.)   总被引:2,自引:2,他引:0  
A transaminase (aminotransferase, EC 2.6.1) fraction was partially purified from shoot tips of pea (Pisum sativum L. cv. Alaska) seedlings. With α-ketoglutarate as co-substrate, the enzyme transaminated the following aromatic amino acids: d,l-tryptophan, d,l-tyrosine, and d,l-phenylalanine, as well as the following aliphatic amino acids: d,l-alanine, d,l-methionine, and d,l-leucine. Of other α-keto acids tested, pyruvate and oxalacetate were more active than α-ketoglutarate with d,l-tryptophan. Stoichiometric yields of indolepyruvate and glutamate were obtained with d,l-tryptophan and α-ketoglutarate as co-substrates. The specific activity was three times higher with d-tryptophan than with l-tryptophan.  相似文献   

6.
The ACTH receptor, known as the melanocortin-2 receptor (MC2R), plays an important role in regulating and maintaining adrenocortical function. MC2R is a subtype of the melanocortin receptor (MCR) family and has unique characteristics among MCRs. Endogenous ACTH is the only endogenous agonist for MC2R, whereas the melanocortin peptides α-, β-, and γ-melanocyte-stimulating hormone and ACTH are full agonists for all other MCRs. In this study, we examined the molecular basis of MC2R responsible for ligand selectivity using ACTH analogs and MC2R mutagenesis. Our results indicate that substitution of Phe7 with d-Phe or d-naphthylalanine (d-Nal(2′)) in ACTH(1–24) caused a significant decrease in ligand binding affinity and potency. Substitution of Phe7 with d-Nal(2′) in ACTH(1–24) did not switch the ligand from agonist to antagonist at MC2R, which was observed in MC3R and MC4R. Substitution of Phe7 with d-Phe7 in ACTH(1–17) resulted in the loss of ligand binding and activity. Molecular analysis of MC2R indicated that only mutation of the third transmembrane domain of MC2R resulted in a decrease in d-Phe ACTH binding affinity and potency. Our results suggest that Phe7 in ACTH plays an important role in ligand selectivity and that the third transmembrane domain of MC2R is crucial for ACTH selectivity and potency.  相似文献   

7.
l-Hydroxyproline (4-hydroxyproline) mainly exists in collagen, and most bacteria cannot metabolize this hydroxyamino acid. Pseudomonas putida and Pseudomonas aeruginosa convert l-hydroxyproline to α-ketoglutarate via four hypothetical enzymatic steps different from known mammalian pathways, but the molecular background is rather unclear. Here, we identified and characterized for the first time two novel enzymes, d-hydroxyproline dehydrogenase and Δ1-pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) deaminase, involved in this hypothetical pathway. These genes were clustered together with genes encoding other catalytic enzymes on the bacterial genomes. d-Hydroxyproline dehydrogenases from P. putida and P. aeruginosa were completely different from known bacterial proline dehydrogenases and showed similar high specificity for substrate (d-hydroxyproline) and some artificial electron acceptor(s). On the other hand, the former is a homomeric enzyme only containing FAD as a prosthetic group, whereas the latter is a novel heterododecameric structure consisting of three different subunits (α4β4γ4), and two FADs, FMN, and [2Fe-2S] iron-sulfur cluster were contained in αβγ of the heterotrimeric unit. These results suggested that the l-hydroxyproline pathway clearly evolved convergently in P. putida and P. aeruginosa. Pyr4H2C deaminase is a unique member of the dihydrodipicolinate synthase/N-acetylneuraminate lyase protein family, and its activity was competitively inhibited by pyruvate, a common substrate for other dihydrodipicolinate synthase/N-acetylneuraminate lyase proteins. Furthermore, disruption of Pyr4H2C deaminase genes led to loss of growth on l-hydroxyproline (as well as d-hydroxyproline) but not l- and d-proline, indicating that this pathway is related only to l-hydroxyproline degradation, which is not linked to proline metabolism.  相似文献   

