首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We used a dual-masking paradigm to study how contrast discrimination can be influenced by the presence of adjacent stimuli. The task of the observer was to detect a target superimposed on a pedestal in the presence of flankers. The flankers (i) reduce the target threshold at zero pedestal contrast, (ii) shift the target threshold versus pedestal contrast (TvC) function horizontally to the left on a log-log plot at high pedestal contrasts, and (iii) reduce the size of pedestal facilitation at low pedestal contrasts. The horizontal shift at high pedestal contrasts suggests that the flanker effect is a multiplicative factor that cannot be explained by previous models of contrast discrimination. We extend the divisive inhibition model of contrast discrimination by implementing the flanker effect as a lateral multiplicative sensitivity modulation. This extended model provides a good account of the data.  相似文献   

2.
This study examined the effects of attention on forming perceptual units by proximity grouping and by uniform connectedness (UC). In Experiment 1 a row of three global letters defined by either proximity or UC was presented at the center of the visual field. Participants were asked to identify the letter in the middle of stimulus arrays while ignoring the flankers. The stimulus onset asynchrony (SOA) between stimulus arrays and masks varied between 180 and 500 ms. We found that responses to targets defined by proximity grouping were slower than to those defined by UC at median SOAs but there were no differences at short or long SOAs. Incongruent flankers slowed responses to targets and this flanker compatibility effect was larger for UC than for proximity-defined flankers. Experiment 2 examined the effects of spatial precueing on discrimination responses to proximity- and UC-defined targets. The advantage for targets defined by UC over targets defined by proximity grouping was greater at uncued relative to cued locations. The results suggest that the advantage for UC over proximity grouping in forming perceptual units is contingent on the stimuli not being fully attended, and that paying attention to the stimuli differentially benefits proximity grouping.  相似文献   

3.
In order to perceive complex visual scenes, the human perceptual system has to organize discrete enti-ties in the visual field into chunks or perceptual units for higher-level processing. Perceptual organization is governed by Gestalt principles such as proximity, similarity, and continuity[1]. Thus spatially close ob-jects tend to be grouped together, as do elements that are similar to one another. Grouping based on the Ge-stalt laws (particularly proximity) is critical for the perception of…  相似文献   

4.
Visual perceptual learning, a manifestation of neural plasticity, refers to improvements in performance on a visual task achieved by training. Attention is known to play an important role in perceptual learning, given that the observer''s discriminative ability improves only for those stimulus feature that are attended. However, the distribution of attention can be severely constrained by perceptual grouping, a process whereby the visual system organizes the initial retinal input into candidate objects. Taken together, these two pieces of evidence suggest the interesting possibility that perceptual grouping might also affect perceptual learning, either directly or via attentional mechanisms. To address this issue, we conducted two experiments. During the training phase, participants attended to the contrast of the task-relevant stimulus (oriented grating), while two similar task-irrelevant stimuli were presented in the adjacent positions. One of the two flanking stimuli was perceptually grouped with the attended stimulus as a consequence of its similar orientation (Experiment 1) or because it was part of the same perceptual object (Experiment 2). A test phase followed the training phase at each location. Compared to the task-irrelevant no-grouping stimulus, orientation discrimination improved at the attended location. Critically, a perceptual learning effect equivalent to the one observed for the attended location also emerged for the task-irrelevant grouping stimulus, indicating that perceptual grouping induced a transfer of learning to the stimulus (or feature) being perceptually grouped with the task-relevant one. Our findings indicate that no voluntary effort to direct attention to the grouping stimulus or feature is necessary to enhance visual plasticity.  相似文献   

5.
Perceptual learning of visual features occurs when multiple stimuli are presented in a fixed sequence (temporal patterning), but not when they are presented in random order (roving). This points to the need for proper stimulus coding in order for learning of multiple stimuli to occur. We examined the stimulus coding rules for learning with multiple stimuli. Our results demonstrate that: (1) stimulus rhythm is necessary for temporal patterning to take effect during practice; (2) learning consolidation is subject to disruption by roving up to 4 h after each practice session; (3) importantly, after completion of temporal-patterned learning, performance is undisrupted by extended roving training; (4) roving is ineffective if each stimulus is presented for five or more consecutive trials; and (5) roving is also ineffective if each stimulus has a distinct identity. We propose that for multi-stimulus learning to occur, the brain needs to conceptually “tag” each stimulus, in order to switch attention to the appropriate perceptual template. Stimulus temporal patterning assists in tagging stimuli and switching attention through its rhythmic stimulus sequence.  相似文献   

