首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

2.
 In tomato, Bulked Segregant Analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to a quantitative trait locus (QTL) involved in the resistance to the Tomato Yellow Leaf Curl Virus. F4 lines were distributed into two pools, each consisting of the most resistant and of the most susceptible individuals, respectively. Both pools were screened using 600 random primers. Four RAPD markers were found to be linked to a QTL responsible for up to 27.7% of the resistance. These markers, localized in the same linkage group within a distance of 17.3 cM, were mapped to chromosome 6 on the tomato RFLP map. Received: 21 August 1996 / Accepted: 4 April 1997  相似文献   

3.
Sd 1 is a dominant gene for resistance to biotypes 1 and 2 of the rosy leaf curling aphid, Dysaphis devecta Wlk., which can cause economic damage to apple trees. This report describes the identification of three RFLP and four RAPD markers linked to Sd 1 in a cross between the D. devecta susceptible variety ‘Prima’ (sd 1 sd 1) and the resistant variety ‘Fiesta’ (Sd 1 sd 1). Potted trees were artificially infested in the glasshouse, and the ratio of resistant:susceptible plants supported the hypothesis that the resistance was under the control of a single dominant gene. The position of the gene was mapped to a single locus on a ‘Fiesta’ chromosome, within 2 cM of three tightly linked RFLP markers (MC064a, 2B12a and MC029b); the four RAPD markers were located further away (between 13 and 46 cM). This is the first report of molecular markers for an aphid resistance gene in tree fruit crops. The potential application of these markers in a marker-assisted resistance breeding programme is discussed. Received: 1 July 1996/Accepted: 23 August 1996  相似文献   

4.
 Two segregating populations for citrus tristeza virus (CTV) resistance derived from Poncirus trifoliata var ‘Flying Dragon’ by self-pollination and pollination to Citrus medica L. var ethrog ‘Arizona’ were inoculated with a common CTV isolate. The presence of virus was checked by the Double Antibody Sandwich Enzyme-Linked Assay and Direct Tissue Blot Inmunoassay at 3, 6, and 12 months after inoculation. Seven RAPDs were found linked to the CTV resistance gene by bulked segregant analysis. The closest linked RAPDs were cloned to obtain linked codominant RFLPs and to increase the precision of the genetic distance estimation. The CTV resistance gene seems to be located between cW18 and cK16. Differences in genetic distances among progenies are large and can be explained by genome-wide reduction in the recombination of progeny derived from male versus female gametes. Received: 5 June 1996 / Accepted: 26 July 1996  相似文献   

5.
Resistance to Yam mosaic virus (YMV) in tetraploid white yam (Dioscorea rotundatd) is inherited differentially as a dominant and recessive character. Elite D. rotundata breeding lines with durable resistance to YMV can be developed by pyramiding major dominant and recessive genes using marker‐assisted selection (MAS). The tetraploid breeding line, TDr 89/01444, is a source of dominant genetic resistance to yam mosaic disease. Bulked segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to YMV resistance in F1 progeny derived from a cross between TDr 89/01444 and the susceptible female parent, TDr 87/00571. The F1 progeny segregated 1:1 (resistantsusceptible) when inoculated with a Nigerian isolate of YMV, confirming that resistance to YMV in TDr 89/01444 was dominantly inherited. A single locus that contributes to YMV resistance in TDr 89/01444 was identified and tentatively named Ymv‐1. Two RAPD markers closely linked in coupling phase with Ymv‐1 were identified, both of which were mapped on the same linkage group: OPW18850 (3.0 centiMorgans [cM]) and OPX15850 (2.0 cM). Both markers successfully identified Ymv‐1 in resistant genotypes among 12 D. rotundata varieties and in resistant F1 individuals from the cross TDr 93–1 × TDr 877 00211, indicating their potential for use in marker‐assisted selection. OPW18850 and OPX15850 are the first DNA markers for YMV resistance and represent a starting point in the use of molecular markers to assist breeding for resistance to YMV.  相似文献   

