首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low seawater pH can be harmful to many calcifying marine organisms, but the calcifying macroalgae Padina spp. flourish at natural submarine carbon dioxide seeps where seawater pH is low. We show that the microenvironment created by the rolled thallus margin of Padina australis facilitates supersaturation of CaCO3 and calcifi‐cation via photosynthesis‐induced elevated pH. Using microsensors to investigate oxygen and pH dynamics in the microenvironment of P. australis at a shallow CO2 seep, we found that, under saturating light, the pH inside the microenvironment (pHME) was higher than the external seawater (pHSW) at all pHSW levels investigated, and the difference (i.e., pHME ? pHSW) increased with decreasing pHSW (0.9 units at pHSW 7.0). Gross photosynthesis (Pg) inside the microenvironment increased with decreasing pHSW, but algae from the control site reached a threshold at pH 6.5. Seep algae showed no pH threshold with respect to Pg within the pHSW range investigated. The external carbonic anhydrase (CA) inhibitor, acetazolamide, strongly inhibited Pg of P. australis at pHSW 8.2, but the effect was diminished under low pHSW (6.4–7.5), suggesting a greater dependence on membrane‐bound CA for the dehydration of HCO3? ions during dissolved inorganic carbon uptake at the higher pHSW. In comparison, a calcifying green alga, Halimeda cuneata f. digitata, was not inhibited by AZ, suggesting efficient bicarbonate transport. The ability of P. australis to elevate pHME at the site of calcification and its strong dependence on CA may explain why it can thrive at low pHSW.  相似文献   

2.
With microsensors, we measured the steady‐state microprofiles of O2, pH and Ca2+ on the topside of young segments of Halimeda discoidea, as well as the surface dynamics upon light–dark shifts. The effect of several inhibitors was studied. The steady‐state measurements showed that under high light intensity, calcium and protons were taken up, while O2 was produced. In the dark, O2 was consumed, the pH decreased to below seawater level and Ca2+ uptake was reduced to 50%. At low light intensity (12 mmol photons m‐2 s‐1), Ca2+ efflux was observed. Upon light–dark shifts, a complicated pattern of both the pH and calcium surface dynamics was observed. Illumination caused an initial pH decrease, followed by a gradual pH increase: this indicated that the surface pH of H. discoidea is determined by more than one light‐induced process. When photosynthesis was inhibited by dichlorophenyl dimethyl urea (DCMU), a strong acidification was observed upon illumination. The nature and physiological function of this putative pump is not known. The calcium dynamics followed all pH dynamics closely, both in the presence and absence of DCMU. The Ca‐channel blockers verapamil and nifedipine had no effect on the Ca2+ dynamics and steady‐state profiles. Thus, in H. discoidea, calcification is not regulated by the alga, but is a consequence of pH increase during photosynthesis. Acetazolamide had no effect on photosynthesis, whereas ethoxyzolamide inhibited photosynthesis at higher light intensities. Therefore, all carbonic anhydrase activity is intracellular. Carbonic anhydrase is required to alleviate the CO2 limitation. Calcification cannot supply sufficient protons and CO2 to sustain photosynthesis.  相似文献   

3.
The effect of NH4Cl addition on intracellular pH (pH i ) was determined by flow cytometric measurements of the fluorescence of a pH-sensitive dye. The effects of NH4Cl on growth were determined for batch growth of cells in flasks in an incubator. The addition of NH4Cl caused a cytoplasmic acidification. A new lower steady-state value of pH i was attained within 20–40 min of NH4Cl addition. A correlation was found between the effects of NH4Cl on growth and on pH i : whereas 3 mM NH4Cl had little effect on growth and on pH i , 10 mM NH4Cl caused a substantial growth inhibition and a pH i decrease of 0.2–0.3 units. The effects of NH4Cl on growth and on pH i were found to be independent of the external pH value (pH e over the range 6.8 to 7.6, except that 10 mM NH4Cl was more toxic at pH e 7.6. The addition of NH4Cl caused an increase in the average cell volume at pH e 7.6, but had no effect on the average cell volume at pH e 's 6.8 and 7.2. For comparison, the effects of pH e alone on growth and on pH i were determined. There was little difference in cell growth at pH e 's 6.8, 7.2 and 7.6. At pH e 6.6, there was a substantial growth inhibition. Some measurements of the effects of pH e on pH i were made, although the steady-state value of pH i as a function of pH e was not determined due to limitations in the pH i -measuring technique. These measurements showed that pH i remained constant from pH e 7.6 to 6.8, but fell by 0.2 units at pH e 6.6, in agreement with the growth results.  相似文献   

