首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab.  相似文献   

2.
Agents that target HER2 have improved the prognosis of patients with HER2-amplified breast cancers. However, patients who initially respond to such targeted therapy eventually develop resistance to the treatment. We have established a line of lapatinib-resistant breast cancer cells (UACC812/LR) by chronic exposure of HER2-amplified and lapatinib-sensitive UACC812 cells to the drug. The mechanism by which UACC812/LR acquired resistance to lapatinib was explored using comprehensive gene hybridization. The FGFR2 gene in UACC812/LR was highly amplified, accompanied by overexpression of FGFR2 and reduced expression of HER2, and a cell proliferation assay showed that the IC50 of PD173074, a small-molecule inhibitor of FGFR tyrosine kinase, was 10,000 times lower in UACC812/LR than in the parent cells. PD173074 decreased the phosphorylation of FGFR2 and substantially induced apoptosis in UACC812/LR, but not in the parent cells. FGFR2 appeared to be a pivotal molecule for the survival of UACC812/LR as they became independent of the HER2 pathway, suggesting that a switch of addiction from the HER2 to the FGFR2 pathway enabled cancer cells to become resistant to HER2-targeted therapy. The present study is the first to implicate FGFR in the development of resistance to lapatinib in cancer, and suggests that FGFR-targeted therapy might become a promising salvage strategy after lapatinib failure in patients with HER2-positive breast cancer.  相似文献   

3.
Approximately 25% of breast cancers overexpress and depend on the receptor tyrosine kinase ERBB2, one of 4 ERBB family members. Targeted therapies directed against ERBB2 have been developed and used clinically, but many patients continue to develop resistance to such therapies. Although much effort has been focused on elucidating the mechanisms of acquired resistance to ERBB2-targeted therapies, the involvement of ERBB4 remains elusive and controversial. We demonstrate that genetic ablation of ERBB4, but not ERBB1-3, led to apoptosis in lapatinib-resistant cells, suggesting that the efficacy of pan-ERBB inhibitors was, at least in part, mediated by the inhibition of ERBB4. Moreover, ERBB4 was upregulated at the protein level in ERBB2+ breast cancer cell lines selected for acquired lapatinib resistance in vitro and in MMTV-Neu mice following prolonged lapatinib treatment. Knockdown of ERBB4 caused a decrease in AKT phosphorylation in resistant cells but not in sensitive cells, suggesting that ERBB4 activated the PI3K/AKT pathway in lapatinib-resistant cells. Importantly, ERBB4 knockdown triggered apoptosis not only in lapatinib-resistant cells but also in trastuzumab-resistant cells. Our results suggest that although ERBB4 is dispensable for naïve ERBB2+ breast cancer cells, it may play a key role in the survival of ERBB2+ cancer cells after they develop resistance to ERBB2 inhibitors, lapatinib and trastuzumab.  相似文献   

4.
Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization.  相似文献   

5.
Activating mutations in the αC-β4 loop of the ERBB2 kinase domain, such as ERBB2YVMA and ERBB2G776VC, have been identified in human lung cancers and found to drive tumor formation. Here we observe that the docking protein GAB1 is hyper-phosphorylated in carcinomas from transgenic mice and in cell lines expressing these ERBB2 cancer mutants. Using dominant negative GAB1 mutants lacking canonical tyrosine residues for SHP2 and PI3K interactions or lentiviral shRNA that targets GAB1, we demonstrate that GAB1 phosphorylation is required for ERBB2 mutant-induced cell signaling, cell transformation, and tumorigenesis. An enzyme kinetic analysis comparing ERBB2YVMA to wild type using physiologically relevant peptide substrates reveals that ERBB2YVMA kinase adopts a striking preference for GAB1 phosphorylation sites as evidenced by ∼150-fold increases in the specificity constants (kcat/Km) for several GAB1 peptides, and this change in substrate selectivity was predominantly attributed to the peptide binding affinities as reflected by the apparent Km values. Furthermore, we demonstrate that ERBB2YVMA phosphorylates GAB1 protein ∼70-fold faster than wild type ERBB2 in vitro. Notably, the mutation does not significantly alter the Km for ATP or sensitivity to lapatinib, suggesting that, unlike EGFR lung cancer mutants, the ATP binding cleft of the kinase is not significantly changed. Taken together, our results indicate that the acquired substrate preference for GAB1 is critical for the ERBB2 mutant-induced oncogenesis.  相似文献   

