首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dewatering performance and fractal characteristics of alum sludge from a drinking-water treatment plant were investigated in this study. Variations in residual turbidity of supernatant, dry solid content (DS), specific resistance to filtration (SRF), floc size, fractal dimension, and zeta potential were analyzed. Sludge dewatering efficiency was evaluated by measuring both DS and SRF. Results showed that the optimum sludge dewatering efficiency was achieved at 16 mg∙L-1 flocculant dosage and pH 7. Under these conditions, the maximum DS was 54.6%, and the minimum SRF was 0.61 × 1010 m∙kg-1. Floc-size measurements demonstrated that high flocculant dosage significantly improved floc size. Correlation analysis further revealed a strong correlation between fractal dimension and floc size after flocculation. A strong correlation also existed between floc size and zeta potential, and flocculants with a higher cationic degree had a larger correlation coefficient between floc size and zeta potential. In the flocculation process, the main flocculation mechanisms involved adsorption bridging under an acidic condition, and a combination between charge neutralization and adsorption-bridging interaction under neutral and alkaline conditions.  相似文献   

2.
The effects of the molecular weight (MW) and charge density (CD) of cationic polyacrylamide (CPAM) on sludge dewatering and moisture evaporation were investigated in this study. Results indicated that in sludge conditioning, the optimum dosages were 10, 6, 6, 4, and 4 mg g−1 CPAM with 5 million MW and 20% CD, 5 million MW and 40% CD, 3 million MW and 40% CD, 8 million MW and 40% CD, and 5 million MW and 60% CD, respectively. The optimum dosage of CPAM was negatively correlated with its CD or MW if the CD or MW of CPAM was above 20% or 5 million. In the centrifugal dewatering of sludge, the moisture content in the conditioned sludge gradually decreased with the extension of centrifugation time, and the economical centrifugal force was 400×g. The moisture evaporation rates of the conditioned sludge were closely related to sludge dewaterability, which was in turn significantly correlated either positively with the solid content of sludge particles that were >2 mm in size or negatively with that of particles measuring 1 mm to 2 mm in diameter. During treatment, sludge moisture content was reduced from 80% to 20% by evaporation, and the moisture evaporation rates were 1.35, 1.49, 1.62, and 2.24 times faster in the sludge conditioned using 4 mg g−1 CPAM with 5 million MW and 60% CD than in the sludge conditioned using 4 mg g−1 CPAM with 8 million MW and 40% CD, 6 mg g−1 CPAM with 5 million MW and 40% CD, 6 mg g−1 CPAM with 3 million MW and 40% CD, and 10 mg g−1 CPAM with 5 million MW and 20% CD, respectively. Hence, the CPAM with 5 million MW and 60% CD was ideal for sludge dewatering.  相似文献   

3.
In this work, the dewatering of activated sludge assisted by cationic surfactants was investigated. Dose of dodecyl trimethyl ammonium bromide (DTAB) and cetyl trimethyl ammonium bromide (CTAB) resulted in the release of extracellular polymeric substances (EPS) from sludge and decrease in sludge negative charge. The surfactants significantly promoted sludge dewaterability, as reflected by decreased specific resistance of filtration (SRF) and water content in sludge cakes. The treated sludge were analyzed by combined use of differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) analysis. CTAB was found more effective in releasing bound water from sludge than DTAB, due to its superior surface activity and strong adsorption/bridge capacities with sludge. The specific surface area and pore size of sludge cakes declined after surfactant treatment, indicating an enhanced compressibility. With these results, the surfactant-assisted dewatering mechanism could be attributed to the integrated effects of electrostatic neutralization, enhanced compaction and release of EPS and bound water. Our study clearly characterizes the accelerated dewatering process assisted by cationic surfactants, and demonstrates that cationic surfactants could be used as a potential agent for sludge dewatering.  相似文献   

