首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wastewater discharge and agricultural activities may pose microbial risks to natural water sources. The impact of different sources can be assessed by water quality modelling. The aim of this study was to use hydrological and hydrodynamic models to illustrate the risk of exposing grazing animals to faecal pollutants in natural water sources, using three zoonotic faecal pathogens as model microbes and fictitious pastures in Sweden as examples. Microbial contamination by manure from fertilisation and grazing was modelled by use of a hydrological model (HYPE) and a hydrodynamic model (MIKE 3 FM), and microbial contamination from human wastewater was modelled by application of both models in a backwards process. The faecal pathogens Salmonella spp., verotoxin-producing Escherichia coli O157:H7 (VTEC) and Cryptosporidium parvum were chosen as model organisms. The pathogen loads on arable land and pastures were estimated based on pathogen concentration in cattle faeces, herd prevalence and within-herd prevalence. Contamination from human wastewater discharge was simulated by estimating the number of pathogens required from a fictitious wastewater discharge to reach a concentration high enough to cause infection in cattle using the points on the fictitious pastures as their primary source of drinking water. In the scenarios for pathogens from animal sources, none of the simulated concentrations of salmonella exceeded the concentrations needed to infect adult cattle. For VTEC, most of the simulated concentrations exceeded the concentration needed to infect calves. For C. parvum, all the simulated concentrations exceeded the concentration needed to infect calves. The pathogen loads needed at the release points for human wastewater to achieve infectious doses for cattle were mostly above the potential loads of salmonella and VTEC estimated to be present in a 24-h overflow from a medium-size Swedish wastewater treatment plant, while the required pathogen loads of C. parvum at the release points were below the potential loads of C. parvum in a 24-h wastewater overflow. Most estimates in this study assume a worst-case scenario. Controlling zoonotic infections at herd level prevents environmental contamination and subsequent human exposure. The potential for infection of grazing animals with faecal pathogens has implications for keeping animals on pastures with access to natural water sources. As the infectious dose for most pathogens is more easily reached for calves than for adult animals, and young calves are also the main shedders of C. parvum, keeping young calves on pastures adjacent to natural water sources is best avoided.  相似文献   

2.
Chlamydia psittaci is a zoonotic bacterium with a wide host range that can cause respiratory disease in humans and cattle. In the present study, effects of treatment with macrolides and quinolones applied alone or in combination with rifampicin were tested in a previously established bovine model of respiratory C. psittaci infection. Fifty animals were inoculated intrabronchially at the age of 6–8 weeks. Seven served as untreated controls, the others were assigned to seven treatment groups: (i) rifampicin, (ii) enrofloxacin, (iii) enrofloxacin + rifampicin, (iv) azithromycin, (v) azithromycin + rifampicin, (vi) erythromycin, and (vii) erythromycin + rifampicin. Treatment started 30 hours after inoculation and continued until 14 days after inoculation (dpi), when all animals were necropsied. The infection was successful in all animals and sufficient antibiotic levels were detected in blood plasma and tissue of the treated animals. Reisolation of the pathogen was achieved more often from untreated animals than from other groups. Nevertheless, pathogen detection by PCR was possible to the same extent in all animals and there were no significant differences between treated and untreated animals in terms of local (i.e. cell count and differentiation of BALF-cells) and systemic inflammation (i.e. white blood cells and concentration of acute phase protein LBP), clinical signs, and pathological findings at necropsy. Regardless of the reduced reisolation rate in treated animals, the treatment of experimentally induced respiratory C. psittaci infection with enrofloxacin, azithromycin or erythromycin alone or in combination with rifampicin was without obvious benefit for the host, since no significant differences in clinical and pathological findings or inflammatory parameters were detected and all animals recovered clinically within two weeks.  相似文献   