6.
The Random Amplified Polymorphic DNA (RAPD) technique was used to amplify DNA segments, with the objective of finding markers linked to sex determination in the dioecious species, Pistacia vera. Progenies from two female parents pollinated by a common male parent were studied. Two bulks of DNA were made in each cross, one from males and one from females, by pooling an equal weight of fresh leaves from each individual contributing to the bulk prior to DNA extraction. DNA was extracted from each bulked sample and from each of the contributing individuals. DNA was also extracted from 14 cultivars of P. vera and from 94 open-pollinated, fewweeks-old P. vera seedlings of unknown sex. Seven hundred different decamer oligonucleotide primers were used to perform DNA amplification, with 1 of these (OPO08) producing a 945 bp amplification band that was present only in the bulked female samples and absent in the bulked male samples of the two crosses. The relationship between band presence and female sex expression was conserved in every individual obtained from the two crosses and in the 14 cultivars unrelated to the crosses. We propose that this band is tightly linked to the gene(s) that control sex determination in pistachio. The OPO08945 RAPD marker could be used in a breeding program to screen the gender of pistachio plants long before they reach reproductive maturity, resulting in considerable savings of time and economic resources. In order to verify that assumption we screened 94 additional seedlings with the OPO08 primer and obtained results consistent with a 11 male:female ratio.  相似文献   

7.
Presence of the dominant Tu gene in Lactuca sativa is sufficient to confer resistance to infection by turnip mosaic virus (TuMV). In order to obtain an immunological assay for the presence of TuMV in inoculated plants, the TuMV coat protein (CP) gene was cloned by amplification of a cDNA corresponding to the viral genome using degenerate primers designed from conserved potyvirus CP sequences. The TuMV CP was overexpressed in Escherichia coli, and polyclonal antibodies were produced. To locate Tu on the L. sativa genetic map, F3 families from a cross between cvs Cobbham Green (resistant to TuMV) and Calmar (susceptible) were genotyped for Tu. Families known to be recombinant in the region containing Tu were infected with TuMV and tested by the indirect enzyme-linked immunosorbent assay (ELISA) using the anti-CP serum. This assay placed Tu between two random amplified polymorphic DNA (RAPD) markers and 3.2 cM from Dm5/8 (which confers resistance to Bremia lactucae). Also, bulked segregant analysis was used to screen for additional RAPD markers tightly linked to the Tu locus. Five new markers linked to Tu were identified in this region, and their location on the genetic map was determined using informative recombinants in the region. Six markers were identified as being linked within 2.5 cM of Tu.  相似文献   

8.
Summary Sequence characterized amplified regions (SCARs) were derived from eight random amplified polymorphic DNA (RAPD) markers linked to disease resistance genes in lettuce. SCARs are PCR-based markers that represent single, genetically defined loci that are identified by PCR amplification of genomic DNA with pairs of specific oligonucleotide primers; they may contain high-copy, dispersed genomic sequences within the amplified region. Amplified RAPD products were cloned and sequenced. The sequence was used to design 24-mer oligonucleotide primers for each end. All pairs of SCAR primers resulted in the amplification of single major bands the same size as the RAPD fragment cloned. Polymorphism was either retained as the presence or absence of amplification of the band or appeared as length polymorphisms that converted dominant RAPD loci into codominant SCAR markers. This study provided information on the molecular basis of RAPD markers. The amplified fragment contained no obvious repeated sequences beyond the primer sequence. Five out of eight pairs of SCAR primers amplified an alternate allele from both parents of the mapping population; therefore, the original RAPD polymorphism was likely due to mismatch at the primer sites.  相似文献   

9.
Seven strains of Soybean mosaic virus (SMV) and three independent resistance loci (Rsv1, Rsv3, and Rsv4) have been identified in soybean. The objective of this research was to pyramid Rsv1, Rsv3, and Rsv4 for SMV resistance using molecular markers. J05 carrying Rsv1 and Rsv3 and V94-5152 carrying Rsv4 were used as the donor parents for gene pyramiding. A series of F2:3, F3:4, and F4:5 lines derived from J05 × V94-5152 were developed for selecting individuals carrying all three genes. Eight PCR-based markers linked to the three SMV resistance genes were used for marker-assisted selection. Two SSR markers (Sat_154 and Satt510) and one gene-specific marker (Rsv1-f/r) were used for selecting plants containing Rsv1; Satt560 and Satt063 for Rsv3; and Satt266, AI856415, and AI856415-g for Rsv4. Five F4:5 lines were homozygous for all eight marker alleles and presumably carry all three SMV resistance genes that would potentially provide multiple and durable resistance to SMV.  相似文献   