6.
The zinc finger E‐box‐binding homeobox 1 (ZEB1) induced the epithelial–mesenchymal transition (EMT) and altered ZEB1 expression could lead to aggressive and cancer stem cell (CSC) phenotypes in various cancers. Tissue specimens from 96 prostate cancer patients were collected for immunohistochemistry and CD34/periodic acid–Schiff double staining. Prostate cancer cells were subjected to ZEB1 knockdown or overexpression and assessment of the effects on vasculogenic mimicry formation in vitro and in vivo. The underlying molecular events of ZEB1‐induced vasculogenic mimicry formation in prostate cancer were then explored. The data showed that the presence of VM and high ZEB1 expression was associated with higher Gleason score, TNM stage, and lymph node and distant metastases as well as with the expression of vimentin and CD133 in prostate cancer tissues. Furthermore, ZEB1 was required for VM formation and altered expression of EMT‐related and CSC‐associated proteins in prostate cancer cells in vitro and in vivo. ZEB1 also facilitated tumour cell migration, invasion and clonogenicity. In addition, the effects of ZEB1 in prostate cancer cells were mediated by Src signalling; that is PP2, a specific inhibitor of the Src signalling, dose dependently reduced the p‐Src527 level but not p‐Src416 level, while ZEB1 knockdown also down‐regulated the level of p‐Src527 in PC3 and DU‐145 cells. PP2 treatment also significantly reduced the expression of VE‐cadherin, vimentin and CD133 in these prostate cancer cells. Src signalling mediated the effects of ZEB1 on VM formation and gene expression.  相似文献   

7.

Background

Overexpression of the ERBB2 kinase is observed in about one-third of breast cancer patients and the dual ERBB1/ERBB2 kinase inhibitor lapatinib was recently approved for the treatment of advanced ERBB2-positive breast cancer. Mutations in the ERBB2 receptor have recently been reported in breast cancer at diagnosis and also in gastric, colorectal and lung cancer. These mutations may have an impact on the clinical responses achieved with lapatinib in breast cancer and may also have a potential impact on the use of lapatinib in other solid cancers. However, the sensitivity of lapatinib towards clinically observed ERBB2 mutations is not known.

Methodology/Principal Findings

We cloned a panel of 8 clinically observed ERBB2 mutations, established stable cell lines and characterized their sensitivity towards lapatinib and alternative ERBB2 inhibitors. Both lapatinib-sensitive and lapatinib-resistant ERBB2 mutations were observed. Interestingly, we were able to generate lapatinib resistance mutations in wt-ERBB2 cells incubated with lapatinib for prolonged periods of time. This indicates that these resistance mutations may also cause secondary resistance in lapatinib-treated patients. Lapatinib-resistant ERBB2 mutations were found to be highly resistant towards AEE788 treatment but remained sensitive towards the dual irreversible inhibitors CL-387785 and WZ-4002.

Conclusions/Significance

Patients harbouring certain ERBB2 kinase domain mutations at diagnosis may not benefit from lapatinib treatment. Moreover, secondary lapatinib resistance may develop due to kinase domain mutations. Irreversible ERBB2 inhibitors may offer alternative treatment options for breast cancer and other solid tumor patients harbouring lapatinib resistance mutations. In addition, these inhibitors may be of interest in the scenario of secondary lapatinib resistance.  相似文献   