6.
Chowdhury SA  DeAngelis GC 《Neuron》2008,60(2):367-377
When a new perceptual task is learned, plasticity occurs in the brain to mediate improvements in performance with training. How do these changes affect the neural substrates of previously learned tasks? We addressed this question by examining the effect of fine discrimination training on the causal contribution of area MT to coarse depth discrimination. When monkeys are trained to discriminate between two coarse absolute disparities (near versus far) embedded in noise, reversible inactivation of area MT devastates performance. In contrast, after animals are trained to discriminate fine differences in relative disparity, MT inactivation no longer impairs coarse depth discrimination. This effect does not result from changes in the disparity tuning of MT neurons, suggesting plasticity in the flow of disparity signals to decision circuitry. These findings show that the contribution of particular brain area to task performance can change dramatically as a result of learning new tasks.  相似文献   

7.
Attention can modulate sensitivity to local stimuli in early vision. But, can attention also modulate integration of local stimuli into global visual patterns? We recently measured effects of attention on the phenomenon of lateral interactions between collinear elements, commonly thought to reflect long-range mechanisms in early visual cortex underlying contour integration. We showed improved detection of low-contrast central Gabor targets in the context of collinear flankers, but only when the collinear flankers were attended for a secondary task rather than ignored in favor of an orthogonal flanker pair. Here, we contrast two hypotheses for how attention might modulate flanker influences on the target: by changing just local sensitivity to the flankers themselves (flanker-modulation-only hypothesis), or by weighting integrative connections between flanker and target (connection-weighting hypothesis). Modeled on the known nonlinear dependence of target visibility on collinear flanker contrast, the first hypothesis predicts that an increase in physical flanker contrast should readily offset any reduction in their effective contrast when ignored, thus eliminating attentional modulation. Conversely, the second hypothesis predicts that attentional modulation should persist even for the highest flanker contrasts. Our results showed the latter outcome and indicated that attention modulates flanker-target integration, rather than just processing of local flanker elements.  相似文献   

8.
Collinear facilitation of contrast detection of achromatic stimuli has been studied over the past decade by different groups. We measured collinear facilitation of chromatic contrast detection under equal-luminance (photometric quantity) and under isoluminance (minimum motion technique) conditions, as two different controls. The facilitation was tested for chromatic contrast detection of a foveal Gabor signal flanked by two high chromatic-contrast Gabor signals. The results indicated a significant facilitation in the presence of spatial adjacent collinear chromatic contrast signals, when the flankers were located at a short distance, across all observers for three chromatic channels. The facilitation was compared to a non-collinear flanker configuration. The results indicated no facilitation effect at the opposing phase configuration, at a short flanker distance, whereas a small facilitation was observed with a configuration at a longer flanker distance. The findings suggest that the performance and specificity of chromatic collinear facilitation is not impaired with regard to achromatic mechanisms.  相似文献   

9.
Schizophrenia patients demonstrate perceptual deficits consistent with broad dysfunction in visual context processing. These include poor integration of segments forming visual contours, and reduced visual contrast effects (e.g. weaker orientation-dependent surround suppression, ODSS). Background image context can influence contour perception, as stimuli near the contour affect detection accuracy. Because of ODSS, this contextual modulation depends on the relative orientation between the contour and flanking elements, with parallel flankers impairing contour perception. However in schizophrenia, the impact of abnormal ODSS during contour perception is not clear. It is also unknown whether deficient contour perception marks genetic liability for schizophrenia, or is strictly associated with clinical expression of this disorder. We examined contour detection in 25 adults with schizophrenia, 13 unaffected first-degree biological relatives of schizophrenia patients, and 28 healthy controls. Subjects performed a psychophysics experiment designed to quantify the effect of flanker orientation during contour detection. Overall, patients with schizophrenia showed poorer contour detection performance than relatives or controls. Parallel flankers suppressed and orthogonal flankers enhanced contour detection performance for all groups, but parallel suppression was relatively weaker for schizophrenia patients than healthy controls. Relatives of patients showed equivalent performance with controls. Computational modeling suggested that abnormal contextual modulation in schizophrenia may be explained by suppression that is more broadly tuned for orientation. Abnormal flanker suppression in schizophrenia is consistent with weaker ODSS and/or broader orientation tuning. This work provides the first evidence that such perceptual abnormalities may not be associated with a genetic liability for schizophrenia.  相似文献   