4.
In this study, the new anaerobic–anoxic/nitrifying/induced crystallization (A2N–IC) system was compared with anaerobic-anoxic/nitrifying (A2N) process to investigate nutrient removal performance under different influent COD and ammonia concentrations. Ammonia and COD removal rates were very stable in both processes, which were maintained at 84.9% and 86.6% when the influent ammonia varied from 30 mg L−1 to 45 mg L−1 and COD ranged from 250 mg L−1 to 300 mg L−1. The effluent phosphorus always maintained below 0.2 mg L−1 in A2N–IC, whereas in A2N the effluent phosphorus concentration was 0.4–1.7 mg L−1, demonstrating that A2N–IC is suitable to apply in a broader influent COD and ammonia concentration range. Under higher influent COD (300 mg L−1) or lower ammonia conditions (30 mg L−1), the main function of chemical induced crystallization was to coordinate better nutrient ratio for anoxic phosphorus uptake, whereas under high phosphorus concentration, it was to reduce phosphorus loading for biological system. Under the similar influent wastewater compositions, phosphorus release amounts were always lower in A2N–IC. To clarify the decrease procedure of phosphorus release in the A2N–IC, the equilibrium between chemical phosphorus removal and biological phosphorus removal in A2N–IC was analyzed by mass balance equations. During the long-term experiment, some undesirable phenomena were observed: the declining nitrification in post-aerobic tank and calcium phosphorus precipitation in the anaerobic tank. The reasons were analyzed; furthermore, the corresponding improvements were proposed. Nitrification effect could be enhanced in the post-aerobic tank, therefore ammonia removal rate could be increased; and biologically induced phosphorus precipitation could be inhibited by controlling pH at the anaerobic stage, so the phosphorus release and recovery could be improved.  相似文献   

5.
A new and rapid protocol for optimum callus production and complete plant regeneration has been assessed in Malaysian upland rice (Oryza sativa) cv. Panderas. The effect of plant growth regulator (PGR) on the regeneration frequency of Malaysian upland rice (cv. Panderas) was investigated. Mature seeds were used as a starting material for callus induction experiment using various concentrations of 2,4-D and NAA. Optimal callus induction frequency at 90% was obtained on MS media containing 2,4-D (3 mg L−1) and NAA (2 mg L−1) after 6 weeks while no significant difference was seen on tryptophan and glutamine parameters. Embryogenic callus was recorded as compact, globular and light yellowish in color. The embryogenic callus morphology was further confirmed with scanning electron microscopy (SEM) analysis. For regeneration, induced calli were treated with various concentrations of Kin (0.5–1.5 mg L−1), BAP, NAA and 0.5 mg L−1 of TDZ. The result showed that the maximum regeneration frequency (100%) was achieved on MS medium containing BAP (0.5 mg L−1), Kin (1.5 mg L−1), NAA (0.5 mg L−1) and TDZ (0.5 mg L−1) within four weeks. Developed shoots were successfully rooted on half strength MS free hormone medium and later transferred into a pot containing soil for acclimatization. This cutting-edge finding is unique over the other existing publishable data due to the good regeneration response by producing a large number of shoots.Abbreviations: 2,4-D, 2,4-dichlorophenoxyacetic acid; NAA, naphthaleneacetic acid; Kin, kinetin; MS, Murashige and Skoog; BAP, benzylaminopurine; TDZ, thidiazuron  相似文献   

6.
Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-μm cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with a sludge volume index (SVI) of 120 ± 12 ml g−1, and reactor 2 (2-min settle time) formed compact aerobic granules with an SVI of 50 ± 2 ml g−1. EPS extraction by using a cation-exchange resin showed that proteins were more dominant than polysaccharides in all samples, and the protein content was 50% more in granular EPS than flocculent EPS. NaOH and heat extraction produced a higher protein and polysaccharide content from cell lysis. In situ EPS staining of granules showed that cells and polysaccharides were localized to the outer edge of granules, whereas the center was comprised mostly of proteins. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on a noncellular, protein core. The comparison of EPS methods explains how significant cell lysis and contamination by dead biomass leads to different and opposing conclusions.  相似文献   