8.
The cytokine prolactin (PRL) plays important roles in the proliferation and differentiation of the mammary gland and it has been implicated in tumorigenesis. The prolactin receptor (PRLR) is devoid of catalytic activity and its mitogenic response is controlled by cytoplasmic tyrosine kinases of the Src (SFK) and Jak families. How PRLR uses these kinases for signaling is not well understood. Previous studies indicated that PRLR-induced Jak2 activation does not require SFK catalytic activity in favor of separate signaling operating on this cellular response. Here we show that, nevertheless, PRLR requires Src-SH2 and -SH3 domains for Jak2 signaling. In W53 lymphoid cells, conditional expression of two c-Src non-catalytic mutants, either SrcK295M/Y527F or Src?K, whose SH3 and SH2 domains are exposed, controls Jak2/Stat5 activation by recruiting Jak2, avoiding its activation by endogenous active SFK. In contrast, the kinase inactive SrcK295M mutant, with inaccessible SH3 and SH2 domains, does not. Furthermore, all three mutants attenuate PRLR-induced Akt and p70S6K activation. Accordingly, PRLR-induced Jak2/Stat5 signaling is inhibited in MCF7 breast cancer cells by Src depletion, expression of SrcK295M/Y527F or active Src harboring an inactive SH2 (SrcR175L) or SH3 domain (SrcW118A). Finally, Jak2/Stat5 pathway is also reduced in Src?/? mice mammary glands. We thus conclude that, in addition to Akt and p70S6K, SFK regulate PRLR-induced Jak2 signaling through a kinase-independent mechanism.  相似文献   

9.
Non–small cell lung cancer (NSCLC) with activating EGFR mutations in exon 19 and 21 typically responds to EGFR tyrosine kinase inhibitors (TKI); however, for some patients, responses last only a few months. The underlying mechanisms of such short responses have not been fully elucidated. Here, we sequenced the genomes of 16 short-term responders (SR) that had progression-free survival (PFS) of less than 6 months on the first-generation EGFR TKI and compared them to 12 long-term responders (LR) that had more than 24 months of PFS. All patients were diagnosed with advanced lung adenocarcinoma and harbored EGFR 19del or L858R mutations before treatment. Paired tumor samples collected before treatment and after relapse (or at the last follow-up) were subjected to targeted next-generation sequencing of 416 cancer-related genes. SR patients were significantly younger than LR patients (P < .001). Collectively, 88% of SR patients had TP53 variations compared to 13% of LR patients (P < .001). Additionally, 37.5% of SR patients carried EGFR amplifications compared to 8% of LR patients. Other potential primary resistance factors were also identified in the pretreatment samples of 12 SR patients (75%), including PTEN loss; BIM deletion polymorphism; and amplifications of EGFR, ERBB2, MET, HRAS, and AKT2. Comparatively, only three LR patients (25%) were detected with EGFR or AKT1 amplifications that could possibly exert resistance. The diverse preexisting resistance mechanisms in SR patients revealed the complexity of defining treatment strategies even for EGFR-sensitive mutations.  相似文献   

10.
11.
We have previously reported that spectrin increases dramatically in amount and is assembled into the cytoskeleton in differentiating keratinocytes both in vitro and in vivo (Zhao et al., PLoS ONE 6 (12) (2011) e28267). We demonstrate here that extracellular calcium (Ca2+) enhances differentiation of keratinocytes and that this is associated with increased spectrin expression and formation of a spectrin-based cytoskeleton. While Retinoic acid (RA) also enhanced keratinocyte differentiation, it abrogated the spectrin-based cytoskeleton in keratinocytes. Furthermore, RA substantially inhibited expression of both Src and PI3K-p85α and consequently the amounts of specific phosphorylation of both of these proteins. RA also enhanced AKT expression and dramatically induced phosphorylation of AKT(Thr308), accompanied by phosphorylation of both PKCδ(Thr505) and β-adducin(Ser662) and upregulated cyclin D2 and down-regulated cyclin B1. On the other hand, Ca2+ overcame the inhibitory effects of RA on expression of Src, PI3K-p85α and cyclin B1 by maintaining high levels of phosphorylation of both Src(Tyr527) and PI3K-p85α and preventing phosphorylation of AKT(Thr308), PKCδ(Thr505) and β-adducin(Ser662). These data highlight the importance of Ca2+ in both spectrin expression and the organizational integrity of the spectrin-based cytoskeleton in differentiating keratinocytes and assist in elucidating the signalling pathways involved.  相似文献   

