首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
影响鼻疽伯克霍尔德氏菌基因组密码子用法的因素分析   总被引:1,自引:0,他引:1  
鼻疽伯克霍尔德氏菌(Burkholderia mallei ATCC 23344)的基因组密码子使用受多种因素的影响,本研究根据该菌的完整基因组序列,运用多元统计分析和对应分析的方法,探讨了鼻疽伯克霍尔德氏菌全基因组序列密码子的使用模式和影响密码子使用的因素。结果表明基因表达水平的高低是影响密码子使用的主要因素;基因组中编码区的碱基组成、蛋白质的疏水性和基因的长度对密码子的使用也有一定的影响,但影响力不及基因的表达水平。同时,通过比较高表达的基因、低表达的基因密码子使用情况,GCG 和 CUC 等 21 个密码子被确定为鼻疽伯克霍尔德氏菌的主要偏爱密码子。以上结果对鼻疽伯克霍尔德氏菌的密码子用法研究、在分子水平上研究物种进化、基因组中未知基因的预测、开放阅读框的判断、功能基因的表达以及鼻疽病疫苗的研发等工作都提供了理论基础,具有较强的指导作用。  相似文献   

2.
The Selection-Mutation-Drift Theory of Synonymous Codon Usage   总被引:69,自引:11,他引:58       下载免费PDF全文
M. Bulmer 《Genetics》1991,129(3):897-907
It is argued that the bias in synonymous codon usage observed in unicellular organisms is due to a balance between the forces of selection and mutation in a finite population, with greater bias in highly expressed genes reflecting stronger selection for efficiency of translation. A population genetic model is developed taking into account population size and selective differences between synonymous codons. A biochemical model is then developed to predict the magnitude of selective differences between synonymous codons in unicellular organisms in which growth rate (or possibly growth yield) can be equated with fitness. Selection can arise from differences in either the speed or the accuracy of translation. A model for the effect of speed of translation on fitness is considered in detail, a similar model for accuracy more briefly. The model is successful in predicting a difference in the degree of bias at the beginning than in the rest of the gene under some circumstances, as observed in Escherichia coli, but grossly overestimates the amount of bias expected. Possible reasons for this discrepancy are discussed.  相似文献   

3.
毕赤酵母的密码子用法分析   总被引:135,自引:5,他引:130  
通过分析Pichia pastoris的28个蛋白编码基因的同义密码子使用情况并计算该酵母的密码子用法,首次确定出P.pastoris的19个高表达优越密码子。这些结果经与已知的Saccharomyces cerevisiaeKluyveromyces lactis的密码子用法基本相似,但在氨基酸谷氨酸的密码子选择上截然相反,提示这可能属于P.pastoris所偏爱的密码子用法。  相似文献   

4.
Evidence from a variety of sources indicates that selection has influenced synonymous codon usage in Drosophila. It has generally been difficult, however, to distinguish selection that acted in the distant past from ongoing selection. However, under a neutral model, polymorphisms usually reflect more recent mutations than fixed differences between species and may, therefore, be useful for inferring recent selection. If the ancestral state is preferred, selection should shift the frequency distribution of derived states/site toward lower values; if the ancestral is unpreferred, selection should increase the number of derived states/site. Polymorphisms were classified as ancestrally preferred or unpreferred for several genes of D. simulans and D. melanogaster. A computer simulation of coalescence was employed to derive the expected frequency distributions of derived states/site under various modifications of the Wright–Fisher neutral model, and distributions of test statistics (t and Mann–Whitney U) were derived by appropriate sampling. One-tailed tests were applied to transformed frequency data to assess whether the two frequency distributions deviated from neutral expectations in the direction predicted by selection on codon usage. Several genes from D. simulans appear to be subject to recent selection on synonymous codons, including one gene with low codon bias, esterase-6. Selection may also be acting in D. melanogaster. Received: 15 April 1998 / Accepted: 13 May 1999  相似文献   

