首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice fields host a large diversity of arthropods, but investigating their population dynamics and interactions is challenging. Here we describe the modification and application of a leaf blower-vac for suction sampling of arthropod populations in rice. When used in combination with an enclosure, application of this sampling device provides absolute estimates of the populations of arthropods as numbers per standardized sampling area. The sampling efficiency depends critically on the sampling duration. In a mature rice crop, a two-minute sampling in an enclosure of 0.13 m2 yields more than 90% of the arthropod population. The device also allows sampling of arthropods dwelling on the water surface or the soil in rice paddies, but it is not suitable for sampling fast flying insects, such as predatory Odonata or larger hymenopterous parasitoids. The modified blower-vac is simple to construct, and cheaper and easier to handle than traditional suction sampling devices, such as D-vac. The low cost makes the modified blower-vac also accessible to researchers in developing countries.  相似文献   

2.
Dredged sediments from the Leie catchment (Belgium) that were deposited on land between 70 and 10 years ago were characterized according to their physico-chemical properties, total metal concentrations and porewater composition. Actual and potential heavy metal availability was assessed by means of single extractions with 0.01 M CaCl 2 , 0.05 M EDTA and 0.43 M acetic acid. A modified version of the BCR (Community Bureau of Reference) extraction procedure, adapted to the elevated acid neutralizing capacity of the sediments, was applied. Information on element mobility was assessed and the used methodologies were critically evaluated.

The favorable physico-chemical characteristics of dredged sediments from the catchment of the Leie River (N-Belgium) indicated a rather low actual heavy metal mobility. Based on CaCl 2 and EDTA extractions, the distribution of Cd, Zn and Ni between the solution and sorbed phase could be described as a function of pH and organic carbon content. Cd and Zn were found to be the elements with the highest potential availability, while Cu and Ni displayed a medium availability. It is stressed that different types of extractions deal with heavy metal mobility in a different way and that the measurement of “key-factors” such as the pH of the extracts can be helpful for the interpretation of the results.  相似文献   


3.
Lignocellulosic biomass is one of the most abundant yet underutilized renewable energy resources. Both anaerobic digestion (AD) and hydrothermal carbonization (HTC) are promising technologies for bioenergy production from biomass in terms of biogas and HTC biochar, respectively. In this study, the combination of AD and HTC is proposed to increase overall bioenergy production. Wheat straw was anaerobically digested in a novel upflow anaerobic solid state reactor (UASS) in both mesophilic (37 °C) and thermophilic (55 °C) conditions. Wet digested from thermophilic AD was hydrothermally carbonized at 230 °C for 6 hr for HTC biochar production. At thermophilic temperature, the UASS system yields an average of 165 LCH4/kgVS (VS: volatile solids) and 121 L CH4/kgVS at mesophilic AD over the continuous operation of 200 days. Meanwhile, 43.4 g of HTC biochar with 29.6 MJ/kgdry_biochar was obtained from HTC of 1 kg digestate (dry basis) from mesophilic AD. The combination of AD and HTC, in this particular set of experiment yield 13.2 MJ of energy per 1 kg of dry wheat straw, which is at least 20% higher than HTC alone and 60.2% higher than AD only.  相似文献   

4.
Entomopathogenic nematodes (a.k.a. EPN) represent a group of soil-inhabiting nematodes that parasitize a wide range of insects. These nematodes belong to two families: Steinernematidae and Heterorhabditidae. Until now, more than 70 species have been described in the Steinernematidae and there are about 20 species in the Heterorhabditidae. The nematodes have a mutualistic partnership with Enterobacteriaceae bacteria and together they act as a potent insecticidal complex that kills a wide range of insect species.Herein, we focus on the most common techniques considered for collecting EPN from soil. The second part of this presentation focuses on the insect-baiting technique, a widely used approach for the isolation of EPN from soil samples, and the modified White trap technique which is used for the recovery of these nematodes from infected insects. These methods and techniques are key steps for the successful establishment of EPN cultures in the laboratory and also form the basis for other bioassays that consider these nematodes as model organisms for research in other biological disciplines. The techniques shown in this presentation correspond to those performed and/or designed by members of S. P. Stock laboratory as well as those described by various authors.  相似文献   