7.
Neonicotinoid insecticides are one of the most important commercial insecticides used worldwide. The potential toxicity of the residues present in environment to humans has received considerable attention. In this study, a novel Ochrobactrum sp. strain D-12 capable of using acetamiprid as the sole carbon source as well as energy, nitrogen source for growth was isolated and identified from polluted agricultural soil. Strain D-12 was able to completely degrade acetamiprid with initial concentrations of 0–3000 mg·L−1 within 48 h. Haldane inhibition model was used to fit the special degradation rate at different initial concentrations, and the parameters q max, K s and K i were determined to be 0.6394 (6 h)−1, 50.96 mg·L−1 and 1879 mg·L−1, respectively. The strain was found highly effective in degrading acetamiprid over a wide range of temperatures (25–35°C) and pH (6–8). The effects of co-substrates on the degradation efficiency of acetamiprid were investigated. The results indicated that exogenously supplied glucose and ammonium chloride could slightly enhance the biodegradation efficiency, but even more addition of glucose or ammonium chloride delayed the biodegradation. In addition, one metabolic intermediate identified as N-methyl-(6-chloro-3-pyridyl)methylamine formed during the degradation of acetamiprid mediated by strain D-12 was captured by LC-MS, allowing a degradation pathway for acetamiprid to be proposed. This study suggests the bacterium could be a promising candidate for remediation of environments affected by acetamiprid.  相似文献   

8.
Simmondsia chinensis (Link) Schneider is a perennial, dioecious, drought resistant and multipurpose seed oil crop grown in arid and semi-arid conditions throughout the world. A reproducible and more efficient method for indirect shoot organogenesis from female leaf explants has been standardized. The leaf explants cultured on Murashige and Skoog (MS) medium with 1.0 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) alone produced the highest frequency of callus compared with 1.5 mg l−1 IBA. Maximum proliferation of callus was observed on MS medium containing a combination of 1.0 mg l−1 2,4-D with 0.5 mg l−1 BAP. For shoot differentiation, the proliferated callus was subcultured on MS medium supplemented with 6-benzylaminopurine (BAP) (1.0–4.0 mg l−1) along with 40 mg l−1 adenine sulphate as additive or in combination with α-naphthalene acetic acid (NAA) or Indole-3-butyric acid (IBA). Optimum shoots differentiated from callus was obtained on MS medium supplemented with 2.0 mg l−1 BAP and 0.2 mg l−1 NAA. On this medium, 100 % cultures were responded with an average number of 14.44 shoots per explant with their mean length of 4.78 cm. In vitro rooting (6.22 roots per explant) was achieved on half strength MS medium containing 2 % sucrose with 3.0 mg l−1 IBA and 300 mg l−1 activated charcoal (AC). Rooted plantlets were successfully hardened under control conditions and acclimatized under field conditions with 90 % success rate. The present protocol is highly efficient, reproducible and economically viable for large scale production of female plants.  相似文献   

9.
Yuan H  Zhu N  Song F 《Bioresource technology》2011,102(3):2308-2315
The potential benefits of electrolysis-conditioned sludge dewaterability treatments with surfactants were investigated in this study. Capillary suction time (CST) and specific resistance of filtration (SRF) were used to evaluate the sludge dewaterability. Extracellular polymeric substance (EPS) content, viscosity and zeta potential were determined in an attempt to explain the observed changes in the conditioning process. The results indicated that SDS (Sodium Dodecyl Sulphate) and Triton X-100 have negative effect on the dewaterability of sludge pretreated both with and without electrolysis. However, with a combination of CTAB (Cetyl Trimethyl Ammonium Bromide) and electrolysis pretreatment presented clear advantages over surfactant conditioning alone for improving sludge dewaterability. The optimal dosage of CTAB to give maximal dewaterability was found to be 2000 mg/L, which generated sludge with optimal EPS concentration (150-300 mg/L), viscosity (55-62 mpa s) and zeta potential (−2.12 to −1.19 mV).  相似文献   