3.
Andrew Y. Koh 《Eukaryotic cell》2013,12(11):1416-1422
Ninety-five percent of infectious agents enter through exposed mucosal surfaces, such as the respiratory and gastrointestinal (GI) tracts. The human GI tract is colonized with trillions of commensal microbes, including numerous Candida spp. Some commensal microbes in the GI tract can cause serious human infections under specific circumstances, typically involving changes in the gut environment and/or host immune conditions. Therefore, utilizing animal models of fungal GI colonization and dissemination can lead to significant insights into the complex pathophysiology of transformation from a commensal organism to a pathogen and host-pathogen interactions. This paper will review the methodologic approaches used for modeling GI colonization versus dissemination, the insights learned from these models, and finally, possible future directions using these animal modeling systems.  相似文献   

4.
Experimental models of pulmonary infection are being discussed, focused on various aspects of good experimental design, such as choice of animal species and infecting strain, and route of infection/inoculation techniques (intranasal inoculation, aerosol inoculation, and direct instillation into the lower respiratory tract). In addition, parameters to monitor pulmonary infection are being reviewed such as general clinical signs, pulmonary-associated signs, complication of the pulmonary infection, mortality rate, and parameters after dissection of animals. Examples of pulmonary infection models caused by bacteria, fungi, viruses or parasites in experimental animals with intact or impaired host defense mechanisms are shortly summarized including key-references.  相似文献   

5.
Mycobacterium tuberculosis is the cause of enormous human morbidity and mortality each year. Although this bacterium can infect and cause disease in many animals, humans are the natural host. For the purposes of studying the pathogenesis of M. tuberculosis, as well as the protective and immunopathologic host responses against this pathogen, suitable animal models must be used. However, modeling the human infection and disease in animals can be difficult, and interpreting the data from animal models must be done carefully. In this paper, the animal models of tuberculosis are discussed, as well as the limitations and advantages of various models. In particular, the lessons we have learned about tuberculosis from the mouse models are highlighted. The careful and thoughtful use of animal models is essential to furthering our understanding of M. tuberculosis, and this knowledge will enhance the discovery of improved treatment and prevention strategies.  相似文献   

6.
The host immune response to pathogens is a complex biological process. The majority of in vivo studies classically employed to characterize host-pathogen interactions take advantage of intraperitoneal injections of select bacteria or pathogen associated molecular patterns (PAMPs) in mice. While these techniques have yielded tremendous data associated with infectious disease pathobiology, intraperitoneal injection models are not always appropriate for host-pathogen interaction studies in the lung. Utilizing an acute lung inflammation model in mice, it is possible to conduct a high resolution analysis of the host innate immune response utilizing lipopolysaccharide (LPS). Here, we describe the methods to administer LPS using nonsurgical oropharyngeal intratracheal administration, monitor clinical parameters associated with disease pathogenesis, and utilize bronchoalveolar lavage fluid to evaluate the host immune response. The techniques that are described are widely applicable for studying the host innate immune response to a diverse range of PAMPs and pathogens. Likewise, with minor modifications, these techniques can also be applied in studies evaluating allergic airway inflammation and in pharmacological applications.  相似文献   

7.
Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches.  相似文献   

8.
Animal models of acute lung injury   总被引:1,自引:0,他引:1  
Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury.  相似文献   

9.
Lentiviruses have long been considered host-specific pathogens, but several recent observations demonstrated their capacity to conquer new hosts from different species, genera, and families. From these cross-species infections emerged new animal and human infectious diseases. The successful colonization and adaptation of a lentivirus to a nonnatural host depends on unspecific and specific host barriers. Some of those barriers exert a relative control of viral replication (i.e., cytotoxic T-lymphocyte response, viral inhibitory factors), but none of them was found able to totally clear the infection once the retrovirus is fully adapted in its host. In this study we examined the evolution of the host-lentivirus interactions occurring in an experimental animal model of cross-species infection in order to analyze the efficiency of those barriers in preventing the establishment of a persistent infection. Five newborn calves were inoculated with caprine arthritis-encephalitis virus (CAEV), and the evolution of infection was studied for more than 12 months. All the animals seroconverted in the first 0.75 to 1 month following the inoculation and remained seropositive for the remaining time of the experiment. Viral infection was productive during 4 months with isolation of replication competent virus from the blood cells and organs of the early euthanized animals. After 4 months of infection, neither replication-competent virus nor virus genome could be detected in blood cells or in the classical target organs, even after an experimental immunosuppression. No evidence of in vitro restriction of CAEV replication was observed in cells from tissues explanted from organs of these calves. These data provide the demonstration of a natural clearance of lentivirus infection following experimental inoculation of a nonnatural host, enabling perspectives of development of new potential vaccine strategies to fight against lentivirus infections.  相似文献   

