首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Neurospheres are used as in vitro assay to measure the properties of neural stem cells. To investigate the molecular and phenotypic heterogeneity of neurospheres, molecular beacons (MBs) targeted against the stem cell markers OCT4 and SOX2 were designed, and synthesized with a 2’-O-methyl RNA backbone. OCT4 and SOX2 MBs were transfected into human embryonic mesencephalon derived cells, which spontaneously form neurospheres when grown on poly-L-ornitine/fibronectin matrix and medium complemented with bFGF. OCT4 and SOX2 gene expression were tracked in individual cell using the MBs. Quantitative image analysis every day for seven days showed that the OCT4 and SOX2 mRNA-expressing cells clustered in the centre of the neurospheres cultured in differentiation medium. By contrast, cells at the periphery of the differentiating spheres developed neurite outgrowths and expressed the tyrosine hydroxylase protein, indicating terminal differentiation. Neurospheres cultured in growth medium contained OCT4 and SOX2-positive cells distributed throughout the entire sphere, and no differentiating neurones. Gene expression of SOX2 and OCT4 mRNA detected by MBs correlated well with gene and protein expression measured by qRT-PCR and immunostaining, respectively. These experimental data support the theoretical model that stem cells cluster in the centre of neurospheres, and demonstrate the use of MBs for the spatial localization of specific gene-expressing cells within heterogeneous cell populations.  相似文献   

3.
4.
5.
6.
POU5F1 (more commonly known as OCT4/3) is one of the stem cell markers, and affects direction of differentiation in embryonic stem cells. To investigate whether cells of mesenchymal origin acquire embryonic phenotypes, we generated human cells of mesodermal origin with overexpression of the chimeric OCT4/3 gene with physiological co-activator EWS (product of the EWSR1 gene), which is driven by the potent EWS promoter by translocation. The cells expressed embryonic stem cell genes such as NANOG, lost mesenchymal phenotypes, and exhibited embryonal stem cell-like alveolar structures when implanted into the subcutaneous tissue of immunodeficient mice. Hierarchical analysis by microchip analysis and cell surface analysis revealed that the cells are subcategorized into the group of human embryonic stem cells and embryonal carcinoma cells. These results imply that cells of mesenchymal origin can be traced back to cells of embryonic phenotype by the OCT4/3 gene in collaboration with the potent cis-regulatory element and the fused co-activator. The cells generated in this study with overexpression of chimeric OCT4/3 provide us with insight into cell plasticity involving OCT4/3 that is essential for embryonic cell maintenance, and the complexity required for changing cellular identity.  相似文献   

7.
Radiotherapy (RT) as a preoperative or postoperative adjuvant or primary treatment is the most common management modality for locally advanced cervical cancer. Radioresistance of tumor cells remains a major therapeutic problem. Consequently, we aimed to explore if the stem cell biomarkers SOX2 and OCT4 protein could be used to predict radioresistance in patients with locally advanced cervical squamous cell carcinoma (LACSCC). These 132 patients were divided into two groups (radiation-resistant and radiation-sensitive groups) according to progress-free survival (PFS). Using pretreatment paraffin-embedded tissues, we evaluated SOX2 and OCT4 expression using immunohistochemical staining. The percentage of overexpression of SOX2 and OCT4 in the radiation-resistant group was much higher than that in the radiation-sensitive group (p<0.001 and p <0.001, respectively). The patients with high expression of SOX2 and OCT4 showed a shorter PFS than those with low expression. Our study suggests that the expression of SOX2 and OCT4 in tumor cells indicates resistance to radiotherapy and that these two factors were important predictors of poor survival in patients with LACSCC (hazard ratio [95% CI], 2.294 [1.013, 5.195] and 2.300 [1.050, 5.037], respectively; p=0.046 and p=0.037, respectively).  相似文献   