4.
Intracellular pH (pHi) is likely to play a key role in maintaining the functional success of cnidarian–dinoflagellate symbiosis, yet until now the pHi of the symbiotic dinoflagellates (genus Symbiodinium) has never been quantified. Flow cytometry was used in conjunction with the ratiometric fluorescent dye BCECF to monitor changes in pHi over a daily light/dark cycle. The pHi of Symbiodinium type B1 freshly isolated from the model sea anemone Aiptasia pulchella was 7.25 ± 0.01 (mean ± SE) in the light and 7.10 ± 0.02 in the dark. A comparable effect of irradiance was seen across a variety of cultured Symbiodinium genotypes (types A1, B1, E1, E2, F1, and F5) which varied between pHi 7.21–7.39 in the light and 7.06–7.14 in the dark. Of note, there was a significant genotypic difference in pHi, irrespective of irradiance.  相似文献   

5.
Coralline algae provide important ecosystem services but are susceptible to the impacts of ocean acidification. However, the mechanisms are uncertain, and the magnitude is species specific. Here, we assess whether species‐specific responses to ocean acidification of coralline algae are related to differences in pH at the site of calcification within the calcifying fluid/medium (pHcf) using δ11B as a proxy. Declines in δ11B for all three species are consistent with shifts in δ11B expected if B(OH)4? was incorporated during precipitation. In particular, the δ11B ratio in Amphiroa anceps was too low to allow for reasonable pHcf values if B(OH)3 rather than B(OH)4? was directly incorporated from the calcifying fluid. This points towards δ11B being a reliable proxy for pHcf for coralline algal calcite and that if B(OH)3 is present in detectable proportions, it can be attributed to secondary postincorporation transformation of B(OH)4?. We thus show that pHcf is elevated during calcification and that the extent is species specific. The net calcification of two species of coralline algae (Sporolithon durum, and Amphiroa anceps) declined under elevated CO2, as did their pHcf. Neogoniolithon sp. had the highest pHcf, and most constant calcification rates, with the decrease in pHcf being ¼ that of seawater pH in the treatments, demonstrating a control of coralline algae on carbonate chemistry at their site of calcification. The discovery that coralline algae upregulate pHcf under ocean acidification is physiologically important and should be included in future models involving calcification.  相似文献   

6.
In many systems, events participating in cell division are controlled by intracellular pH (pHi). In Xenopus eggs, fertilization is accompanied by an increase in pHi which occurs concomitantly with an increase in protein synthesis and a reinitiation of DNA synthesis, leading the embryo to cell division. In this paper, we have shown that increasing pHi of fertilized eggs from 7.8 to 8.2 by using weak bases produced an arrest in embryonic development. Such a change in pHi was accompanied by a severe inhibition of both protein and DNA syntheses. In order to discriminate between a direct effect of pHi and a pH-independent effect of weak bases on these biosyntheses, the situation was studied in vitro. For this purpose, cytoplasmic extracts were used in which weak base addition did not produce any change in pH. Under these conditions, protein synthesis was not inhibited, suggesting that pH is probably one of the events implicated in the regulation of protein synthesis. On the other hand, DNA synthesis was inhibited by weak bases in vitro, without any change in pH intervening.  相似文献   