10.
Bacillus anthracis, Brucella spp., and Yersinia pestis are zoonotic pathogens and biowarfare- or bioterrorism-associated agents that must be detected rapidly on-site from various samples (e.g., viscera and powders). An up-converting phosphor technology-based lateral flow (UPT–LF) strip was developed as a point-of-care testing (POCT) to satisfy the requirements of first-level emergency response. We developed UPT–LF POCT to quantitatively detect the three pathogens within 15 min. Sample and operation-error tolerances of the assay were comprehensively evaluated. The sensitivity of UPT–LF assay to bacterial detection reached 104 cfu·mL−1 (100 cfu/test), with a linear quantitative range of 4 to 6 orders of magnitude. Results revealed that the UPT–LF assay exhibited a high specificity with the absence of false-positive results even at 109 cfu·mL−1 of non-specific bacterial contamination. The assay could tolerate samples with a wide pH range (2 to 12), high ion strengths (≥4 mol·L−1 of NaCl), high viscosities (≤25 mg·mL−1 of PEG20000 or ≥20% of glycerol), and high concentrations of bio-macromolecule (≤200 mg·mL−1 of bovine serum albumin or ≥80 mg·mL−1 of casein). The influence of various types of powders and viscera (fresh and decomposed) on the performance of UPT–LF assay was determined. The operational error of liquid measurement exhibited few effects on sensitivity and specificity. The developed UPT–LF POCT assay is applicable under field conditions with excellent tolerance to sample complexity and operational error.  相似文献   

11.
The main goal of this research was to investigate how different factors influence membrane fouling. The impact of the different concentrations of activated sludge and the amount of extracellular polymer substances (EPS) were monitored. Two pilot plants with submerged membrane modules (hollow fiber and flat sheet) were operated and the raw wastewater was used.Humic substances were identified as the major components of EPS in the activated sludge (more than 34%) in both pilot plants. As the basic constituent in permeate, humic substances were identified as the most dominant components in the effluent (61%) in both pilot plants. Conversely, proteins were mostly analyzed in permeate and supernatant below the detection limit. The total amount of EPS [mg g−1 (VSS)] was similar for concentrations of activated sludge 6, 10 and 14 g L−1. Carbohydrates were identified as the component of EPS which tends most to clog membranes.  相似文献   

12.
13.
Carbendazim (methyl 1H-benzimidazol-2-yl carbamate) is one of the most widely used fungicides in agriculture worldwide, but has been reported to have adverse effects on animal health and ecosystem function. A highly efficient carbendazim-degrading bacterium (strain dj1-11) was isolated from carbendazim-contaminated soil samples via enrichment culture. Strain dj1-11 was identified as Rhodococcus erythropolis based on morphological, physiological and biochemical characters, including sequence analysis of the 16S rRNA gene. In vitro degradation of carbendazim (1000 mg·L−1) by dj1-11 in minimal salts medium (MSM) was highly efficient, and with an average degradation rate of 333.33 mg·L−1·d−1 at 28°C. The optimal temperature range for carbendazim degradation by dj1-11 in MSM was 25–30°C. Whilst strain dj1-11 was capable of metabolizing cabendazim as the sole source of carbon and nitrogen, degradation was significantly (P<0.05) increased by addition of 12.5 mM NH4NO3. Changes in MSM pH (4–9), substitution of NH4NO3 with organic substrates as N and C sources or replacing Mg2+ with Mn2+, Zn2+ or Fe2+ did not significantly affect carbendazim degradation by dj1-11. During the degradation process, liquid chromatography-mass spectrometry (LC-MS) detected the metabolites 2-aminobenzimidazole and 2-hydroxybenzimidazole. A putative carbendazim-hydrolyzing esterase gene was cloned from chromosomal DNA of djl-11 and showed 99% sequence homology to the mheI carbendazim-hydrolyzing esterase gene from Nocardioides sp. SG-4G.  相似文献   