5.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

6.
We have examined codon bias in 20 Brassica gene sequences collected from the literature. A comparison with the codon usage profile derived from 207 plant genes showed that Brassica genes distinctly differ from the plant genes with respect to Gly, Asp, Arg, lie, Try, Thr, Leu and Gin. Codon preferences for various amino acids did not differ among the three Brassica species, B. napus, B. oleracea and B. campestris considered in the present analysis. G ending codons for Thr, Ala, Pro and Ser are avoided by Brassica genes as in plant genes, in general. However, the avoidance of CG and TA doublets in Brassica genes is less than that observed in plant genes.  相似文献   

7.
Codon usage bias is the nonrandom use of synonymous codons for the same amino acid. Most population genetic models of codon usage evolution assume that the population is at mutation–selection–drift equilibrium. Natural populations, however, frequently deviate from equilibrium, often because of recent demographic changes. Here, we construct a matrix model that includes the effects of a recent change in population size on estimates of selection on preferred vs. unpreferred codons. Our results suggest that patterns of synonymous polymorphisms affecting codon usage can be quite erratic after such a change; statistical methods that fail to take demographic effects into account can then give incorrect estimates of important parameters. We propose a new method that can accurately estimate both demographic and codon usage parameters. The method also provides a simple way of testing for the effects of covariates such as gene length and level of gene expression on the intensity of selection, which we apply to a large Drosophila melanogaster polymorphism data set. Our analyses of twofold degenerate codons reveal that (i) selection acts in favor of preferred codons, (ii) there is mutational bias in favor of unpreferred codons, (iii) shorter genes and genes with higher expression levels are under stronger selection, and (iv) there is little evidence for a recent change in population size in the Zimbabwe population of D. melanogaster.CODONS specifying the same amino acid are called synonymous codons. These are often used nonrandomly, with some codons appearing more frequently than others. This biased usage of synonymous codons has been found in many organisms such as Drosophila, yeast, and bacteria (Ikemura 1985; Duret and Mouchiroud 1999; Hershberg and Petrov 2008). Conventionally, synonymous codons for a given amino acid are divided into two classes: preferred and unpreferred codons (Ikemura 1985; Akashi 1994; Duret and Mouchiroud 1999). Several observations indicate that codon usage is affected by natural selection. First, in species with codon usage bias, preferred codons generally correspond to the most abundant tRNA species (Ikemura 1981). Second, highly expressed genes usually have higher codon usage bias than genes with low expression (Sharp and Li 1986; Duret and Mouchiroud 1999; Hey and Kliman 2002). Third, the synonymous substitution rate of a gene has been shown to be negatively correlated with its degree of codon usage bias (Sharp and Li 1986; Bierne and Eyre-Walker 2006). The most commonly cited explanations of the apparent fitness differences between preferred and unpreferred codons are selection for translation efficiency, translational accuracy, and mRNA stability (Ikemura 1985; Eyre-Walker and Bulmer 1993; Akashi 1994; Drummond et al. 2005). Recently, it has been proposed that exon splicing also affects codon usage bias (Warnecke and Hurst 2007).From a population genetics perspective, the extent of codon usage bias is ultimately a product of the joint effects of mutation, selection, genetic drift, recombination, and demographic history. The Li–Bulmer model of drift, selection, and reversible mutation between preferred and unpreferred codons at a site is the most widely used model (Li 1987; Bulmer 1991; McVean and Charlesworth 1999). Applications of this model generally assume that the population is at mutation–selection–drift equilibrium. However, empirical studies have suggested that changes in the strengths of various driving forces may not be unusual. For example, in Drosophila melanogaster, there is evidence that the population size (Li and Stephan 2006; Thornton and Andolfatto 2006; Keightley and Eyre-Walker 2007; Stephan and Li 2007), recombinational landscape (Takano-Shimizu 1999), and mutational process (Takano-Shimizu 2001; Kern and Begun 2005) may have changed significantly over the species'' evolutionary history.Such changes cause departures from equilibrium. Theoretical models show that it takes a very long time, proportional to the reciprocal of the mutation rate, for the population to approach a new equilibrium state (Tachida 2000; Comeron and Kreitman 2002). Before reaching equilibrium, the population often shows counterintuitive patterns of evolution (Eyre-Walker 1997; Takano-Shimizu 1999, 2001; Comeron and Kreitman 2002; Comeron and Guthrie 2005; Charlesworth and Eyre-Walker 2007). Despite these theoretical results, details of the patterns of polymorphism and substitution rates following a recent change in population size, and their effects on estimates of strength of selection, have not been determined.The above findings point to the importance of incorporating nonequilibrium factors into the study of codon usage bias. To this end, we extend the Li–Bulmer model to allow population size to vary over time, by representing the evolutionary process by a transition matrix. By analyzing this matrix model, we show that a recent change in population size can result in erratic patterns of codon usage and that methods failing to take into account these demographic effects can give false estimates of the intensity of selection.To solve these problems, we propose a new method, which does not require polarizing ancestral vs. derived states using outgroup data (cf. Cutter and Charlesworth 2006), but requires only knowledge of preferred vs. unpreferred states defined by patterns of codon usage. We use information on both polymorphic and fixed sites, which enables both mutational bias and the strength of selection to be estimated, in contrast to previous methods that use information on polymorphisms alone. Simulations indicate that this method can accurately estimate both demographic and codon usage parameters and can distinguish between selection and demography. We use the new method to analyze a large D. melanogaster polymorphism data set (Shapiro et al. 2007) and find evidence for natural selection on synonymous codons. We use our approach to show that genes with shorter coding sequences and higher levels of expression are under significantly stronger selection than longer genes with lower expression.  相似文献   