10.
11.
Rust in bean (Phaseolus vulgaris L.), caused byUromyces appendiculatus (Pers.) Unger var.appendiculatus [ =U. phaseoli (Reben) Wint.], is a major disease problem and production constraint in many parts of the world. The predominant form of genetic control of the pathogen is a series of major genes which necessitate the development of efficient selection strategies. Our objective was focused on the identification of RAPD (random amplified polymorphic DNA) markers linked to a major bean rust resistance gene block enabling marker-based selection and facilitating resistance gene pyramiding into susceptible bean germplasm. Using pooled DNA samples of genotyped individuals from two segregating populations, we identified two RAPD markers linked to the gene block of interest. One such RAPD, OF10970 (generated by a 5-GGAAGCTTGG-3 decamer), was found to be closely linked (2.15±1.50 centi Morgans) in coupling with the resistance gene block. The other identified RAPD, OI19460 (generated by a 5-AATGCGGGAG-3 decamer), was shown to be more tightly linked (also in coupling) than OF10970 as no recombinants were detected among 97 BC6F2 segregating individuals in the mapping population. Analysis of a collection of resistant and susceptible cultivars and experimental lines, of both Mesoamerican and Andean origin, revealed that: (1) recombination between OF10970 and the gene block has occurred as evidenced by the presence of the DNA fragment in several susceptible genotypes, (2) recombination between OI19460 and the gene block has also occurred indicating that the marker is not located within the gene block itself, and (3) marker-facilitated selection using these RAPD markers, and another previously identified, will enable gene pyramiding in Andean germplasm and certain Mesoamerican bean races in which the resistance gene block does not traditionally exist. Observations of variable recombination among Mesoamerican bean races suggested suppression of recombination between introgressed segments and divergent recurrent backgrounds.Research supported by the Michigan Agricultural Research Station and the USDA-ARS. Mention of a trademark or a proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products that may also be suitable  相似文献   

12.
Powdery mildew (Blumeria graminis f. sp. tritici) is one of the most damaging diseases of wheat (Triticum aestivum). The objective of this study was to locate and map a recently identified powdery mildew resistance gene, MlRE, carried by the resistant line RE714 using microsatellites uniformly distributed among the whole genome together with a bulked segregant analysis (BSA). The bulks consisted of individuals with an extreme phenotype taken from a population of 140 F3 families issued from the cross between RE714 (resistant) and Hardi (susceptible). The population had been tested with three powdery mildew isolates at the seedling stage. Qualitative interpretation of the resistance tests located the MlRE gene on the distal part of the long arm of chromosome 6A. A subsequent quantitative interpretation of the resistance permitted us to detect another resistance factor on a linkage group assigned to chromosome 5D, which was constructed with microsatellites for which a polymorphism of intensity between bulks was observed. This quantitative trait locus (QTL) explained 16.8– 25.34% of the total variation. An interaction between both the resistant factor (MlRE and the QTL) was found for only one of the isolates tested. This study shows the advantage of making a quantitative interpretation of resistant tests and that the use of microsatellites combined with BSA is a powerful strategy to locate resistance genes in wheat. Received: 30 August 1999 / Accepted: 11 November 1999  相似文献   

13.

Background

Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding.

Results

Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding.