14.
Lawsonia inermis Linn. (Mehandi) is cultivated as cash crop in India particularly in Sojat area of Pali district, Rajasthan. Present investigation describes an efficient regeneration system for elite genotype of L. inermis using nodal segments. Optimum response in terms of percent cultures responding, days to bud break and average shoot length was observed on MS medium supplemented with 6-benzylaminopurine (BA; 2.0 mg l−1). Shoot multiplication was influenced by plant growth regulators, repeated transfer of explants and addition of ammonium sulphate. Maximum shoots were regenerated on MS medium supplemented with BA (0.25 mg l−1), kinetin (Kn; 0.25 mg l−1), indole-3-acetic acid (IAA; 0.1 mg l−1) and ammonium sulphate (150 mg l−1). To reduce resources, time and labours costs, we have also attempted ex vitro rooting of shoots. About 95 % shoots were rooted ex vitro on soilrite after treatment with indole-3-butyric acid (IBA; 300 mg l−1) and 2-naphthoxy acetic acid (NOA; 100 mg l−1) and establishment in soil successfully.Keyword: Ex vitro rooting, Lawsonia inermis, Plant growth regulator, In vitro propagation, Repeated transfer  相似文献   

15.
The radionuclides released from the Fukushima Daiichi nuclear power plant in 2011 pose a health risk. In this study, we estimated the 1st-year average doses resulting from the intake of iodine 131 (131I) and cesium 134 and 137 (134Cs and 137Cs) in drinking water and food ingested by citizens of Fukushima City (∼50 km from the nuclear power plant; outside the evacuation zone), Tokyo (∼230 km), and Osaka (∼580 km) after the accident. For citizens in Fukushima City, we considered two scenarios: Case 1, citizens consumed vegetables bought from markets; Case 2, citizens consumed vegetables grown locally (conservative scenario). The estimated effective doses of 134Cs and 137Cs agreed well with those estimated through market basket and food-duplicate surveys. The average thyroid equivalent doses due to ingestion of 131I for adults were 840 µSv (Case 1) and 2700 µSv (Case 2) in Fukushima City, 370 µSv in Tokyo, and 16 µSv in Osaka. The average effective doses due to 134Cs and 137Cs were 19, 120, 6.1, and 1.9 µSv, respectively. The doses estimated in this study were much lower than values reported by the World Health Organization and the United Nations Scientific Committee on the Effects of Atomic Radiation, whose assessments lacked validation and full consideration of regional trade in foods, highlighting the importance of including regional trade. The 95th percentile effective doses were 2–3 times the average values. Lifetime attributable risks (LARs) of thyroid cancers due to ingestion were 2.3–39×10−6 (Case 1) and 10–98×10−6 (Case 2) in Fukushima City, 0.95–14×10−6 in Tokyo, and 0.11–1.3×10−6 in Osaka. The contributions of LARs of thyroid cancers due to ingestion were 7.5%–12% of all exposure (Case 1) and 12%–30% (Case 2) in Fukushima City.  相似文献   

16.
Microcosm assays and Taguchi experimental design was used to assess the biodegradation of an oil sludge produced by a gas processing unit. The study showed that the biodegradation of the sludge sample is feasible despite the high level of pollutants and complexity involved in the sludge. The physicochemical and microbiological characterization of the sludge revealed a high concentration of hydrocarbons (334,766 ± 7001 mg kg−1 dry matter, d.m.) containing a variety of compounds between 6 and 73 carbon atoms in their structure, whereas the concentration of Fe was 60,000 mg kg−1 d.m. and 26,800 mg kg−1 d.m. of sulfide. A Taguchi L9 experimental design comprising 4 variables and 3 levels moisture, nitrogen source, surfactant concentration and oxidant agent was performed, proving that moisture and nitrogen source are the major variables that affect CO2 production and total petroleum hydrocarbons (TPH) degradation. The best experimental treatment yielded a TPH removal of 56,092 mg kg−1 d.m. The treatment was carried out under the following conditions: 70% moisture, no oxidant agent, 0.5% of surfactant and NH4Cl as nitrogen source.  相似文献   

