首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《IRBM》2021,42(6):457-465
Background and objectiveBased on magnetic resonance imaging (MRI), macroscopic structural and functional connectivity of human brain has been widely explored in the last decade. However, little work has been done on effective connectivity between individual brain parcels. In this preliminary study, we aim to investigate whole-brain effective connectivity networks from resting-state functional MRI (rs-fMRI) images.Material and methodsAfter the functional connectivity networks of 26 healthy subjects (aged from 25 to 35 years old) from Human Connectome Project database were derived from rs-fMRI images with dynamic time warping, proportional thresholding (PT) was performed on the functional connectivity matrices by retaining the PT% strongest functional connections. PT% ranges from 40% to 10% in steps of 5%. Then, effective connections corresponding to the PT% strongest functional connections, both bi-directional and unidirectional, were estimated with Renyi's 2-order transfer entropy (TE) method. Topological metrics of the built functional and effective connectivity networks were further characterized, including clustering coefficient, transitivity, and modularity.ResultsIt is found that the effective connectivity networks exhibit small world attributes, and that the networks contain a subset of highly interactive regions, including right frontal pole (in-degree 6), left middle frontal gyrus (in-degree 8, out-degree 1), right precentral gyrus (out-degree 9), left precentral gyrus (out-degree 7), right posterior division of supramarginal gyrus (in-degree 2, out-degree 3), left angular gyrus (out-degree 6), left inferior division of lateral occipital cortex (out-degree 6), right occipital pole (in-degree 5), right cerebellum 7b parcel (in-degree 15), and right cerebellum 8 parcel (in-degree 7, out-degree 1).ConclusionsThe observations in this study provide information about the casual interactions among brain parcels in resting state, helping reveal how different subregions of large-scale distributed neural networks are coupled together in performing cognitive functions.  相似文献   

2.
Estimating the functional interactions and connections between brain regions to corresponding process in cognitive, behavioral and psychiatric domains is a central pursuit for understanding the human connectome. Few studies have examined the effects of dynamic evolution on cognitive processing and brain activation using brain network model in scalp electroencephalography (EEG) data. Aim of this study was to investigate the brain functional connectivity and construct dynamic programing model from EEG data and to evaluate a possible correlation between topological characteristics of the brain connectivity and cognitive evolution processing. Here, functional connectivity between brain regions is defined as the statistical dependence between EEG signals in different brain areas and is typically determined by calculating the relationship between regional time series using wavelet coherence. We present an accelerated dynamic programing algorithm to construct dynamic cognitive model that we found that spatially distributed regions coherence connection difference, the topologic characteristics with which they can transfer information, producing temporary network states. Our findings suggest that brain dynamics give rise to variations in complex network properties over time after variation audio stimulation, dynamic programing model gives the dynamic evolution processing at different time and frequency. In this paper, by applying a new construct approach to understand whole brain network dynamics, firstly, brain network is constructed by wavelet coherence, secondly, different time active brain regions are selected by network topological characteristics and minimum spanning tree. Finally, dynamic evolution model is constructed to understand cognitive process by dynamic programing algorithm, this model is applied to the auditory experiment, results showed that, quantitatively, more correlation was observed after variation audio stimulation, the EEG function connection dynamic evolution model on cognitive processing is feasible with wavelet coherence EEG recording.  相似文献   

3.
As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain''s putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior.  相似文献   

4.
Reading requires the interaction of a distributed set of cortical areas whose distinct patterns give rise to a wide range of individual skill. However, the nature of these neural interactions and their relation to reading performance are still poorly understood. Functional connectivity analyses of fMRI data can be used to characterize the nature of interactivity of distributed brain networks, yet most previous studies have focused on connectivity during task-free (i.e., “resting state”) conditions. Here, we report new methods for assessing task-related functional connectivity using data-driven graph theoretical methods and describe how large-scale patterns of connectivity relate to individual variability in reading performance among children. We found that connectivity patterns of subjects performing a reading task could be decomposed hierarchically into multiple sub-networks, and we observed stronger long-range interaction between sub-networks in subjects with higher task accuracy. Additionally, we found a network of hub regions known to be critical to reading that displays increased short-range synchronization in higher accuracy subjects. These individual differences in task-related functional connectivity reveal that increased interaction between distant regions, coupled with selective local integration within key regions, is associated with better reading performance. Importantly, we show that task-related neuroimaging data contains far more information than usually extracted via standard univariate analyses – information that can meaningfully relate neural connectivity patterns to cognition and task.  相似文献   