8.
1. The previous study (Conchie, Gelman & Levvy, 1967b) of the specificity of β-glucosidase, β-galactosidase and β-d-fucosidase in barley, limpet, almond emulsin and rat epididymis was extended to α-l-arabinosidase. 2. The inhibitory action of l-arabinono-(1→5)-lactone was tested against all four types of enzyme, and α-l-arabinosidase was examined for inhibition by glucono-, galactono- and d-fucono-lactone. 3. In emulsin, the enzyme that hydrolyses β-glucosides, β-galactosides and β-d-fucosides also hydrolyses α-l-arabinosides. Rat epididymis resembles emulsin except that, as already noted, it lacks β-glucosidase activity. 4. In the limpet, α-l-arabinosidase activity is associated with the enzyme that hydrolyses β-glucosides and β-d-fucosides, and not with the separate β-galactosidase. 5. The effects of the different lactones on the barley preparation suggest that α-l-arabinosidase activity is associated with the β-galactosidase rather than with the enzyme that hydrolyses β-glucosides and β-d-fucosides. Fractionation and heat-inactivation experiments indicate that there is also a separate α-l-arabinosidase in the preparation.  相似文献   

9.
α-l-Arabinofuranosidases I and II were purified from the culture filtrate of Aspergillus awamori IFO 4033 and had molecular weights of 81,000 and 62,000 and pIs of 3.3 and 3.6, respectively. Both enzymes had an optimum pH of 4.0 and an optimum temperature of 60°C and exhibited stability at pH values from 3 to 7 and at temperatures up to 60°C. The enzymes released arabinose from p-nitrophenyl-α-l-arabinofuranoside, O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose, and arabinose-containing polysaccharides but not from O-β-d-xylopyranosyl-(1→2)-O-α-l-arabinofuranosyl-(1→3)-O-β-d-xylopyranosyl-(1→4)-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. α-l-Arabinofuranosidase I also released arabinose from O-β-d-xylopy-ranosyl-(1→4)-[O-α-l-arabinofuranosyl-(1→3)]-O-β-d-xylopyranosyl-(1→4)-d-xylopyranose. However, α-l-arabinofuranosidase II did not readily catalyze this hydrolysis reaction. α-l-Arabinofuranosidase I hydrolyzed all linkages that can occur between two α-l-arabinofuranosyl residues in the following order: (1→5) linkage > (1→3) linkage > (1→2) linkage. α-l-Arabinofuranosidase II hydrolyzed the linkages in the following order: (1→5) linkage > (1→2) linkage > (1→3) linkage. α-l-Arabinofuranosidase I preferentially hydrolyzed the (1→5) linkage of branched arabinotrisaccharide. On the other hand, α-l-arabinofuranosidase II preferentially hydrolyzed the (1→3) linkage in the same substrate. α-l-Arabinofuranosidase I released arabinose from the nonreducing terminus of arabinan, whereas α-l-arabinofuranosidase II preferentially hydrolyzed the arabinosyl side chain linkage of arabinan.Recently, it has been proven that l-arabinose selectively inhibits intestinal sucrase in a noncompetitive manner and reduces the glycemic response after sucrose ingestion in animals (33). Based on this observation, l-arabinose can be used as a physiologically functional sugar that inhibits sucrose digestion. Effective l-arabinose production is therefore important in the food industry. l-Arabinosyl residues are widely distributed in hemicelluloses, such as arabinan, arabinoxylan, gum arabic, and arabinogalactan, and the α-l-arabinofuranosidases (α-l-AFases) (EC 3.2.1.55) have proven to be essential tools for enzymatic degradation of hemicelluloses and structural studies of these compounds.α-l-AFases have been classified into two families of glycanases (families 51 and 54) on the basis of amino acid sequence similarities (11). The two families of α-l-AFases also differ in substrate specificity for arabinose-containing polysaccharides. Beldman et al. summarized the α-l-AFase classification based on substrate specificities (3). One group contains the Arafur A (family 51) enzymes, which exhibit very little or no activity with arabinose-containing polysaccharides. The other group contains the Arafur B (family 54) enzymes, which cleave arabinosyl side chains from polymers. However, this classification is too broad to define the substrate specificities of α-l-AFases. There have been many studies of the α-l-AFases (3, 12), especially the α-l-AFases of Aspergillus species (28, 1215, 17, 22, 23, 2832, 3639, 4143, 46). However, there have been only a few studies of the precise specificities of these α-l-AFases. In previous work, we elucidated the substrate specificities of α-l-AFases from Aspergillus niger 5-16 (17) and Bacillus subtilis 3-6 (16, 18), which should be classified in the Arafur A group and exhibit activity with arabinoxylooligosaccharides, synthetic methyl 2-O-, 3-O-, and 5-O-arabinofuranosyl-α-l-arabinofuranosides (arabinofuranobiosides) (20), and methyl 3,5-di-O-α-l-arabinofuranosyl-α-l-arabinofuranoside (arabinofuranotrioside) (19).In the present work, we purified two α-l-AFases from a culture filtrate of Aspergillus awamori IFO 4033 and determined the substrate specificities of these α-l-AFases by using arabinose-containing polysaccharides and the core oligosaccharides of arabinoxylan and arabinan.  相似文献   