5.
Phospholipid fatty acids (PLFAs) are key components of microbial cell membranes. The analysis of PLFAs extracted from soils can provide information about the overall structure of terrestrial microbial communities. PLFA profiling has been extensively used in a range of ecosystems as a biological index of overall soil quality, and as a quantitative indicator of soil response to land management and other environmental stressors.The standard method presented here outlines four key steps: 1. lipid extraction from soil samples with a single-phase chloroform mixture, 2. fractionation using solid phase extraction columns to isolate phospholipids from other extracted lipids, 3. methanolysis of phospholipids to produce fatty acid methyl esters (FAMEs), and 4. FAME analysis by capillary gas chromatography using a flame ionization detector (GC-FID). Two standards are used, including 1,2-dinonadecanoyl-sn-glycero-3-phosphocholine (PC(19:0/19:0)) to assess the overall recovery of the extraction method, and methyl decanoate (MeC10:0) as an internal standard (ISTD) for the GC analysis.  相似文献   

6.
Physicochemical and mineralogical properties of the contaminants should be taken into account to decide a remediation strategy for a given radionuclide because development and optimization of soil remedial technologies are based on physicochemical and mineralogical separation techniques. The objectives of this study are to (1) demonstrate how a priori physicochemical and mineralogical characterization of soil contaminants can direct the development of remediation strategies and their performance evaluation for soil treatments and (2) understand the nature of uranium contamination and its association with the soil matrix by chemical extractions. This study examined two U-contaminated sites (K311 and K1300) at the DOE K-25 site, presently located at East Tennessee Technology Park, Oak Ridge, Tennessee. Uranium concentrations of the soils ranged from 1499 to 216,413 Bq kg?1 at both sites. Scanning electron microscopy with backscattered electron spectroscopy and X-ray diffraction analysis showed that the dominant U phases are U oxides (schoepite), U-Ca-silicate (uranophane) and U silicate (coffinite) from the K311 site soils, whereas U-Ca-oxide and U-Ca-phosphate dominate in the K1300 site soils. Sodium carbonate/bicarbonate leaching was effective on the K1300 site soils, whereas citric acid leaching is effective on the K311 site soils. Sequential leaching showed that the majority of the uranium in the contaminated soils was contained in carbonate minerals (45%) and iron oxides (40%). Conventional leaching showed that citric acid treatment was most effective on the K311 site soils, whereas the sodium carbonate/ bicarbonate treatment was most effective on the K1300 site soils.  相似文献   

7.
Much of the nutrient cycling and carbon processing in natural environments occurs through the activity of extracellular enzymes released by microorganisms. Thus, measurement of the activity of these extracellular enzymes can give insights into the rates of ecosystem level processes, such as organic matter decomposition or nitrogen and phosphorus mineralization. Assays of extracellular enzyme activity in environmental samples typically involve exposing the samples to artificial colorimetric or fluorometric substrates and tracking the rate of substrate hydrolysis. Here we describe microplate based methods for these procedures that allow the analysis of large numbers of samples within a short time frame. Samples are allowed to react with artificial substrates within 96-well microplates or deep well microplate blocks, and enzyme activity is subsequently determined by absorption or fluorescence of the resulting end product using a typical microplate reader or fluorometer. Such high throughput procedures not only facilitate comparisons between spatially separate sites or ecosystems, but also substantially reduce the cost of such assays by reducing overall reagent volumes needed per sample.  相似文献   

8.
The physical and chemical properties of biochar vary based on feedstock sources and production conditions, making it possible to engineer biochars with specific functions (e.g. carbon sequestration, soil quality improvements, or contaminant sorption). In 2013, the International Biochar Initiative (IBI) made publically available their Standardized Product Definition and Product Testing Guidelines (Version 1.1) which set standards for physical and chemical characteristics for biochar. Six biochars made from three different feedstocks and at two temperatures were analyzed for characteristics related to their use as a soil amendment. The protocol describes analyses of the feedstocks and biochars and includes: cation exchange capacity (CEC), specific surface area (SSA), organic carbon (OC) and moisture percentage, pH, particle size distribution, and proximate and ultimate analysis. Also described in the protocol are the analyses of the feedstocks and biochars for contaminants including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and mercury as well as nutrients (phosphorous, nitrite and nitrate and ammonium as nitrogen). The protocol also includes the biological testing procedures, earthworm avoidance and germination assays. Based on the quality assurance / quality control (QA/QC) results of blanks, duplicates, standards and reference materials, all methods were determined adequate for use with biochar and feedstock materials. All biochars and feedstocks were well within the criterion set by the IBI and there were little differences among biochars, except in the case of the biochar produced from construction waste materials. This biochar (referred to as Old biochar) was determined to have elevated levels of arsenic, chromium, copper, and lead, and failed the earthworm avoidance and germination assays. Based on these results, Old biochar would not be appropriate for use as a soil amendment for carbon sequestration, substrate quality improvements or remediation.  相似文献   