10.
A wide variety of pathogens is transmitted from ticks to vertebrates including viruses, bacteria, protozoa and helminths, of which most have a life cycle that requires passage through the vertebrate host. Tick-borne infections of humans, farm and companion animals are essentially associated with wildlife animal reservoirs. While some flying insect-borne diseases of humans such as malaria, filariasis and Kala Azar caused by Leishmania donovani target people as their main host, major tick-borne infections of humans, although potentially causing disease in large numbers of individuals, are typically an infringement of a circulation between wildlife animal reservoirs and tick vectors. While new tick-borne infectious agents are frequently recognised, emerging agents of human tick-borne infections were probably circulating among wildlife animal and tick populations long before being recognised as clinical causes of human disease as has been shown for Borrelia burgdorferi sensu lato. Co-infection with more than one tick-borne infection is common and can enhance pathogenic processes and augment disease severity as found in B. burgdorferi and Anaplasma phagocytophilum co-infection. The role of wild animal reservoirs in co-infection of human hosts appears to be central, further linking human and animal tick-borne infections. Although transmission of most tick-borne infections is through the tick saliva, additional routes of transmission, shown mostly in animals, include infection by oral uptake of infected ticks, by carnivorism, animal bites and transplacentally. Additionally, artificial infection via blood transfusion is a growing threat in both human and veterinary medicine. Due to the close association between human and animal tick-borne infections, control programs for these diseases require integration of data from veterinary and human reporting systems, surveillance in wildlife and tick populations, and combined teams of experts from several scientific disciplines such as entomology, epidemiology, medicine, public health and veterinary medicine.  相似文献   

11.
《Trends in microbiology》2002,10(10):s38-s46
Models currently occupy the crucial first step in the research flow for the development of new drugs and vaccines. Some animal models are better at reflecting the host–pathogen interaction in humans than others; this depends on the pathogen and its host specificity. Data gathered from what are often poorly adapted models provide a mosaic of sometimes contradictory information, yet there is little incentive to better delineate the relevance of models or to exploit recent advances to develop improved ones. This review reports on three particularly intractable human pathogens – Mycobacterium, Plasmodium and Schistosoma – and reflects that the extent to which these model systems mimic infection and protection processes in humans might not be sufficiently well defined.  相似文献   

12.
We investigated the effects of either intravenous (IV) or intrabronchial (IB) treatment with transforming growth factor beta1 (TGF-beta1) during bacterial pneumonia in rats. Immediately following IB Escherichia coli inoculation (T0), animals (n=270) were randomized to receive a single treatment with human recombinant TGF-beta1 either via IV or IB, or via both IV and IB routes, or to receive placebo (human serum albumin, HSA) only. Blood and lung analysis was done at 6 and 168 h after E. coli inoculation. Other animals (n=40) were administered IV TGF-beta1 or HSA at T0 and 6, 12 and 24 h after E. coli inoculation to investigate the effects of multiple treatments also on survival rates alone. All animals received ceftriaxone daily. Route of administration did not influence TGF-beta1 (p=ns for the effect of TGF-beta1 comparing IV vs IB routes) and we averaged over this variable in analysis. The relative risk of death (mean +/- sem) was not altered by either single treatments administered at T0 (-0.18 +/- 0.25, p=0.47) or multiple treatments (0.40 +/- 0.50, p=0.66) of TGF-beta1. Single treatment with TGF-beta1 first decreased and then increased vascular leukocytes at 6 and 168 h, respectively, but increased alveolar leukocytes at both time points (p=0.02 comparing the differing effects of TGF-beta1 on vascular and alveolar leukocytes at 6 and 168 h). Although TGF-beta1 decreased blood and lung bacteria counts at 6 and 168 h, it also increased serum tumor necrosis factor levels and lung injury scores at these time points (p<0.05 for the effects of TGF-beta1 on each parameter at 6 and 168 h together). Thus, while increases in lung leukocyte recruitment with TGF-beta1 were associated with improved microbial clearance in this rat model of pneumonia, worsened lung injury may have negated these beneficial host defense effects, and overall survival was not significantly improved. Despite these harmful effects, additional studies may be warranted to better define the influence of exogenous TGF-beta1 on host defense during acute bacterial infections.  相似文献   