8.
An Evaluation of Measures of Synonymous Codon Usage Bias   总被引:14,自引:0,他引:14  
Synonymous codons are not generally used at equal frequencies, and this trend is observed for most genes and organisms. Several methods have been proposed and used to estimate the degree of the nonrandom use of the different synonymous codons. The estimates obtained by these methods, however, show different levels of both precision and dispersion when coding regions of a finite number of codons are under analysis. Here, we present a study, based on computer simulation, of how the different methods proposed to evaluate the nonrandom use of synonymous codons are affected by the length of the coding region analyzed. The results show that some of these methods are heavily influenced by the number of codons and that the comparison of codon usage bias between coding regions of different lengths shows a methodological bias under different conditions of nonrandom use of synonymous codons. The study of the dispersion of the estimates obtained by the different methods gives, on the other hand, an indication of the methods to be applied to compare values of codon usage bias among coding regions of equivalent length. Received: 10 September 1997 / Accepted: 23 March 1998  相似文献   

9.
杨树同义密码子用法的初步分析   总被引:1,自引:0,他引:1  
杨树是世界上广泛栽培的重要造林树种之一,已经成为林木基因工程研究的模式植物。用杨树的314个蛋白编码基因,通过对应分析和ENC-plot分析探讨了若干重要因子对杨树密码子用法的效应。从分析结果中可以看出,在影响最大的第一条向量轴上,基因的坐标位置与该基因的表达水平(CAI)极显著负相关(r=-0.94**),其次是与GC3S和基因长度极显著相关(r=0.86**和r=-0.57**),说明基因表达水平高低是影响密码子发挥作用的主要因素,基因编码区碱基组成和基因长度次之。ENC-plot分析结果也证明了这一点。相对密码子使用值(RSCU)的计算结果表明,高表达基因强烈偏好以A或T结尾的密码子,并确定了TTA和ATA等10个密码子为杨树的主要偏爱密码子。将杨树的密码子使用频率与拟南芥、水稻、大肠杆菌和人等不同模式生物种比较后发现,杨树密码子的偏爱性与同为双子叶植物的拟南芥最为相似,与人和大肠杆菌之间的差异较大。  相似文献   