10.
11.
Task-irrelevant learning occurs only when the irrelevant feature is weak   总被引:1,自引:0,他引:1  
The role of attention in perceptual learning has been controversial. Numerous studies have reported that learning does not occur on stimulus features that are irrelevant to a subject's task [1,2] and have concluded that focused attention on a feature is necessary for a feature to be learned. In contrast, another line of studies has shown that perceptual learning occurs even on task-irrelevant features that are subthreshold, and concluded that attention on a feature is not required to learn that feature [3-5]. Here we attempt to reconcile these divergent findings by systematically exploring the relation between signal strength of the motion stimuli used during training and the resultant magnitude of perceptual learning. Our results show that performance improvements only occurred for the motion-stimuli trained at low, parathreshold, coherence levels. The results are in accord with the hypothesis that weak task-irrelevant signals fail to be 'noticed', and consequently to be suppressed, by the attention system and thus are learned, while stronger stimulus signals are detected, and suppressed [6], and are not learned. These results provide a parsimonious explanation of why task-irrelevant learning is found in some studies but not others, and could give an important clue to resolving a long-standing controversy.  相似文献   

12.
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.  相似文献   

13.
Chung ST  Li RW  Levi DM 《PloS one》2012,7(4):e35829
Amblyopia is a developmental abnormality that results in deficits for a wide range of visual tasks, most notably, the reduced ability to see fine details, the loss in contrast sensitivity especially for small objects and the difficulty in seeing objects in clutter (crowding). The primary goal of this study was to evaluate whether crowding can be ameliorated in adults with amblyopia through perceptual learning using a flanked letter identification task that was designed to reduce crowding, and if so, whether the improvements transfer to untrained visual functions: visual acuity, contrast sensitivity and the size of visual span (the amount of information obtained in one fixation). To evaluate whether the improvements following this training task were specific to training with flankers, we also trained another group of adult observers with amblyopia using a single letter identification task that was designed to improve letter contrast sensitivity, not crowding. Following 10,000 trials of training, both groups of observers showed improvements in the respective training task. The improvements generalized to improved visual acuity, letter contrast sensitivity, size of the visual span, and reduced crowding. The magnitude of the improvement for each of these measurements was similar in the two training groups. Perceptual learning regimens aimed at reducing crowding or improving letter contrast sensitivity are both effective in improving visual acuity, contrast sensitivity for near-acuity objects and reducing the crowding effect, and could be useful as a clinical treatment for amblyopia.  相似文献   

14.
Aberg KC  Herzog MH 《PloS one》2010,5(12):e14161
In motor learning, training a task B can disrupt improvements of performance of a previously learned task A, indicating that learning needs consolidation. An influential study suggested that this is the case also for visual perceptual learning. Using the same paradigm, we failed to reproduce these results. Further experiments with bisection stimuli also showed no retrograde disruption from task B on task A. Hence, for the tasks tested here, perceptual learning does not suffer from retrograde interference.  相似文献   

15.
Carmel D  Carrasco M 《Neuron》2008,57(6):799-801
Perceptual learning is the improved performance that follows practice in a perceptual task. In this issue of Neuron, Yotsumoto et al. use fMRI to show that stimuli presented at the location used in training initially evoke greater activation in primary visual cortex than stimuli presented elsewhere, but this difference disappears once learning asymptotes.  相似文献   

16.
Most experimental paradigms to study visual cognition in humans and non-human species are based on discrimination tasks involving the choice between two or more visual stimuli. To this end, different types of stimuli and procedures for stimuli presentation are used, which highlights the necessity to compare data obtained with different methods. The present study assessed whether, and to what extent, capuchin monkeys’ ability to solve a size discrimination problem is influenced by the type of procedure used to present the problem. Capuchins’ ability to generalise knowledge across different tasks was also evaluated. We trained eight adult tufted capuchin monkeys to select the larger of two stimuli of the same shape and different sizes by using pairs of food items (Experiment 1), computer images (Experiment 1) and objects (Experiment 2). Our results indicated that monkeys achieved the learning criterion faster with food stimuli compared to both images and objects. They also required consistently fewer trials with objects than with images. Moreover, female capuchins had higher levels of acquisition accuracy with food stimuli than with images. Finally, capuchins did not immediately transfer the solution of the problem acquired in one task condition to the other conditions. Overall, these findings suggest that – even in relatively simple visual discrimination problems where a single perceptual dimension (i.e., size) has to be judged – learning speed strongly depends on the mode of presentation.  相似文献   