13.
The respiratory system acts as a portal into the human body for airborne materials, which may gain access via the administration of medicines or inadvertently during inhalation of ambient air (e.g. air pollution). The burden of lung disease has been continuously increasing, to the point where it now represents a major cause of human morbidity and mortality worldwide. In the UK, more people die from respiratory disease than from coronary heart disease or non-respiratory cancer. For this reason alone, gaining an understanding of mechanisms of human lung biology, especially in injury and repair events, is now a principal focus within the field of respiratory medicine. Animal models are routinely used to investigate such events in the lung, but they do not truly reproduce the responses that occur in humans. Scientists committed to the more robust Three Rs principles of animal experimentation (Reduction, Refinement and Replacement) have been developing viable alternatives, derived from human medical waste tissues from patient donors, to generate in vitro models that resemble the in vivo human lung environment. In the specific case of inhalation toxicology, human-oriented models are especially warranted, given the new REACH regulations for the handling of chemicals, the rising air pollution problems and the availability of pharmaceutically valuable drugs. Advances in tissue-engineering have made it feasible and cost-effective to construct human tissue equivalents of the respiratory epithelia. The conducting airways of the lower respiratory system are a critical zone to recapitulate for use in inhalation toxicology. Three-dimensional (3-D) tissue designs which make use of primary cells, provide more in vivo-like responses, based on the targeted interactions of multiple cell types supported on artificial scaffolds. These scaffolds emulate the native extracellular matrix, in which cells differentiate into a functional pulmonary tissue. When 3-D cell cultures are employed for testing aerosolised chemicals, drugs and xenobiotics, responses are captured that mirror the events in the in situ human lung and provide human endpoint data.  相似文献   

14.
Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen multiplication and promote survival, facilitating pathogen transmission.  相似文献   

15.
Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps.  相似文献   

16.
Ferrets are widely used as animal models for studying influenza A viral pathogenesis and transmissibility. Human-adapted influenza A viruses primarily target the upper respiratory tract in humans (infection of the lower respiratory tract is observed less frequently), while in ferrets, upon intranasal inoculation both upper and lower respiratory tract are targeted. Viral tropism is governed by distribution of complex sialylated glycan receptors in various cells/tissues of the host that are specifically recognized by influenza A virus hemagglutinin (HA), a glycoprotein on viral surface. It is generally known that upper respiratory tract of humans and ferrets predominantly express α2→6 sialylated glycan receptors. However much less is known about the fine structure of these glycan receptors and their distribution in different regions of the ferret respiratory tract. In this study, we characterize distribution of glycan receptors going beyond terminal sialic acid linkage in the cranial and caudal regions of the ferret trachea (upper respiratory tract) and lung hilar region (lower respiratory tract) by multiplexing use of various plant lectins and human-adapted HAs to stain these tissue sections. Our findings show that the sialylated glycan receptors recognized by human-adapted HAs are predominantly distributed in submucosal gland of lung hilar region as a part of O-linked glycans. Our study has implications in understanding influenza A viral pathogenesis in ferrets and also in employing ferrets as animal models for developing therapeutic strategies against influenza.  相似文献   

17.
Most species seem to be completely resistant to most pathogens and parasites. This resistance has been called “nonhost resistance” because it is exhibited by species that are considered not to be part of the normal host range of the pathogen. A conceptual model is presented suggesting that failure of infection on nonhosts may be an incidental by‐product of pathogen evolution leading to specialization on their source hosts. This model is contrasted with resistance that results from hosts evolving to resist challenge by their pathogens, either as a result of coevolution with a persistent pathogen or as the result of one‐sided evolution by the host against pathogens that are not self‐sustaining on those hosts. Distinguishing evolved from nonevolved resistance leads to contrasting predictions regarding the relationship between resistance and genetic distance. An analysis of cross‐inoculation experiments suggests that the resistance is often the product of pathogen specialization. Understanding the contrasting evolutionary origins of resistance is critical for studies on the genetics and evolution of host–pathogen interactions in human, agricultural, and natural populations. Research on human infectious disease using animal models may often study resistances that have quite contrasting evolutionary origins, and therefore very different underlying genetic mechanisms.  相似文献   