7.
Our ability to project the impact of global change on marine ecosystem is limited by our poor understanding on how to predict species sensitivity. For example, the impact of ocean acidification is highly species‐specific, even in closely related taxa. The aim of this study was to test the hypothesis that the tolerance range of a given species to decreased pH corresponds to their natural range of exposure. Larvae of the green sea urchin Strongylocentrotus droebachiensis were cultured from fertilization to metamorphic competence (29 days) under a wide range of pH (from pHT = 8.0/pCO2 ≈ 480 μatm to pHT = 6.5/pCO2 ≈ 20 000 μatm) covering present (from pHT 8.7 to 7.6), projected near‐future variability (from pHT 8.3 to 7.2) and beyond. Decreasing pH impacted all tested parameters (mortality, symmetry, growth, morphometry and respiration). Development of normal, although showing morphological plasticity, swimming larvae was possible as low as pHT ≥ 7.0. Within that range, decreasing pH increased mortality and asymmetry and decreased body length (BL) growth rate. Larvae raised at lowered pH and with similar BL had shorter arms and a wider body. Relative to a given BL, respiration rates and stomach volume both increased with decreasing pH suggesting changes in energy budget. At the lowest pHs (pHT ≤ 6.5), all the tested parameters were strongly negatively affected and no larva survived past 13 days post fertilization. In conclusion, sea urchin larvae appeared to be highly plastic when exposed to decreased pH until a physiological tipping point at pHT = 7.0. However, this plasticity was associated with direct (increased mortality) and indirect (decreased growth) consequences for fitness.  相似文献   

8.
9.
George S. Espie  Brian Colman 《Planta》1981,153(3):210-216
The intracellular pH of isolated, photosynthetically active mesophyll cells of Asparagus sprengeri Regel has been determined, in the light and dark, by the distribution of the weak acid 5,5-dimethyl-[2-14C]oxazolidine-2,4-dione ([14C]DMO) between the cells and the liquid medium. [14C]DMO was taken up rapidly, reaching equilibrium in 7–10 min of incubation, but was not metabolized by the cells, and intracellular binding of the compound was minimal. The intracellular pH, measured at saturating light fluence and 1.5 mM sodium bicarbonate, was found to remain relatively constant at 6.95–7.21 over the external pH range of 5.5–7.2. Illumination of the cells increased the intracellular pH compared to dark controls. The pH of the cytoplasm, excluding and including the chloroplasts (cytoplasmic and bulk cytoplasmic, respectively) was calculated from the experimentally derived intracellular [14C]DMO concentration and estimates of the vacuolar, chloroplastic and cytoplasmic volumes. The calculated cytoplasmic pH was similar in the light and dark, being 7.75 and 7.74, respectively, while the calculated pH of bulk cytoplasm was 7.85 in the light and 7.49 in the dark. Theoretical analysis indicated that intracellular pH is a good indicator of changes in the bulk cytoplasmic pH but insensitive to changes in vacuolar pH. The external pH optimum for photosynthesis (O2 evolution) of isolated Asparagus cells was pH 7.2. At pH 8.0 photosynthesis was inhibited by 30% and at pH 5.25 by 45%. Inhibition at alkaline pH may be the result of a decrease in the pH gradient between the cells and the medium, causing CO2 limitation in the cell. At acid pH, decrease in internal pH caused by substantial accumulation of inorganic carbon may account for the loss in photosynthetic activity.Abbreviations [14C]DMO 5,5-dimethyl[2-14C]oxazolidine-2,4-dione - pHi overall intracellular pH - pHe pH of external medium  相似文献   

10.
Shelled pteropods play key roles in the global carbon cycle and food webs of various ecosystems. Their thin external shell is sensitive to small changes in pH, and shell dissolution has already been observed in areas where aragonite saturation state is ~1. A decline in pteropod abundance has the potential to disrupt trophic networks and directly impact commercial fisheries. Therefore, it is crucial to understand how pteropods will be affected by global environmental change, particularly ocean acidification. In this study, physiological and molecular approaches were used to investigate the response of the Mediterranean pteropod, Heliconoides inflatus, to pH values projected for 2100 under a moderate emissions trajectory (RCP6.0). Pteropods were subjected to pHT 7.9 for 3 days, and gene expression levels, calcification and respiration rates were measured relative to pHT 8.1 controls. Gross calcification decreased markedly under low pH conditions, while genes potentially involved in calcification were up‐regulated, reflecting the inability of pteropods to maintain calcification rates. Gene expression data imply that under low pH conditions, both metabolic processes and protein synthesis may be compromised, while genes involved in acid–base regulation were up‐regulated. A large number of genes related to nervous system structure and function were also up‐regulated in the low pH treatment, including a GABAA receptor subunit. This observation is particularly interesting because GABAA receptor disturbances, leading to altered behavior, have been documented in several other marine animals after exposure to elevated CO2. The up‐regulation of many genes involved in nervous system function suggests that exposure to low pH could have major effects on pteropod behavior. This study illustrates the power of combining physiological and molecular approaches. It also reveals the importance of behavioral analyses in studies aimed at understanding the impacts of low pH on marine animals.  相似文献   