17.
Due to a middle- to long-wavelength-sensitive (M/LWS) cone opsin polymorphism, there is considerable phenotypic variation in the color vision of New World monkeys. Many females have trichromatic vision, whereas some females and all males have dichromatic vision. The selective pressures that maintain this polymorphism are unclear. In the present study we compared the performance of dichromats and trichromats in a discrimination task. We examined tri- and dichromatic individuals of two species: brown capuchin monkeys (Cebus apella) and long-tailed macaques (Macaca fascicularis). We also examined one protanomalous chimpanzee (Pan troglodytes). The subjects' task was to discriminate a circular pattern from other patterns in which textural elements differed in orientation and thickness from the background. After they were trained with stimuli of a single color, the subjects were presented with color-camouflaged stimuli with a green/red mosaic overlaid onto the pattern. The dichromatic monkeys and the protanomalous chimpanzee selected the correct stimulus under camouflaged conditions at rates significantly above chance levels, while the trichromats did not. These findings demonstrate that dichromatic nonhuman primates possess a superior visual ability to discriminate color-camouflaged stimuli, and that such an ability may confer selective advantages with respect to the detection of cryptic foods and/or predators.  相似文献   

18.
Learning is considered to consist of two distinct phases–acquisition and consolidation. Acquisition can be disrupted when short periods of training on more than one task are interleaved, whereas consolidation can be disrupted when a second task is trained after the first has been initiated. Here we investigated the conditions governing the disruption to acquisition and consolidation during mixed-training regimens in which primary and secondary amplitude modulation tasks were either interleaved or presented consecutively. The secondary task differed from the primary task in either task-irrelevant (carrier frequency) or task-relevant (modulation rate) stimulus features while requiring the same perceptual judgment (amplitude modulation depth discrimination), or shared both irrelevant and relevant features but required a different judgment (amplitude modulation rate discrimination). Based on previous literature we predicted that acquisition would be disrupted by varying the task-relevant stimulus feature during training (stimulus interference), and that consolidation would be disrupted by varying the perceptual judgment required (task interference). We found that varying the task-relevant or -irrelevant stimulus features failed to disrupt acquisition but did disrupt consolidation, whereas mixing two tasks requiring a different perceptual judgment but sharing the same stimulus features disrupted both acquisition and consolidation. Thus, a distinction between acquisition and consolidation phases of perceptual learning cannot simply be attributed to (task-relevant) stimulus versus task interference. We propose instead that disruption occurs during acquisition when mixing two tasks requiring a perceptual judgment based on different cues, whereas consolidation is always disrupted regardless of whether different stimulus features or tasks are mixed. The current study not only provides a novel insight into the underlying mechanisms of perceptual learning, but also has practical implications for the optimal design and delivery of training programs that aim to remediate perceptual difficulties.  相似文献   

19.
In this study we aim to examine how the implicit learning of statistical regularities of successive stimuli affects the ability to exert cognitive control. In three experiments, sequences of flanker stimuli were segregated into pairs, with the second stimulus contingent on the first. Response times were reliably faster for the second stimulus if its congruence tended to match the congruence of the preceding stimulus, even though most participants were not explicitly aware of the statistical regularities (Experiment 1). In contrast, performance was not enhanced if the congruence of the second stimuli tended to mismatch the congruence of the first stimulus (Experiment 2). The lack of improvement appears to result from a failure of learning mismatch contingencies (Experiment 3). The results suggest that implicit learning of inter-stimulus relationships can facilitate cognitive control.  相似文献   

20.
Results from three experiments on basic learning and transfer in rhesus monkeys (Macaca mulatta) are reported in which fully automated testing paradigms, afforded by the Language Research Center's Computerized Test System (LRC-CTS), were employed. Performance levels for discrimination learning set, transfer index, and mediational-learning testing were uniformly higher than was predicted from the literature, in contrast to previous reports of compromised learning under similar conditions (automated apparatus, planimetric stimuli, spatial discontiguity between stimuli and response loci). Analyses reveal relatively advanced learning set performance, transfer-index ratios, and positive transfer of learning even at stringent criterion levels. Moreover, the data suggest that rhesus monkeys tested in these experiments exhibit mediational instead of associative learning strategies, as do great apes and in contrast to previous reports of rhesus learning. We argue that the LRC-CTS enhances learning by nonhuman primate subjects, obviating those factors, reported in the literature from experiments in which manual or other automated systems were employed, that compromise learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号