10.
To study the evolution of mutation biased synonymous codon usage, we examined nucleotide co-occurrence patterns in the Deinococcus radiodurans, D. geothermalis, and Thermus thermophilus genomes for nucleotide replacement dependent on the surrounding nucleotide context. Nucleotides on the third codon site were found to be strongly correlated with nucleotide sites at most six nucleotides away in all three species, where abundance patterns were dependent on whether two nucleotides share the same purine(R)/pyrimidine(Y) status. In the class Deinococci adjacent third site nucleotides were strongly correlated, where NNR|NNR and NNY|NNY codon pairs were overabundant while NNR|NNY and NNY|NNR codon pairs were underabundant. By far the largest deviations in all three species occur for NN(YR)|(YR)NN codon pairs. In the Thermus species, the NNY|YNN and NNR|RNN codon pairs were overabundant versus the underabundant NNY|RNN and NNR|YNN codon pairs, whereas in the Deinococcus species the opposite over-/underabundance relationship held for adjacent (GC) bases. We also observed a weaker overabundance of NNR|NRN and NNY|NYN codon pairs versus the underabundant NNR|NYN and NNY|NRN codon pairs. The perfect purine/pyrimidine symmetry of each of these cases, plus the lack of significant deviations for nucleotide pairs on other length scales up to 20 codons apart demonstrates that a pervasive pattern of nucleotide replacement dependent on local nucleotide context, and not codon bias, has occurred in these species. This nucleotide replacement has led to modified synonymous codon usage within the class Deinococci that affects which codons are positioned at particular codon sites dependent on the local nucleotide context.  相似文献   

11.
人类基因同义密码子偏好的特征以及与基因GC含量的关系   总被引:24,自引:0,他引:24  
对人类的728个基因,按其编码区中GC的含量分成四组(从GC<0.43到GC>0.58),分别考察了这四组样本对同义密码子偏好的特征,发现在全部样本中都呈现NTG(N代表四种碱基中的任一种)特受偏爱和NCG尽量避免的特征.基因环境中GC含量与C3/G3含量(密码子第三位C和G的含量)的相关分析,以及四组样本对密码子的偏好都支持以C结尾的密码子在编码中有特殊的优势,这种优势有利于保证翻译的准确性.还考察了各种氨基酸含量随编码区GC含量不同而变化的趋势.  相似文献   

12.
Synonymous codon usage bias (SCUB) is a common event that a non-uniform usage of codons often occurs in nearly all organisms. We previously found that SCUB is correlated with both intron number and exon position in the plant nuclear genome but not in the plastid genome; SCUB in both nuclear and plastid genome can mirror the evolutionary specialization. However, how about the rules in the mitochondrial genome has not been addressed. Here, we present an analysis of SCUB in the mitochondrial genome, based on 24 plant species ranging from algae to land plants. The frequencies of NNA and NNT (A- and T-ending codons) are higher than those of NNG and NNC, with the strongest preference in bryophytes and the weakest in land plants, suggesting an association between SCUB and plant evolution. The preference for NNA and NNT is more evident in genes harboring a greater number of introns in land plants, but the bias to NNA and NNT exhibits even among exons. The pattern of SCUB in the mitochondrial genome differs in some respects to that present in both the nuclear and plastid genomes.  相似文献   

13.
Synonymous codon usage varies both between organisms and among genes within a genome, and arises due to differences in G + C content, replication strand skew, or gene expression levels. Correspondence analysis (CA) is widely used to identify major sources of variation in synonymous codon usage among genes and provides a way to identify horizontally transferred or highly expressed genes. Four methods of CA have been developed based on three kinds of input data: absolute codon frequency, relative codon frequency, and relative synonymous codon usage (RSCU) as well as within-group CA (WCA). Although different CA methods have been used in the past, no comprehensive comparative study has been performed to evaluate their effectiveness. Here, the four CA methods were evaluated by applying them to 241 bacterial genome sequences. The results indicate that WCA is more effective than the other three methods in generating axes that reflect variations in synonymous codon usage. Furthermore, WCA reveals sources that were previously unnoticed in some genomes; e.g. synonymous codon usage related to replication strand skew was detected in Rickettsia prowazekii. Though CA based on RSCU is widely used, our evaluation indicates that this method does not perform as well as WCA.Key words: correspondence analysis, synonymous codon usage, horizontal gene transfer, strand-specific mutational bias, translational selection  相似文献   