18.
Nipah virus (NiV) is a member of the genus Henipavirus (family Paramyxoviridae) that causes severe and often lethal respiratory illness and encephalitis in humans with high mortality rates (up to 92%). NiV can cause Acute Lung Injury (ALI) in humans, and human-to-human transmission has been observed in recent outbreaks of NiV. While the exact route of transmission to humans is not known, we have previously shown that NiV can efficiently infect human respiratory epithelial cells. The molecular mechanisms of NiV-associated ALI in the human respiratory tract are unknown. Thus, there is an urgent need for models of henipavirus infection of the human respiratory tract to study the pathogenesis and understand the host responses. Here, we describe a novel human lung xenograft model in mice to study the pathogenesis of NiV. Following transplantation, human fetal lung xenografts rapidly graft and develop mature structures of adult lungs including cartilage, vascular vessels, ciliated pseudostratified columnar epithelium, and primitive “air” spaces filled with mucus and lined by cuboidal to flat epithelium. Following infection, NiV grows to high titers (107 TCID50/gram lung tissue) as early as 3 days post infection (pi). NiV targets both the endothelium as well as respiratory epithelium in the human lung tissues, and results in syncytia formation. NiV infection in the human lung results in the production of several cytokines and chemokines including IL-6, IP-10, eotaxin, G-CSF and GM-CSF on days 5 and 7 pi. In conclusion, this study demonstrates that NiV can replicate to high titers in a novel in vivo model of the human respiratory tract, resulting in a robust inflammatory response, which is known to be associated with ALI. This model will facilitate progress in the fundamental understanding of henipavirus pathogenesis and virus-host interactions; it will also provide biologically relevant models for other respiratory viruses.  相似文献   

19.
Clostridium difficile is an emerging enteropathogen responsible for pseudomembranous colitis in humans and diarrhoea in several domestic and wild animal species. Despite its known importance, there are few studies aboutC. difficile polymerase chain reaction (PCR) ribotypes in Brazil and the actual knowledge is restricted to studies on human isolates. The aim of the study was therefore to compare C. difficileribotypes isolated from humans and animals in Brazil. Seventy-six C. difficile strains isolated from humans (n = 25), dogs (n = 23), piglets (n = 12), foals (n = 7), calves (n = 7), one cat, and one manned wolf were distributed into 24 different PCR ribotypes. Among toxigenic strains, PCR ribotypes 014/020 and 106 were the most common, accounting for 14 (18.4%) and eight (10.5%) samples, respectively. Fourteen different PCR ribotypes were detected among human isolates, nine of them have also been identified in at least one animal species. PCR ribotype 027 was not detected, whereas 078 were found only in foals. This data suggests a high diversity of PCR ribotypes in humans and animals in Brazil and support the discussion of C. difficile as a zoonotic pathogen.  相似文献   

20.
Oomycetes are eukaryotic pathogens infecting animals and plants. Amongst them Saprolegnia parasitica is a fish pathogenic oomycete causing devastating losses in the aquaculture industry. To secure fish supply, new drugs are in high demand and since fish experiments are time consuming, expensive and involve animal welfare issues the search for adequate model systems is essential. Galleria mellonella serves as a heterologous host model for bacterial and fungal infections. This study extends the use of G. mellonella for studying infections with oomycetes. Saprolegniales are highly pathogenic to the insects while in contrast, the plant pathogen Phytophthora infestans showed no pathogenicity. Melanisation of hyphae below the cuticle allowed direct macroscopic monitoring of disease progression. However, the melanin response is not systemic as for other pathogens but instead is very local. The mortality of the larvae is dose-dependent and can be induced by cysts or regenerating protoplasts as an alternative source of inoculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号