12.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3src. Co-expression of activated Src (pp60527F) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 a nd stable complex formation with pp60527F. However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60527F revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60527F, unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60527F. (Mol Cell Biochem 175: 243–252, 1997)  相似文献   

13.
Lapatinib is a dual EGFR and ErbB-2 tyrosine kinase inhibitor that has significantly improved the clinical outcome of ErbB-2-overexpressing breast cancer patients. However, patients inexorably develop mechanisms of resistance that limit the efficacy of the drug. In order to identify potential targets for therapeutic intervention in lapatinib-resistant patients, we isolated, from ErbB-2-overexpressing SK-Br-3 breast cancer cells, the SK-Br-3 Lap-R-resistant subclone, which is able to routinely grow in 1 µM lapatinib. Resistant cells have a more aggressive phenotype compared with parental cells, as they show a higher ability to invade through a matrigel-coated membrane. Lapatinib-resistant cells have an increased Src kinase activity and persistent levels of activation of ERK1/2 and AKT compared with parental cells. Treatment with the Src inhibitor saracatinib in combination with lapatinib reduces AKT and ERK1/2 phosphorylation and restores the sensitivity of resistant cells to lapatinib. SK-Br-3 Lap-R cells also show levels of expression of CXCR4 that are higher compared with parental cells and are not affected by Src inhibition. Treatment with saracatinib or a specific CXCR4 antibody reduces the invasive ability of SK-Br-3 Lap-R cells, with the two drugs showing cooperative effects. Finally, blockade of Src signaling significantly increases TRAIL-induced cell death in SK-Br-3 Lap-R cells. Taken together, our results demonstrate that breast cancer cells with acquired resistance to lapatinib have a more aggressive phenotype compared with their parental counterpart, and that Src signaling and CXCR4 play an important role in this phenomenon, thus representing potential targets for therapeutic intervention in lapatinib-resistant breast cancer patients.  相似文献   

14.
15.
16.
Fluorescent tagging of bioactive molecules is a powerful tool to study cellular uptake kinetics and is considered as an attractive alternative to radioligands. In this study, we developed fluorescent histone deacetylase (HDAC) inhibitors and investigated their biological activity and cellular uptake kinetics. Our approach was to introduce a dansyl group as a fluorophore in the solvent-exposed cap region of the HDAC inhibitor pharmacophore model. Three novel fluorescent HDAC inhibitors were synthesized utilizing efficient submonomer protocols followed by the introduction of a hydroxamic acid or 2-aminoanilide moiety as zinc-binding group. All compounds were tested for their inhibition of selected HDAC isoforms, and docking studies were subsequently performed to rationalize the observed selectivity profiles. All HDAC inhibitors were further screened in proliferation assays in the esophageal adenocarcinoma cell lines OE33 and OE19. Compound 2, 6-((N-(2-(benzylamino)-2-oxoethyl)-5-(dimethylamino)naphthalene)-1-sulfonamido)-N-hydroxyhexanamide, displayed the highest HDAC inhibitory capacity as well as the strongest anti-proliferative activity. Fluorescence microscopy studies revealed that compound 2 showed the fastest uptake kinetic and reached the highest absolute fluorescence intensity of all compounds. Hence, the rapid and increased cellular uptake of 2 might contribute to its potent anti-proliferative properties.  相似文献   