Conclusions

We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1878-5) contains supplementary material, which is available to authorized users.  相似文献   

14.
Marker-assisted selection has been widely implemented in crop breeding and can be especially useful in cases where the traits of interest show recessive or polygenic inheritance and/or are difficult or impossible to select directly. Most indirect selection is based on DNA polymorphism linked to the target trait, resulting in error when the polymorphism recombines away from the mutation responsible for the trait and/or when the linkage between the mutation and the polymorphism is not conserved in all relevant genetic backgrounds. In this paper, we report the generation and use of molecular markers that define loci for selection using cleaved amplified polymorphic sequences (CAPS). These CAPS markers are based on nucleotide polymorphisms in the resistance gene that are perfectly correlated with disease resistance, the trait of interest. As a consequence, the possibility that the marker will not be linked to the trait in all backgrounds or that the marker will recombine away from the trait is eliminated. We have generated CAPS markers for three recessive viral resistance alleles used widely in pepper breeding, pvr1, pvr1 1, and pvr1 2. These markers are based on single nucleotide polymorphisms (SNPs) within the coding region of the pvr1 locus encoding an eIF4E homolog on chromosome 3. These three markers define a system of indirect selection for potyvirus resistance in Capsicum based on genomic sequence. We demonstrate the utility of this marker system using commercially significant germplasm representing two Capsicum species. Application of these markers to Capsicum improvement is discussed.  相似文献   

15.
QTL analysis for resistance to cucumber mosaic virus (CMV) was performed in an intraspecific Capsicum annuum population. A total of 180 F3 families were derived from a cross between the susceptible bell-type cultivar Maor and the resistant small-fruited Indian line Perennial and inoculated with CMV in three experiments carried out in the USA and Israel using two virus isolates. Mostly RFLP and AFLP markers were used to construct the genetic map, and interval analysis was used for QTL detection. Four QTL were significantly associated with resistance to CMV. Two digenic interactions involving markers with and without an individual effect on CMV resistance were also detected. The QTL controlling the largest percentage (16–33%) of the observed phenotypic variation (cmv11.1) was detected in all three experiments and was also involved in one of the digenic interactions. This QTL is linked to the L locus that confers resistance to tobacco mosaic virus (TMV), confirming earlier anecdotal observations of an association between resistance to CMV and susceptibility to TMV in Perennial. An advanced backcross breeding line from an unrelated population, 3990, selected for resistance to CMV was analyzed for markers covering the genome, allowing the identification of genomic regions introgressed from Perennial. Four of these introgressions included regions associated with QTL for CMV resistance. Markers in two genomic regions that were identified as linked to QTL for CMV resistance were also linked to QTL for fruit weight, confirming additional breeding observations of an association between resistance to CMV originating from Perennial and small fruit weight. Received: 17 July 2000 / Accepted: 16 October 2000  相似文献   

16.
15 lines were bred by interspecific hybridisation and I1 to I6 generation of three of them were tested for resistance to CMV. In spite of the selection by CMV resistance in the progenies the number of the resistant plants did not always increase. The progenies having 100 % symptomless plants for two or more consecutive years were not selected in the studied lines. A large spectrum of variations in the percentage of symptomless plants in the progenies per year and the presence of disease and symptomless parts in one plant were established. These results are possibly due to the complex mechanism of inheritance of CMV resistance as well as to the influence of environmental factors on the expression of the resistance observed  相似文献   

17.
The role of RAPD markers in breeding for disease resistance in common bean   总被引:1,自引:0,他引:1  
Diseases are regarded as the leading constraint to increased common bean (Phaseolus vulgaris L.) production worldwide. The range in variability and complexity among bean pathogens can be controlled with different single gene and quantitative resistance sources. Combining these resistance sources into commercial cultivars is a major challenge for bean breeders. To assist breeders, a major effort to identify RAPD markers tightly linked to different genes was undertaken. To date, 23 RAPD and five SCAR markers linked to 15 different resistance genes have been identified, in addition to QTL conditioning resistance to seven major pathogens of common bean. We review the feasibility of using marker-assisted selection (MAS) to incorporate disease resistance into common bean. Indirect selection of single resistance genes in the absence of the pathogen and the opportunity afforded breeders to pyramid these genes to improve their longevity and retain valuable hypostatic genes is discussed. The role of markers linked to the QTL controlling complex resistance and the potential to combine resistance sources using marker based selection is reviewed. Improving levels of selection efficiency using flanking markers, repulsion-phase linkages, co-dominant marker pairs, recombination-facilitated MAS and SCAR markers is demonstrated. Marker-assisted selection for disease resistance in common bean provides opportunities to breeders that were not feasible with traditional breeding methods.  相似文献   