14.
15.
A novel subtype of influenza A virus 09H1N1 has rapidly spread across the world. Evolutionary analyses of this virus have revealed that 09H1N1 is a triple reassortant of segments from swine, avian and human influenza viruses. In this study, we investigated factors shaping the codon usage bias of 09H1N1 and carried out cluster analysis of 60 strains of influenza A virus from different subtypes based on their codon usage bias. We discovered that more preferentially used codons of 09H1N1 are A-ended or U-ended...  相似文献   

16.
猪链球菌GZ1基因组密码子使用分析   总被引:1,自引:0,他引:1  
以猪链球菌GZ1为研究对象,利用Codon W在线工具、对应分析、ENC绘图(Nc-plot)等方法研究其基因组的密码子使用情况及影响因素.猪链球菌GZ1基因组中GC含量为41.4%,偏爱使用以U或A结尾的密码子,其密码子使用具有一定的偏好性.对应分析表明,第1条向量轴与CAI(R=-0.749,P<0.01)、G+C...  相似文献   

17.
痘苗病毒基因组密码子使用频率分析   总被引:7,自引:2,他引:7  
密码子使用的差别是普遍存在的现象,每一个密码子被某些生物偏爱,而在另一些生物中则很少使用.以往这方面的研究多集中在自养生物中,而对纯寄生的病毒本身及其与宿主细胞基因密码子使用频率关系的研究则很少.分析痘苗病毒哥本哈根株189个基因的密码子使用频率发现:总体上痘苗病毒偏爱使用以A/U为结尾的密码子;基因的异质性不强,没有影响密码子使用的主要趋势;在不同转录方向上和表达时相上,基因密码子使用略有不同;不同功能的基因其密码子使用上差别较大;晚期基因比早期基因与宿主密码子使用频率的差别大.上述结果表明:密码子是影响病毒和细胞相互作用、保证其自身生存的重要机制.  相似文献   

18.
In this study we reconstruct the evolution of codon usage bias in the chloroplast gene rbcL using a phylogeny of 92 green-plant taxa. We employ a measure of codon usage bias that accounts for chloroplast genomic nucleotide content, as an attempt to limit plausible explanations for patterns of codon bias evolution to selection- or drift-based processes. This measure uses maximum likelihood-ratio tests to compare the performance of two models, one in which a single codon is overrepresented and one in which two codons are overrepresented. The measure allowed us to analyze both the extent of bias in each lineage and the evolution of codon choice across the phylogeny. Despite predictions based primarily on the low G+C content of the chloroplast and the high functional importance of rbcL, we found large differences in the extent of bias, suggesting differential molecular selection that is clade specific. The seed plants and simple leafy liverworts each independently derived a low level of bias in rbcL, perhaps indicating relaxed selectional constraint on molecular changes in the gene. Overrepresentation of a single codon was typically plesiomorphic, and transitions to overrepresentation of two codons occurred commonly across the phylogeny, possibly indicating biochemical selection. The total codon bias in each taxon, when regressed against the total bias of each amino acid, suggested that twofold amino acids play a strong role in inflating the level of codon usage bias in rbcL, despite the fact that twofolds compose a minority of residues in this gene. Those amino acids that contributed most to the total codon usage bias of each taxon are known through amino acid knockout and replacement to be of high functional importance. This suggests that codon usage bias may be constrained by particular amino acids and, thus, may serve as a good predictor of what residues are most important for protein fitness. Present address (Joshua T. Herbeck): JBP Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA  相似文献   

19.
Abstract

The codon usage in the Vibrio cholerae genome is analyzed in this paper. Although there are much more genes on the chromosome 1 than on chromosome 2, the codon usage patterns of genes on the two chromosomes are quite similar, indicating that the two chromosomes may have coexisted in the same cell for a very long history. Unlike the base frequency pattern observed in other genomes, the G+C content at the third codon position of the V. cholerae genome varies in a rather small interval. The most notable feature of codon usage of V. cholerae genome is that there is a fraction of genes show significant bias in base choice at the second codon position. The 2006 known genes can be classified into two clusters according to the base frequencies at this position. The smaller cluster contains 227 genes, most of which code for proteins involved in transport and binding functions. The encoding products of these genes have significant bias in amino acids composition as compared with other genes. The codon usage patterns for the 1836 function unknown ORFs are also analyzed, which is useful to study their functions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号