9.
It is not straightforward to sample and demonstrate the presence and transport of pesticides in heterogeneous soil. Following leaching experiments with four differently structured 50-cm-long soil columns (tilled and untilled soil), the objective of this study was to investigate the extent that visual tracing of the dye Brilliant Blue could support in soil sampling for two strongly sorbing pesticides (14C-labeled glyphosate and pendimethalin). About 830 samples were collected. No pesticide was found below 10– 25 cm depth by random sampling, even though 0.21–0.31% of the applied amounts were leached, and 0.18% of the soil volume was sampled. With similar sampling efforts, the pesticides could generally be traced throughout the columns by sampling from stained soil volumes, only. None of the two particular sampling strategies for pesticides produced accurate mass balances or balances that were obviously better than the other. No pesticide was detected outside stained soil volumes, except for glyphosate in one sample. Below 30 cm, stained soil comprized on average 5% of the total soil volume, leaving 95% as expectedly pesticide-free. The results suggest that much more efficient sampling for sorbing pesticides can be obtained by using the dye and focusing on stained soil volumes.  相似文献   

10.
11.
Soils previously treated with landfarming to reduce petroleum hydrocarbon concentrations are often left with a less biodegradable residual fraction that can present challenges for additional treatment. Four possible polishing technologies were tested on the bench scale for weathered hydrocarbons present in fine-grain soils obtained from a previously landfarmed area at an active oil refinery. The technologies included additional bioremediation (both biostimulation and bioaugmentation tested), soil washing, chemical oxidation, and low-temperature thermal desorption. Multiple parameters were tested separately for each technology to identify possible factors that were relevant across technologies. Extractable hydrocarbons comprised only approximately 35% of the organic carbon in the soils, and this component was considerably less affected by biological, surfactant, and oxidant treatment than organic materials that are not quantified by the TEH analysis. Treatment testing of thermal desorption indicated removal of large quantities of extractable hydrocarbons despite the presence of high organic matter. The additional demand to the system would likely result in considerably large timeframes (biological treatment), reagent quantities (soil washing and oxidation), or energy input (thermal desorption) for treatment of target hydrocarbons on a full scale.  相似文献   

12.
A method to determine the content and composition of total fatty acids present in microalgae is described. Fatty acids are a major constituent of microalgal biomass. These fatty acids can be present in different acyl-lipid classes. Especially the fatty acids present in triacylglycerol (TAG) are of commercial interest, because they can be used for production of transportation fuels, bulk chemicals, nutraceuticals (ω-3 fatty acids), and food commodities. To develop commercial applications, reliable analytical methods for quantification of fatty acid content and composition are needed. Microalgae are single cells surrounded by a rigid cell wall. A fatty acid analysis method should provide sufficient cell disruption to liberate all acyl lipids and the extraction procedure used should be able to extract all acyl lipid classes.With the method presented here all fatty acids present in microalgae can be accurately and reproducibly identified and quantified using small amounts of sample (5 mg) independent of their chain length, degree of unsaturation, or the lipid class they are part of.This method does not provide information about the relative abundance of different lipid classes, but can be extended to separate lipid classes from each other.The method is based on a sequence of mechanical cell disruption, solvent based lipid extraction, transesterification of fatty acids to fatty acid methyl esters (FAMEs), and quantification and identification of FAMEs using gas chromatography (GC-FID). A TAG internal standard (tripentadecanoin) is added prior to the analytical procedure to correct for losses during extraction and incomplete transesterification.  相似文献   