17.
Chromium(VI) removal and its association with exopolysaccharide (EPS) production in cyanobacteria were investigated. Synechocystis sp. BASO670 produced higher EPS (548 mg L−1) than Synechocystis sp. BASO672 (356 mg L−1). While the EC50 of the Cr(VI) for Synechocystis sp. BASO670 and Synechocystis sp. BASO672 were determined as 11.5 mg L−1, and 2.0 mg L−1, respectively, there was no relation between Cr(VI) removal and EPS production. Synechocystis sp. BASO672, which has higher EPS value, removed (33%) more Cr(VI) than Synechocystis sp. BASO670. Monomer compositions of EPS of each of the isolates were determined differently. Synechocystis sp. BASO672 which removed higher Cr(VI), had higher values of uronic acid and glucuronic acid (192 μg/mg and 89%, respectively). Our results showed that EPS might play a role in Cr(VI) tolerance. Monomer composition, especially uronic acid and glucuronic acid content of EPS may have enhanced Cr(VI) removal.  相似文献   

18.
3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L−1 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q max, K s and K i of 0.8615 h−1, 626.7842 mg·L−1 and 6.7586 mg·L−1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t 1/2) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.  相似文献   

19.
In vitro regeneration of pigeon pea through organogenesis and somatic embryogenesis was demonstrated with pigeon pea cv. JKR105. Embryonic axes explants of pigeon pea showed greater regeneration of shoot buds on 2.5 mg L−1 6-benzylaminopurine (BAP) in the medium, followed by further elongation at lower concentrations. Rooting of shoots was observed on half-strength Murashige and Skoog (MS) medium with 2 % sucrose and 0.5 mg L−1 3-indolebutyric acid (IBA). On the other hand, the regeneration of globular embryos from cotyledon explant was faster and greater with thidiazuron (TDZ) than BAP with sucrose as carbohydrate source. These globular embryos were maturated on MS medium with abscisic acid (ABA) and finally germinated on half-strength MS medium at lower concentrations of BAP. Comparison of regeneration pathways in pigeon pea cv. JKR105 showed that the turnover of successful establishment of plants achieved through organogenesis was more compared to somatic embryogenesis, despite the production of more embryos than shoot buds.  相似文献   

20.
Intensive use of chlorpyrifos has resulted in its ubiquitous presence as a contaminant in surface streams and soils. It is thus critically essential to develop bioremediation methods to degrade and eliminate this pollutant from environments. We present here that a new fungal strain Hu-01 with high chlorpyrifos-degradation activity was isolated and identified as Cladosporium cladosporioides based on the morphology and 5.8S rDNA gene analysis. Strain Hu-01 utilized 50 mg·L−1 of chlorpyrifos as the sole carbon of source, and tolerated high concentration of chlorpyrifos up to 500 mg·L−1. The optimum degradation conditions were determined to be 26.8°C and pH 6.5 based on the response surface methodology (RSM). Under these conditions, strain Hu-01 completely metabolized the supplemented chlorpyrifos (50 mg·L−1) within 5 d. During the biodegradation process, transient accumulation of 3,5,6-trichloro-2-pyridinol (TCP) was observed. However, this intermediate product did not accumulate in the medium and disappeared quickly. No persistent accumulative metabolite was detected by gas chromatopraphy-mass spectrometry (GC-MS) analysis at the end of experiment. Furthermore, degradation kinetics of chlorpyrifos and TCP followed the first-order model. Compared to the non-inoculated controls, the half-lives (t 1/2) of chlorpyrifos and TCP significantly reduced by 688.0 and 986.9 h with the inoculum, respectively. The isolate harbors the metabolic pathway for the complete detoxification of chlorpyrifos and its hydrolysis product TCP, thus suggesting the fungus may be a promising candidate for bioremediation of chlorpyrifos-contaminated water, soil or crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号