8.
9.
10.
11.
Human cell transformation is a key step for oncogenic development, which involves multiple pathways; however, the mechanism remains unclear. To test our hypothesis whether cell oncogenic transformation shares some mechanisms with the process of reprogramming non-stem cells to induced pluripotent stem cells (iPSC), we studied the relationship among the key factors for promoting or inhibiting iPSC in radiation-transformed human epithelial cell lines derived from different tissues (lung, breast and colon). We unexpectedly found that p63 and OCT4 were highly expressed (accompanied by low expressed p53 and miR-34a) in all transformed cell lines examined when compared with their non-transformed counterparts. We further elucidated the relationship of these factors: the 3p strand of miR-34a directly targeted OCT4 by binding to the 3′ untranslated region (3′-UTR) of OCT4 and, OCT4, in turn, stimulated p63 but inhibited p53 expression by binding to a specific region of the p63 or p53 promoter. Moreover, we revealed that the effects of OCT4 on promoting cell oncogenic transformation were by affecting p63 and p53. These results support that a positive loop exists in human cells: OCT4 upregulation as a consequence of inhibition of miR-34a, promotes p63 but suppresses p53 expression, which further stimulates OCT4 upregulation by downregulating miR-34a. This functional loop contributes significantly to cell transformation and, most likely, also to the iPSC process.  相似文献   

12.
It is well known that clonal cells can make different fate decisions, but it is unclear whether these decisions are determined during, or before, a cell's own lifetime. Here, we engineered an endogenous fluorescent reporter for the pluripotency factor OCT4 to study the timing of differentiation decisions in human embryonic stem cells. By tracking single‐cell OCT4 levels over multiple cell cycle generations, we found that the decision to differentiate is largely determined before the differentiation stimulus is presented and can be predicted by a cell's preexisting OCT4 signaling patterns. We further quantified how maternal OCT4 levels were transmitted to, and distributed between, daughter cells. As mother cells underwent division, newly established OCT4 levels in daughter cells rapidly became more predictive of final OCT4 expression status. These results imply that the choice between developmental cell fates can be largely predetermined at the time of cell birth through inheritance of a pluripotency factor.  相似文献   

13.
14.
15.
Stem cell research can lead to the development of treatments for a wide range of ailments including diabetes, heart disease, aging, neurodegenerative diseases, spinal cord injury, and cancer. OCT4 is a master regulator of self-renewal of undifferentiated embryonic stem cells. OCT4 also plays a crucial role in reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Given known vivo reproductive toxicity of cobalt and nickel metals, we examined the effect of these metals on expression of several stem cell factors in embryonic Tera-1 cells, as well as stem cells. Cobalt and nickel induced a concentration-dependent increase of OCT4 and HIF-1α, but not NANOG or KLF4. OCT4 induced by cobalt and nickel was due primarily to protein stabilization because MG132 stabilized OCT4 in cells treated with either metals and because neither nickel nor cobalt significantly modulated its steady-state mRNA level. OCT4 stabilization by cobalt and nickel was mediated largely through reactive oxygen species (ROS) as co-treatment with ascorbic acid abolished OCT4 increase. Moreover, nickel and cobalt treatment increased sumoylation and mono-ubiquitination of OCT4 and K123 was crucial for mediating these modifications. Combined, our observations suggest that nickel and cobalt may exert their reproductive toxicity through perturbing OCT4 activity in the stem cell compartment.  相似文献   

16.
The stem/progenitor cells in the murine mammary gland are a highly dynamic population of cells that are responsible for ductal elongation in puberty, homeostasis maintenance in adult, and lobulo-alveolar genesis during pregnancy. In recent years understanding the epithelial cell hierarchy within the mammary gland is becoming particularly important as these different stem/progenitor cells were perceived to be the cells of origin for various subtypes of breast cancer. Although significant advances have been made in enrichment and isolation of stem/progenitor cells by combinations of antibodies against cell surface proteins together with flow cytometry, and in identification of stem/progenitor cells with multi-lineage differentiation and self-renewal using mammary fat pad reconstitution assay and in vivo genetic labeling technique, a clear understanding of how these different stem/progenitors are orchestrated in the mammary gland is still lacking. Here we discuss the different in vivo and in vitro methods currently available for stem/progenitor identification, their associated caveats, and a possible new hierarchy model to reconcile various putative stem/progenitor cell populations identified by different research groups.  相似文献   