11.
The food pathogen Bacillus cereus is likely to encounter acidic environments (i) in food when organic acids are added for preservation purposes, and (ii) during the stomachal transit of aliments. In order to characterise the acid stress response of B. cereus ATCC14579, cells were grown in chemostat at different pH values (pHo from 9.0 to 5.5) and different growth rates (μ from 0.1 to 0.8 h−1), and were submitted to acid shock at pH 4.0. Cells grown at low pHo were adapted to acid media and induced a significant acid tolerance response (ATR). The ATR induced was modulated by both pHo and μ, and the μ effect was more marked at pHo 5.5. Intracellular pH (pHi) was affected by both pHo and μ. At a pHo above 6, the pHi decreased with the decrease of pHo and the increase of μ. At pHo 5.5, pHi was higher compared to pHo 6.0, suggesting that mechanisms of pHi homeostasis were induced. The acid survival of B. cereus required protein neo-synthesis and the capacity of cells to maintain their pHi and ΔpH (pHi - pHo). Haemolysin BL and non-haemolytic enterotoxin production were both influenced by pHo and μ.  相似文献   

12.
McNicholl  C.  Koch  M. S.  Swarzenski  P. W.  Oberhaensli  F. R.  Taylor  A.  Batista  M. Gómez  Metian  M. 《Coral reefs (Online)》2020,39(6):1635-1647

Net calcification rates for coral reef and other calcifiers have been shown to decline as ocean acidification (OA) occurs. However, the role of calcium carbonate dissolution in lowering net calcification rates is unclear. The objective of this study was to distinguish OA effects on calcification and dissolution rates in dominant calcifying macroalgae of the Florida Reef Tract, including two rhodophytes (Neogoniolithon strictum, Jania adhaerens) and two chlorophytes (Halimeda scabra, Udotea luna). Two experiments were conducted: (1) to assess the difference in gross (45Ca uptake) versus net (total alkalinity anomaly) calcification rates in the light/dark and (2) to determine dark dissolution (45CaCO3), using pH levels predicted for the year 2100 and ambient pH. At low pH in the light, all species maintained gross calcification rates and most sustained net calcification rates relative to controls. Net calcification rates in the dark were ~84% lower than in the light. In contrast to the light, all species had lower net calcification rates in the dark at low pH with chlorophytes exhibiting net dissolution. These data are supported by the relationship (R2 = 0.82) between increasing total alkalinity and loss of 45Ca from pre-labelled 45CaCO3 thalli at low pH in the dark. Dark dissolution of 45CaCO3-labelled thalli was ~18% higher in chlorophytes than rhodophytes at ambient pH, and ~ twofold higher at low pH. Only Udotea, which exhibited dissolution in the light, also had lower daily calcification rates integrated over 24 h. Thus, if tropical macroalgae can maintain high calcification rates in the light, lower net calcification rates in the dark from dissolution may not compromise daily calcification rates. However, if organismal dissolution in the dark is additive to sedimentary carbonate losses, reef dissolution may be amplified under OA and contribute to erosion of the Florida Reef Tract and other reefs that exhibit net dissolution.