17.
Defective autophagy has been implicated in mammary tumorigenesis, as the gene encoding the essential autophagy regulator BECN1 is deleted in human breast cancers and Becn1+/− mice develop mammary hyperplasias. In agreement with a recent study, which reports concurrent allelic BECN1 loss and ERBB2 amplification in a small number of human breast tumors, we found that low BECN1 mRNA correlates with ERBB2-overexpression in breast cancers, suggesting that BECN1 loss and ERBB2 overexpression may functionally interact in mammary tumorigenesis. We now report that ERBB2 overexpression suppressed autophagic response to stress in mouse mammary and human breast cancer cells. ERBB2-overexpressing Becn1+/+ and Becn1+/− immortalized mouse mammary epithelial cells (iMMECs) formed mammary tumors in nude mice with similar kinetics, and monoallelic Becn1 loss did not alter ERBB2- and PyMT-driven mammary tumorigenesis. In human breast cancer databases, ERBB2-expressing tumors exhibit a low autophagy gene signature, independent of BECN1 mRNA expression, and have similar gene expression profiles with non-ERBB2-expressing breast tumors with low BECN1 levels. We also found that ERBB2-expressing BT474 breast cancer cells, despite being partially autophagy-deficient under stress, can be sensitized to the anti-ERBB2 antibody trastuzumab (tzb) by further pharmacological or genetic autophagy inhibition. Our results indicate that ERBB2-driven mammary tumorigenesis is associated with functional autophagy suppression and ERBB2-positive breast cancers are partially autophagy-deficient even in a wild-type BECN1 background. Furthermore and extending earlier findings using tzb-resistant cells, exogenously imposed autophagy inhibition increases the anticancer effect of trastuzumab on tzb-sensitive ERBB2-expressing breast tumor cells, indicating that pharmacological autophagy suppression has a wider role in the treatment of ERBB2-positive breast cancer.  相似文献   

18.
Esophageal adenocarcinoma is increasing in the US and Western countries and frequent gastresophageal reflux or gastresophageal reflux disease carrying gastric acid and bile acid could contribute to esophageal adenocarcinogenesis. This study was designed to detect the expression of gastric acid-inducing gene Na+/H+ exchanger-1 (NHE-1) ex vivo and then to explore targeting of NHE-1 expression or activity to control esophageal cancer cell viability in vitro and in nude mouse xenografts. The data showed that NHE-1 was highly expressed in esophageal adenocarcinoma tissues (66 of 101 cases [65.3%|, but not in normal esophageal squamous cell epithelium (1 of 26 cases [3.8~0]). Knockdown of NHE-1 expression using NHE-1 shRNA or inhibition of NHE-1 activity using the NHE-1 inhibitor amiloride suppressed viability and induced apoptosis in esophageal cancer cells. Molecularly, amiloride inhibited expression of cyclooxygenase-2 and matrix metallopeptidase-9 but not NHE-1 mRNA in esophageal cancer cells. A combination of amiloride and guggulsterone (a natural bile acid receptor inhibitor) showed more than additive effects in suppressing esophageal cancer cell growth in vitro and in nude mouse xenografts. This study suggests that inhibition of NHE-1 expression or activity or combination of amiloride and guggulsterone could be useful in control of esophageal adenocarcinoma.  相似文献   

19.
20.
We set out to study the key effectors of resistance and sensitivity to ErbB2 tyrosine kinase inhibitors, such as lapatinib in ErbB2-positive breast and lung cancers. A cell-based in vitro site-directed mutagenesis lapatinib resistance model identified several mutations, including the gatekeeper ErbB2 mutation ErbB2-T798I, as mediating resistance. ErbB2-T798I engineered cell models indeed show resistance to lapatinib but remain sensitive to the irreversible EGFR/ErbB2 inhibitor, PD168393, suggestive of potential alternative treatment strategies to overcome resistance. Gene expression profiling studies identified a select group of downstream targets regulated by ErbB2 signaling and define PHLDA1 as an immediately downregulated gene upon oncogenic ErbB2 signaling inhibition. We find significant down-regulation of PHLDA1 in primary breast cancer and PHLDA1 is statistically significantly less expressed in ErbB2 negative compared with ErbB2 positive tumors consistent with its regulation by ErbB2. Lastly, PHLDA1 overexpression blocks AKT signaling, inhibits cell growth and enhances lapatinib sensitivity further supporting an important negative growth regulator function. Our findings suggest that PHLDA1 might have key inhibitory functions in ErbB2 driven lung and breast cancer cells and a better understanding of its functions might point at novel therapeutic options. In summary, our studies define novel ways of modulating sensitivity and resistance to ErbB2 inhibition in ErbB2-dependent cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号