17.
Cancer stem cells (CSCs) have been associated with metastasis and therapeutic resistance and can be generated via epithelial mesenchymal transition (EMT). Some studies suggest that the hormone melatonin acts in CSCs and may participate in the inhibition of the EMT. The objectives of this study were to evaluate the formation of mammospheres from the canine and human breast cancer cell lines, CMT-U229 and MCF-7, and the effects of melatonin treatment on the modulation of stem cell and EMT molecular markers: OCT4, E-cadherin, N-cadherin and vimentin, as well as on cell viability and invasiveness of the cells from mammospheres. The CMT-U229 and MCF-7 cell lines were subjected to three-dimensional culture in special medium for stem cells. The phenotype of mammospheres was first evaluated by flow cytometry (CD44+/CD24low/- marking). Cell viability was measured by MTT colorimetric assay and the expression of the proteins OCT4, E-cadherin, N-cadherin and vimentin was evaluated by immunofluorescence and quantified by optical densitometry. The analysis of cell migration and invasion was performed in Boyden Chamber. Flow cytometry proved the stem cell phenotype with CD44+/CD24low/- positive marking for both cell lines. Cell viability of CMT-U229 and MCF-7 cells was reduced after treatment with 1mM melatonin for 24 h (P<0.05). Immunofluorescence staining showed increased E-cadherin expression (P<0.05) and decreased expression of OCT4, N-cadherin and vimentin (P<0.05) in both cell lines after treatment with 1 mM melatonin for 24 hours. Moreover, treatment with melatonin was able to reduce cell migration and invasion in both cell lines when compared to control group (P<0.05). Our results demonstrate that melatonin shows an inhibitory role in the viability and invasiveness of breast cancer mammospheres as well as in modulating the expression of proteins related to EMT in breast CSCs, suggesting its potential anti-metastatic role in canine and human breast cancer cell lines.  相似文献   

18.
It remains a challenge to establish a straightforward genetic approach for controlling the probability of gene activation or knockout at a desired level. Here, we developed a method termed STARS: stochastic gene activation with genetically regulated sparseness. The stochastic expression was achieved by two cross-linked, mutually-exclusive Cre-mediated recombinations. The stochastic level was further controlled by regulating Cre/lox reaction kinetics through varying the intrachromosomal distance between the lox sites mediating one of the recombinations. In mammalian cell lines stably transfected with a single copy of different STARS transgenes, the activation/knockout of reporter genes was specifically controlled to occur in from 5% to 50% of the cell population. STARS can potentially provide a convenient way for genetic labeling as well as gene expression/knockout in a population of cells with a desired sparseness level.  相似文献   

19.
20.
Maturity onset diabetes of the young (MODY) is an autosomal dominant disease. Despite extensive research, the mechanism by which a mutant MODY gene results in monogenic diabetes is not yet clear due to the inaccessibility of patient samples. Induced pluripotency and directed differentiation toward the pancreatic lineage are now viable and attractive methods to uncover the molecular mechanisms underlying MODY. Here we report, for the first time, the derivation of human induced pluripotent stem cells (hiPSCs) from patients with five types of MODY: MODY1 (HNF4A), MODY2 (GCK), MODY3 (HNF1A), MODY5 (HNF1B), and MODY8 (CEL) with a polycistronic lentiviral vector expressing a Cre-excisable human “stem cell cassette” containing the four reprogramming factors OCT4, KLF4, SOX2, and CMYC. These MODY-hiPSCs morphologically resemble human pluripotent stem cells (hPSCs), express pluripotency markers OCT4, SOX2, NANOG, SSEA-4, and TRA-1–60, give rise to derivatives of the three germ layers in a teratoma assay, and are karyotypically normal. Overall, our MODY-hiPSCs serve as invaluable tools to dissect the role of MODY genes in the development of pancreas and islet cells and to evaluate their significance in regulating beta cell function. This knowledge will aid future attempts aimed at deriving functional mature beta cells from hPSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号