18.
The use of genetically diverse resistance sources is important in breeding for durable disease resistance. Detection and evaluation of resistance genes by conventional inheritance experiments, however, often require laborious screening and genetic testing. In the present study, a marker-assisted screening for resistance sources was initiated in soybean [Glycine max (L.) Merr] using one DNA microsatellite and two RFLP markers tightly linked to a soybean mosaic virus (SMV) resistance gene (Rsv1). The three marker loci were used to screen 67 diverse soybean cultivars, breeding lines, and plant introductions. Five variants were found at the microsatellite locus (HSP176L), and the two RFLP loci (pA186 and pK644a) near Rsv1 show a remarkably higher level of restriction polymorphism than Rsv1-independent RFLP loci. Several specific variants at the three marker loci were found to be correlated with virus resistance, among which HSP176L-2 can be detected by PCR, thus may be useful for germplasm screening. The grouping of the 67 accessions according to their multilocus marker variants agrees with the available pedigree information. When all, or most, of the cultivars within a given group with the same Rsv1-linked marker variant are resistant, their SMV resistance is most likely conferred by Rsv1. These putatively Rsv1-carrying groups contain a total of 38 SMV-resistant lines including six differential cultivars that are known to carry Rsv1. The remaining seven resistant accessions (Columbia, Holladay, Peking, Virginia, FFR-471, PI 507403, and PI 556949) do not carry resistance marker variants, and at least some of them could be sources of resistance genes independent of Rsv1.  相似文献   

19.
Molecular markers linked to stem rot resistance in rice   总被引:4,自引:0,他引:4  
Stem rot (Sclerotium oryzae) is an important disease constraint in Californian rice production. Measurement of resistance is laborious, and the low heritability of the trait limits the effectiveness of selection in breeding programs. Molecular markers linked to the trait would therefore provide a superior selection screen to assist in transferring resistance into improved cultivars. The genetics of resistance to stem rot was studied in the germplasm line 87-Y-550 (PI566666), which inherited its resistance from the wild species Oryza rufipogon. Four crosses of 87-Y-550 with susceptible lines were made and recombinant inbred lines of only the most-resistant and most-susceptible progeny within each cross were advanced for late-generation testing. Approximately 900 AFLP (amplified fragment length polymorphism) primer combinations were applied to resistant and susceptible bulks within each cross. One AFLP marker showed significant association with stem rot resistance and accounted for approximately 45.0% of the phenotypic variation in 59 progenies. This marker was mapped on rice chromosome 2 between the RFLP markers RZ166 and RG139 by using F2-reference population information. The accuracy of AFLP marker mapping was validated by size and sequence comparison of AFLP bands from 87-Y-550 and the reference population. With the strategy of selective genotyping combined with a parental survey, two microsatellite markers, RM232 and RM251, on chromosome 3 were also found associated with stem rot resistance and accounted for 41.1% and 37.9% of the phenotypic variation, respectively. The multiple linear regression model included TAA/GTA167 on chromosome 2 and RM232 on chromosome 3 and cumulatively explained 49.3% of total variation. The molecular markers linked to stem rot resistance should facilitate selection for this recalcitrant trait in rice breeding programs by eliminating the need for early generation screening. Received: 27 March 2000 / Accepted: 4 June 2000  相似文献   

20.
A population of recombinant inbred lines (RIL) derived from a cross between the Watermelon mosaic virus (WMV) resistant genotype TGR-1551 and the susceptible Spanish cultivar ‘Bola de Oro’ has been evaluated for WMV resistance in spring, fall and growth chamber conditions. The quantitative trait loci (QTL) analyses detected one major QTL (wmv) on linkage group (LG) XI close to the microsatellite marker CMN04_35. This QTL controls the resistance to WMV in the three environmental conditions evaluated. Other minor QTLs affecting the severity of viral symptoms were identified, but they were not detected in all the assayed environments. The screening of the marker CMN04_35 in an F2 progeny, derived from the same cross, confirmed the effect of this QTL on the expression of WMV resistance also in early generations, which evidences the usefulness of this marker for a marker assisted selection program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号