13.
在3~149年的时间尺度上,对黄土高原植被次生演替过程中植物特征和土壤养分元素动态进行了研究.结果表明:1) 随着演替时间尺度的延伸,土壤全C、全N含量呈增加趋势,而土壤全K、全Na和土壤pH值呈下降趋势,土壤全P变化趋势不明显;此外,表层(0~10 cm)土壤CaO 含量在演替系列上呈下降趋势,深层(20~30 cm,40~50 cm)则呈增加趋势.演替过程对几种土壤化学元素含量影响的程度随着土壤深度的增加而减弱.2)植物群落物种丰富度在演替的中间阶段最高.3) 在演替的早期阶段,植物群落优势种往往具有稳定的土壤种子库、CR-生活对策和S-繁殖对策,在贫瘠的土壤上具有较强的竞争能力,且具有较强的水平扩展能力和克隆繁殖能力,C-生活对策、在土壤全N含量较高的生境中具有较强竞争能力的多年生植物,在演替中后期占据群落的优势地位.此外,在所涉及的植物特征中,多年生生活史,C-、CR-、SC-、SR-、S-生活对策,以及R-、W-、Bs-、VBs- 和V-繁殖对策等特征在非优势物种中出现的频率较高.4) C-、 SC-生活对策, 克隆能力, 多年生生活史, 水平扩展能力, 种子的动物传播方式,秋季开花,荚果、坚果等特征出现的比例在一定程度上与土壤全C、全N 和全K含量正相关; 而 S-、SR-、R-、CR-生活对策,一、二年生生活史, 种子繁殖, S-繁殖对策,以及胞果、蒴果等特征的比例与土壤全Na、CaO含量和土壤pH正相关.5)在演替过程中出现的植物均属草本植物生活型,因此,草原可能是黄土高原上受制于大尺度环境条件(显域生境)下的优势植被类型(特别是降雨量不超过550 mm的地区).  相似文献   

14.
Fly ash, a by-product of power plants, is currently being used extensively in India for soil amendment. However, the toxic elements sorbed in the fly ash might pose a serious threat to the environment, causing soil and water contamination. Vermicomposting of fly ash is expected to reduce the contamination of toxic trace metal and could improve the mobility of essential trace element. The current study is focused on characterizing different species of trace metals and their bio-availability in the vermicomposted fly ash (VCFA)-treated lateritic soil. As a fertilizer, different doses (10%, 20%, 30%, 40%, and 50%) of VCFA were applied to the soil and sequential extraction was carried out to analyze trace elements. In the different fractions, Cr < Mn < Pb < Fe were found to be sorbed more to Fe-Mn oxide-bound fractions, whereas Cd, Cu, and Zn were bound more to organic-matter-bound fractions; Cr and Ni were mostly bound to residual fraction. The Fe-Mn oxides and organic-matter-bound fractions may be bio-available with the appropriate environmental condition, whereas chromium and nickel mostly associated with residual fraction are very difficult to release into the environment. The mobility factor index showed the midlevel substitution (i.e., 10% to 30% of VCFA to lateritic soil) to be beneficial as these doses increased the bio-availability of some essential trace elements and restricted the availability toxic trace metals in the soil. At higher doses, the toxic trace metals were found to be released in the bio-available form, which could be hazardous to the environment.  相似文献   

15.
广东省顺德生态乐园内的土壤形成发育受气候、生物、地形地貌、母质母岩和人为干扰等5大因素的影响,其中人为活动是导致土层结构破坏和水土流失的主要原因。酸度高、肥力低、土质较好是园内土壤的一个共同特征。在各类土壤中,坡地赤红壤的面积最大,超过70%,但坡项土层瘠薄。水稻土有较长耕作历史,并已形成了潜育层和潴育层,但土壤肥力并不高。泥炭土有较高的有机质含量,但土壤过酸,速效养分含量过低,难以直接利用。因此  相似文献   

16.
The kraft process is applied to wood chips for separation of lignin from the polysaccharides within lignocellulose for pulp that will produce a high quality paper. Black liquor is a pulping waste generated by the kraft process that has potential for downstream bioconversion. However, the recalcitrant nature of the lignocellulose resources, its chemical derivatives that constitute the majority of available organic carbon within black liquor, and its basic pH present challenges to microbial biodegradation of this waste material. Methods for the collection and modification of black liquor for microbial growth are aimed at utilization of this pulp waste to convert the lignin, organic acids, and polysaccharide degradation byproducts into valuable chemicals. The lignocellulose extraction techniques presented provide a reproducible method for preparation of lignocellulose growth substrates for understanding metabolic capacities of cultured microorganisms. Use of gas chromatography-mass spectrometry enables the identification and quantification of the fermentation products resulting from the growth of microorganisms on pulping waste. These methods when used together can facilitate the determination of the metabolic activity of microorganisms with potential to produce fermentation products that would provide greater value to the pulping system and reduce effluent waste, thereby increasing potential paper milling profits and offering additional uses for black liquor.  相似文献   