  相似文献   

13.
Increase in anthropogenic pCO2 alters seawater chemistry and could lead to reduced calcification or skeleton dissolution of calcifiers and thereby weaken coral-reef structure. Studies have suggested that the complex and diverse responses in stony coral growth and calcification, as a result of elevated pCO2, can be explained by the extent to which their soft tissues cover the underlying skeleton. This study compared the effects of decreased pH on the microstructural features of both in hospite (within the colony) and isolated sclerites (in the absence of tissue protection) of the zooxanthellate reef-dwelling octocoral Ovabunda macrospiculata. Colonies and isolated sclerites were maintained under normal (8.2) and reduced (7.6 and 7.3) pH conditions for up to 42 days. Both in hospite and isolated sclerites were then examined under SEM and ESEM microscopy in order to detect any microstructural changes. No differences were found in the microstructure of the in hospite sclerites between the control and the pH treatments. In stark contrast, the isolated sclerites revealed dissolution damage related to the acidity of the water. These findings suggest a protective role of the octocoral tissue against adverse pH conditions, thus maintaining them unharmed at high pCO2. In light of the competition for space with the less resilient reef calcifiers, octocorals may thus have a significant advantage under greater than normal acidic conditions.  相似文献   

14.
Ocean acidification (OA), the ongoing decline in seawater pH, is predicted to have wide‐ranging effects on marine organisms and ecosystems. For seaweeds, the pH at the thallus surface, within the diffusion boundary layer (DBL), is one of the factors controlling their response to OA. Surface pH is controlled by both the pH of the bulk seawater and by the seaweeds' metabolism: photosynthesis and respiration increase and decrease pH within the DBL (pHDBL), respectively. However, other metabolic processes, especially the uptake of inorganic nitrogen (Ni; NO3? and NH4+) may also affect the pHDBL. Using Macrocystis pyrifera, we hypothesized that (1) NO3? uptake will increase the pHDBL, whereas NH4+ uptake will decrease it, (2) if NO3? is cotransported with H+, increases in pHDBL would be greater under an OA treatment (pH = 7.65) than under an ambient treatment (pH = 8.00), and (3) decreases in pHDBL will be smaller at pH 7.65 than at pH 8.00, as higher external [H+] might affect the strength of the diffusion gradient. Overall, Ni source did not affect the pHDBL. However, increases in pHDBL were greater at pH 7.65 than at pH 8.00. CO2 uptake was higher at pH 7.65 than at pH 8.00, whereas HCO3? uptake was unaffected by pH. Photosynthesis and respiration control pHDBL rather than Ni uptake. We suggest that under future OA, Macrocystis pyrifera will metabolically modify its surface microenvironment such that the physiological processes of photosynthesis and Ni uptake will not be affected by a reduced pH.  相似文献   

15.
SYNOPSIS. Symbiosis between Chlamydomonas hedleyi (Lee, Crockett, Hagen & Stone) and Archais angulatus (Fichtel & Moll) was examined during laboratory studies of primary production and light-enhanced calcification. Photosynthesis and calcification are directly proportional to light intensity in the range of 0–200 μEinsteins m-2 sec-1. Calcification in the light is directly proportional to photosynthesis and proceeds at rates that are 2–3 times that observed in the dark. The herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), in concentrations of 1–100 μM, completely inhibits photosynthesis and light-enhanced calcification. Calcification of the foraminiferan test is therefore due to the photosynthetic activity of the symbiote. Calcification rates for foraminifers incubated in the dark or with DCMU are not significantly different from the calcification rates obtained for dead foraminifers. Rates of calcification obtained with 45Ca are twice that obtained with 14C.  相似文献   

16.
Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as multiple rather than single factors influence key physiological processes in coral reefs.  相似文献   

17.
Summary Intracellular pH (pH i ) of the acinar cells of the isolated, superfused mouse lacrimal gland has been measured using pH-sensitive microelectrodes. Under nonstimulated condition pH i was 7.25, which was about 0.5 unit higher than the equilibrium pH. Alterations of the external pH by ±0.4 unit shifted pH i only by ±0.08 unit. The intracellular buffering value determined by applications of 25mm NH 4 + and bicarbonate buffer solution gassed with 5% CO2/95% O2 was 26 and 46mm/pH, respectively Stimulation with 1 m acetylcholine (ACh) caused a transient, small decrease and then a sustained increase in pH i . In the presence of amiloride (0.1mm) or the absence of Na+, application of ACh caused a significant decrease in pH i and removal of amiloride or replacement with Na+-containing saline, respectively, rapidly increased the pH i . Pretreatment with DIDS (0.2mm) did not change the pH i of the nonstimulated conditions; however, it significantly enhanced the increase in pH i induced by ACh. The present results showed that (i) there is an active acid extrusion mechanism that is stimulated by ACh; (ii) stimulation with ACh enhances the rate of acid production in the acinar cells; and (iii) the acid extrusion mechanism is inhibited by amiloride addition to and Na+ removal from the bath solution. We suggest that both Na+/H+ and HCO 3 /Cl exchange transport mechanisms are taking roles in the intracellular pH regulation in the lacrimal gland acinar cells.  相似文献   