10.
Several esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of S-(3-aminopropyl)-l-cysteine and the methyl ester of S-(4-aminobutyl)-N-toluene-p-sulphonyl-l-cysteine were synthesized. The kinetics of hydrolysis of these and esters of the α-N-toluene-p-sulphonyl and α-N-benzoyl derivatives of l-arginine, l-lysine, S-(2-aminoethyl)-l-cysteine and esters of γ-guanidino-l-α-toluene-p-sulphonamidobutyric acid and α-N-toluene-p-sulphonyl-l-homoarginine by α- and β-trypsin were compared. On the basis of values of the specificity constants (kcat./Km), the two enzymes display similar catalytic efficiency towards some substrates. In other cases α-trypsin is less efficient than β-trypsin. It is possible that α-trypsin possesses greater molecular flexibility than β-trypsin.  相似文献   

11.
An α-l-arabinofuranosidase has been purified 1043-fold from radish (Raphanus sativus L.) seeds. The purified enzyme was a homogeneous glycoprotein consisting of a single polypeptide with an apparent molecular weight of 64,000 and an isoelectric point value of 4.7, as evidenced by denaturing gel electrophoresis and reversed-phase or size-exclusion high-performance liquid chromatography and isoelectric focusing. The enzyme characteristically catalyzes the hydrolysis of p-nitrophenyl α-l-arabinofuranoside and p-nitrophenyl β-d-xylopyranoside in a constant ratio (3:1) of the initial velocities at pH 4.5, whereas the corresponding α-l-arabinopyranoside and β-d-xylofuranoside are unsusceptible. The following evidence was provided to support that a single enzyme with one catalytic site was responsible for the specificity: (a) high purity of the enzyme preparation, (b) an invariable ratio of the activities toward the two substrates throughout the purification steps, (c) a parallelism of the activities in activation with bovine serum albumin and in heat inactivation of the enzyme as well as in the inhibition with heavy metal ions and sugars such as Hg2+, Ag+, l-arabino-(1→4)-lactone, and d-xylose, and (d) results of the mixed substrate kinetic analysis using the two substrates. The enzyme was shown to split off α-l-arabinofuranosyl residues in sugar beet arabinan, soybean arabinan-4-galactan, and radish seed and leaf arabinogalactan proteins. Arabinose and xylose were released by the action of the enzyme on oat-spelt xylan. Synergistic action of α-l-arabinofuranosidase and β-d-galactosidase on radish seed arabinogalactan protein resulted in the extensive degradation of the carbohydrate moiety.  相似文献   

12.
The endosperm of castor bean seeds (Ricinus communis L.) contains two —SH-dependent aminopeptidases, one hydrolyzing l-leucine-β-naphthylamide optimally at pH 7.0, and the other hydrolyzing l-proline-β-naphthylamide optimally at pH 7.5. After germination the endosperm contains in addition an —SH-dependent hemoglobin protease, a serine-dependent carboxypeptidase, and at least two —SH-dependent enzymes hydrolyzing the model substrate α-N-benzoyl-dl-arginine-β-naphthylamide (BANA). The carboxypeptidase is active on a variety of N-carbobenzoxy dipeptides, especially N-carbobenzoxy-L-phenylalanine-l-alanine and N-carbobenzoxy-l-tyrosine-l-leucine. The pH optima for the protease, carboxypeptidase, and BANAase acivities are 3.5 to 4.0, 5.0 to 5.5, and 6 to 8, respectively.  相似文献   