17.
When a chemical fuel at a certain position in a hybrid composite of the fuel and a micro/nanostructured material is ignited, chemical combustion occurs along the interface between the fuel and core materials. Simultaneously, dynamic changes in thermal and chemical potentials across the micro/nanostructured materials result in concomitant electrical energy generation induced by charge transfer in the form of a high-output voltage pulse. We demonstrate the entire procedure of a thermopower wave experiment, from synthesis to evaluation. Thermal chemical vapor deposition and the wet impregnation process are respectively employed for the synthesis of a multi-walled carbon nanotube array and a hybrid composite of picric acid/sodium azide/multi-walled carbon nanotubes. The prepared hybrid composites are used to fabricate a thermopower wave generator with connecting electrodes. The combustion of the hybrid composite is initiated by laser heating or Joule-heating, and the corresponding combustion propagation, direct electrical energy generation, and real-time temperature changes are measured using a high-speed microscopy system, an oscilloscope, and an optical pyrometer, respectively. Furthermore, the crucial strategies to be adopted in the synthesis of hybrid composite and initiation of their combustion that enhance the overall thermopower wave energy transfer are proposed.  相似文献   

18.
A case study of the cancer risk to humans posed by persistent organic pollutants (POPs) in an industrial area of China, which has a long history of contamination from many sources, is presented. Relatively great concentrations of POPs around the chemical industrial parks have the potential to be chronically carcinogenic to local people. Sixteen individual PAHs listed for priory control by the U.S. Environmental Protection Agency (USEPA), metabolites of DDTs, and isomers of HCHs were measured in soils and a human health risk assessment was conducted by use of USEPA exposure models for children and adults, respectively. Geostatistical methods were used to simulate the spatial diffusion of potential carcinogenic risk, and non-parametric Mann-Whitney U and Kruskal-Wallis tests were employed to analyze the impact of point sources on the surrounding area. The mean value of the sum of Excess Lifetime Cancer Risk (∑ELCR) exceeded the generally acceptable risk level of 1.0E-06 recommended by the USEPA for carcinogenic chemicals. The maximum ∑ELCR was 2.9E-04 for children, which was observed inside the chemical industrial parks. Contamination at the chemical industrial parks caused significant spatial diffusion of ELCR values caused by PAHs, DDT, and HCH.  相似文献   

19.
Endocrine Disrupting Compounds pose a substantial risk to the aquatic environment. Ethinylestradiol (EE2) and estrone (E1) have recently been included in a watch list of environmental pollutants under the European Water Framework Directive. Municipal wastewater treatment plants are major contributors to the estrogenic potency of surface waters. Much of the estrogenic potency of wastewater treatment plant (WWTP) effluents can be attributed to the discharge of steroid estrogens including estradiol (E2), EE2 and E1 due to incomplete removal of these substances at the treatment plant. An evaluation of the efficacy of wastewater treatment processes requires the quantitative determination of individual substances most often undertaken using chemical analysis methods. Most frequently used methods include Gas Chromatography-Mass Spectrometry (GCMS/MS) or Liquid Chromatography-Mass Spectrometry (LCMS/MS) using multiple reaction monitoring (MRM). Although very useful for regulatory purposes, targeted chemical analysis can only provide data on the compounds (and specific metabolites) monitored. Ecotoxicology methods additionally ensure that any by-products produced or unknown estrogenic compounds present are also assessed via measurement of their biological activity. A number of in vitro bioassays including the Yeast Estrogen Screen (YES) are available to measure the estrogenic activity of wastewater samples. Chemical analysis in conjunction with in vivo and in vitro bioassays provides a useful toolbox for assessment of the efficacy and suitability of wastewater treatment processes with respect to estrogenic endocrine disrupting compounds. This paper utilizes a battery of chemical and ecotoxicology tests to assess conventional, advanced and emerging wastewater treatment processes in laboratory and field studies.  相似文献   

20.
The BASL4 (Biosolids Amended Soil Level 4) soil biota models are described, applied, and discussed. The models simulate the fate of organic chemicals present in biosolids that are applied to a two-layer soil and address the processes of chemical degradation, volatilization, leaching, and sorption to decaying organic matter. Uptake in invertebrates (worms), small mammals (shrews), and vegetation is simulated involving three levels of complexity, namely simple equilibrium partitioning, steady state bioaccumulation and dynamic bioaccumulation models. A simulation of the fate of pyrene is presented to illustrate the model's capabilities. The model is successfully applied to the fate of triclosan in biosolids giving results in accord with monitoring data. The model results suggest that triclosan may biomagnify in a terrestrial food web. It is believed that the model is useful for assessing the bio-uptake of chemicals associated with biosolids, thus providing guidance on expected levels of contamination and the associated risks to wildlife.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号