18.
Effects of the intracellular H+ concentration on the membranepotential and membrane resistance of tonoplast-free cells ofChara australis were examined under light and dark conditions.Cells were made tonoplast-free by perfusing the vacuole withmedia containing 5 mM EGTA and 30 mM buffers of various pH values.The electrogenic pump was stopped by removing the intracellularATP. The ATP-dependent part of the membrane potential was largeat pH1 6.2 and 6.9, but decreased in both the acidic (pH1 5.1,5.7) and alkaline (pH1 7.9, 8.7) ranges. Assuming that the putativeelectrogenic H+ pump acts solely as a current source, we estimatedthe current and the work done by the pump. Both the currentand the work were at a maximum at pH1 6.9, but decreased tosome extent at pH1 7.9–8.7 and decreased greatly at pH15.7–5.1. Light caused a significant membrane hyperpolarization at pH16.2–7.9, but only a slight hyperpolarization at pH1 5.1,5.7 and 8.7. The presence of light-induced hyperpolarizationat pH1 lower than 6.2 suggests that acidification of the cytoplasmupon illumination does not cause activation of the putativeH+ pump. Membrane resistance was very high at pH1 5.1 and 5.7 and verylow at pH1 8.7. The very high Rm values at pH1 5.1 and 5.6 arebelieved to be related to inhibition of the activity of thepump. (Received June 20, 1979; )  相似文献   

19.
Soil pH is commonly measured in water (pHw) or 0.01 M CaCl2 (pHCa). The need to convert between these methods has led to the publication of linear, quadratic and cubic polynomial relationships for limited suites of soils. Concerns over the applicability of such relationships when mapping a wide range of soils and pH led to the establishment of a database of pHW and pHCa values on each of 7894 samples from soil survey and field experimental sites in Queensland. The relationship between pHW and pHCa across all soils was investigated and preliminary results examining the effect of soil depth and soil type on the relationship are presented.For all soils and depths, a linear regression accounted for 93.2% of the variation but did not predict pHCa well at very high or low pHW values. The inclusion of second and third powers of pHW accounted for significantly more of the variation (R2=0.94) in pHCa and the resultant curve matched the data better at high and low pH.Analysis of surface, sub-surface and subsoil groupings did not reveal any appreciable differences in the relationship between pHW and pHCa attributable to depth. In contrast, differences in the relationship were evident between soil types. Generally, the mildly leached soils had linear relationships, while the weathered soils were distinctly curvilinear at low pH.  相似文献   

20.
A wide range of bicarbonate concentrations was used to monitor the kinetics of bicarbonate (HCO3?) use in both photosynthesis and calcification in two reef‐building corals, Porites porites and Acropora sp. Experiments carried out close to the P. porites collection site in Barbados showed that additions of NaHCO3 to synthetic seawater proportionally increased the calcification rate of this coral until the concentration exceeded three times that of seawater (6 mM). Photosynthetic rates were also stimulated by HCO3? addition, but these became saturated at a lower concentration (4 mM). Similar experiments on aquarium‐acclimated colonies of Indo‐Pacific Acropora sp. showed that calcification and photosynthesis in this coral were enhanced to an even greater extent than P. porites, with calcification continuing to increase above 8 mM HCO3?, and photosynthesis saturating at 6 mM. Calcification rates of Acropora sp. were also monitored in the dark, and, although these were lower than in the light for a given HCO3? concentration, they still increased dramatically with HCO3? addition, showing that calcification in this coral is light stimulated but not light dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号