13.
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.  相似文献   

14.
Xylan-debranching enzymes facilitate the complete hydrolysis of xylan and can be used to alter xylan chemistry. Here, the family GH62 α-l-arabinofuranosidase from Streptomyces thermoviolaceus (SthAbf62A) was shown to have a half-life of 60 min at 60°C and the ability to cleave α-1,3 l-arabinofuranose (l-Araf) from singly substituted xylopyranosyl (Xylp) backbone residues in wheat arabinoxylan; low levels of activity on arabinan as well as 4-nitrophenyl α-l-arabinofuranoside were also detected. After selective removal of α-1,3 l-Araf substituents from disubstituted Xylp residues present in wheat arabinoxylan, SthAbf62A could also cleave the remaining α-1,2 l-Araf substituents, confirming the ability of SthAbf62A to remove α-l-Araf residues that are (1→2) and (1→3) linked to monosubstituted β-d-Xylp sugars. Three-dimensional structures of SthAbf62A and its complex with xylotetraose and l-arabinose confirmed a five-bladed β-propeller fold and revealed a molecular Velcro in blade V between the β1 and β21 strands, a disulfide bond between Cys27 and Cys297, and a calcium ion coordinated in the central channel of the fold. The enzyme-arabinose complex structure further revealed a narrow and seemingly rigid l-arabinose binding pocket situated at the center of one side of the β propeller, which stabilized the arabinofuranosyl substituent through several hydrogen-bonding and hydrophobic interactions. The predicted catalytic amino acids were oriented toward this binding pocket, and the catalytic essentiality of Asp53 and Glu213 was confirmed by site-specific mutagenesis. Complex structures with xylotetraose revealed a shallow cleft for xylan backbone binding that is open at both ends and comprises multiple binding subsites above and flanking the l-arabinose binding pocket.  相似文献   

15.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied receptors initiating the processes of desensitization and β-arrestin-dependent signaling. Interaction of GRKs with activated receptors serves to stimulate their kinase activity. The extreme N-terminal helix (αN), the kinase small lobe, and the active site tether (AST) of the AGC kinase domain have previously been implicated in mediating the allosteric activation. Expanded mutagenesis of the αN and AST allowed us to further assess the role of these two regions in kinase activation and receptor phosphorylation in vitro and in intact cells. We also developed a bioluminescence resonance energy transfer-based assay to monitor the recruitment of GRK2 to activated α2A-adrenergic receptors (α2AARs) in living cells. The bioluminescence resonance energy transfer signal exhibited a biphasic response to norepinephrine concentration, suggesting that GRK2 is recruited to Gβγ and α2AAR with EC50 values of 15 nm and 8 μm, respectively. We show that mutations in αN (L4A, V7E, L8E, V11A, S12A, Y13A, and M17A) and AST (G475I, V477D, and I485A) regions impair or potentiate receptor phosphorylation and/or recruitment. We suggest that a surface of GRK2, including Leu4, Val7, Leu8, Val11, and Ser12, directly interacts with receptors, whereas residues such as Asp10, Tyr13, Ala16, Met17, Gly475, Val477, and Ile485 are more important for kinase domain closure and activation. Taken together with data on GRK1 and GRK6, our data suggest that all three GRK subfamilies make conserved interactions with G protein-coupled receptors, but there may be unique interactions that influence selectivity.  相似文献   

16.
Three of the four kynurenine aminotransferases (KAT I, II, and IV) that synthesize kynurenic acid, a neuromodulator, are identical to glutamine transaminase K (GTK), α-aminoadipate aminotransferase, and mitochondrial aspartate aminotransferase, respectively. GTK/KAT I and aspartate aminotransferase/KAT IV possess cysteine S-conjugate β-lyase activity. The gene for the former enzyme, GTK/KAT I, is listed in mammalian genome data banks as CCBL1 (cysteine conjugate beta-lyase 1). Also listed, despite the fact that no β-lyase activity has been assigned to the encoded protein in the genome data bank, is a CCBL2 (synonym KAT III). We show that human KAT III/CCBL2 possesses cysteine S-conjugate β-lyase activity, as does mouse KAT II. Thus, depending on the nature of the substrate, all four KATs possess cysteine S-conjugate β-lyase activity. These present studies show that KAT III and glutamine transaminase L are identical enzymes. This report also shows that KAT I, II, and III differ in their ability to transaminate methyl-l-selenocysteine (MSC) and l-selenomethionine (SM) to β-methylselenopyruvate (MSP) and α-ketomethylselenobutyrate, respectively. Previous studies have identified these seleno-α-keto acids as potent histone deacetylase inhibitors. Methylselenol (CH3SeH), also purported to have chemopreventive properties, is the γ-elimination product of SM and the β-elimination product of MSC catalyzed by cystathionine γ-lyase (γ-cystathionase). KAT I, II, and III, in part, can catalyze β-elimination reactions with MSC generating CH3SeH. Thus, the anticancer efficacy of MSC and SM will depend, in part, on the endogenous expression of various KAT enzymes and cystathionine γ-lyase present in target tissue coupled with the ability of cells to synthesize in situ either CH3SeH and/or seleno-keto acid metabolites.  相似文献   

17.
Fry SC  Northcote DH 《Plant physiology》1983,73(4):1055-1061
Cultured spinach (Spinacia oleracea L. cv Monstrous Viroflay) cells incorporated exogenous l-[3H]arabinose sequentially into β-l-arabinopyranose-1-phosphate, uridine diphospho-β-l-arabinopyranose, uridine diphospho-α-d-xylopyranose and (in some experiments) α-d-xylopyranose-1-phosphate. The amount of 3H in each of these compounds reached a plateau after a few minutes, and could be rapidly chased with nonradioactive l-arabinose, demonstrating rapid turnover. After a few minutes' lag, incorporation of 3H into the arabinofuranosyl, arabinopyranosyl, and xylopyranosyl residues of polysaccharides was linear with respect to time. The kinetics of labeling were compatible with UDP-β-l-arabinopyranose and UDP-α-d-xylopyranose being the immediate precursors of arabians (both the pyranose and the furanose residues) and xylans, respectively. No other radioactive nucleotides were formed; in particular, UDP-arabinofuranose was absent. There was no evidence for conversion of arabinopyranose to arabinofuranose within the polysaccharides, suggesting that this conversion occurs during polymer synthesis. The glycolipids detected showed too slow a turnover to be intermediates of pentosan synthesis.  相似文献   

18.
Promotion of seed germination by cyanide   总被引:2,自引:2,他引:0  
Potassium cyanide at 3 μm to 10 mm promotes germination of Amaranthus albus, Lactuca sativa, and Lepidium virginicum seeds. l-Cysteine hydrogen sulfide lyase, which catalyzes the reaction of HCN with l-cysteine to form β-l cyanoalanine, is active in the seeds. β-l-Cyanoalanine is the most effective of the 23 α-amino acids tested for promoting germination of A. albus seeds. Aspartate, which is produced by enzymatic hydrolysis of asparagine formed by hydrolysis from β-cyanoalanine, is the second most effective of the 23 amino acids. Uptake of aspartate-4-14C is much lower than of cyanide.  相似文献   

19.
TRPV1 (transient receptor potential vanilloid 1) proteins are heat-activated nonselective cation channels. TRPV1 channels are polymodal in their function and exhibit multifaceted regulation with various molecular compounds. In this regard, phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate, are important channel regulators. However, their effects on TRPV1 channel activity have not been conclusively determined. To characterize temperature-induced activation of TRPV1 in the presence of different phospholipids, we purified the TRPV1 protein from HEK-293 cells and incorporated it into planar lipid bilayers. In the presence of 2.5 μm phosphatidylinositol 4,5-bisphosphate, TRPV1 channels demonstrated rapid activation at 33–39 °C and achieved full channel opening at 42 °C. At this temperature range, TRPV1 heat activation exhibited steep temperature dependence (temperature coefficient (Q10) of 18), and the channel openings were accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. At a similar temperature range, another phosphoinositide, phosphatidylinositol 4-phosphate, also potentiated heat activation of TRPV1, but with much lower efficiency. Negatively charged phosphatidylglycerol could also induce heat activation of TRPV1 channels, although with a small-conductance state. Our data demonstrate that phospholipids, specifically phosphoinositides, are important regulators of TRPV1 and are required for heat-induced channel activity.  相似文献   

20.
Numerous in vivo functional studies have indicated that the dimeric extracellular domain (ECD) of the CaSR plays a crucial role in regulating Ca2+ homeostasis by sensing Ca2+ and l-Phe. However, direct interaction of Ca2+ and Phe with the ECD of the receptor and the resultant impact on its structure and associated conformational changes have been hampered by the large size of the ECD, its high degree of glycosylation, and the lack of biophysical methods to monitor weak interactions in solution. In the present study, we purified the glycosylated extracellular domain of calcium-sensing receptor (CaSR) (ECD) (residues 20–612), containing either complex or high mannose N-glycan structures depending on the host cell line employed for recombinant expression. Both glycosylated forms of the CaSR ECD were purified as dimers and exhibit similar secondary structures with ∼50% α-helix, ∼20% β-sheet content, and a well buried Trp environment. Using various spectroscopic methods, we have shown that both protein variants bind Ca2+ with a Kd of 3.0–5.0 mm. The local conformational changes of the proteins induced by their interactions with Ca2+ were visualized by NMR with specific 15N Phe-labeled forms of the ECD. Saturation transfer difference NMR approaches demonstrated for the first time a direct interaction between the CaSR ECD and l-Phe. We further demonstrated that l-Phe increases the binding affinity of the CaSR ECD for Ca2+. Our findings provide new insights into the mechanisms by which Ca2+ and amino acids regulate the CaSR and may pave the way for exploration of the structural properties of CaSR and other members of family C of the GPCR superfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号