5.
Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity, (ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated, play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain networks.  相似文献   

6.
Although anomalies in the topological architecture of whole-brain connectivity have been found to be associated with Alzheimer’s disease (AD), our understanding about the progression of AD in a functional connectivity (FC) perspective is still rudimentary and few study has explored the function-structure relations in brain networks of AD patients. By using resting-state functional MRI (fMRI), this study firstly investigated organizational alternations in FC networks in 12 AD patients, 15 amnestic mild cognitive impairment (aMCI) patients, and 14 age-matched healthy aging subjects and found that all three groups exhibit economical small-world network properties. Nonetheless, we found a decline of the optimal architecture in the progression of AD, represented by a more localized modular organization with less efficient local information transfer. Our results also show that aMCI forms a boundary between normal aging and AD and represents a functional continuum between healthy aging and the earliest signs of dementia. Moreover, we revealed a dissociated relationship between the overall FC and structural connectivity (SC) in AD patients. In this study, diffusion tensor imaging tractography was used to map the structural network of the same individuals. The decreased FC-SC coupling may be indicative of more stringent and less dynamic brain function in AD patients. Our findings provided insightful implications for understanding the pathophysiological mechanisms of brain dysfunctions in aMCI and AD patients and demonstrated that functional disorders can be characterized by multimodal neuroimaging-based metrics.  相似文献   

7.
In order to test the hypothesis that in primary open angle glaucoma (POAG), an important cause of irreversible blindness, a spreading of neurodegeneration occurs through the brain, we performed multimodal MRI and subsequent whole-brain explorative voxelwise analyses in 13 advanced POAG patients and 12 age-matched normal controls (NC). Altered integrity (decreased fractional anisotropy or increased diffusivities) of white matter (WM) tracts was found not only along the visual pathway of POAG but also in nonvisual WM tracts (superior longitudinal fascicle, anterior thalamic radiation, corticospinal tract, middle cerebellar peduncle). POAG patients also showed brain atrophy in both visual cortex and other distant grey matter (GM) regions (frontoparietal cortex, hippocampi and cerebellar cortex), decreased functional connectivity (FC) in visual, working memory and dorsal attention networks and increased FC in visual and executive networks. In POAG, abnormalities in structure and FC within and outside visual system correlated with visual field parameters in the poorer performing eyes, thus emphasizing their clinical relevance. Altogether, this represents evidence that a vision disorder such as POAG can be considered a widespread neurodegenerative condition.  相似文献   

8.
带状疱疹后神经痛(postherpetic neuralgia,PHN)是一种常见的神经病理性疼痛,但其中枢机制尚不明了.杏仁核在疼痛反应中的作用近年来受到关注.本研究的目的在于通过功能磁共振成像,研究带状疱疹后神经痛患者杏仁核各个亚区功能连接(functional connectivity,FC)的改变,探索慢性神经病理性疼痛的中枢机制.8位带状疱疹后神经痛患者和8位健康者进行了普通核磁共振和静息态功能磁共振扫描.将杏仁核各个亚区分别进行的功能连接分析,并将功能连接和被试者的病程、视觉模拟评分(visual analog scale,VAS)进行了相关分析.与健康志愿者相比,PHN患者杏仁核的基底外侧部(laterobasal groups,LB)和皮质部(superficial groups,SF)与多个脑区的FC表现出增强,主要位于颞叶和额叶.同时SF与多个区域的FC出现减低,主要位于额叶和顶叶.颞叶和额叶部分区域与LB的FC强度、与病程长短和VAS评分表现出关联性.研究结果提示,PHN患者杏仁核功能连接的改变提示了在慢性神经病理性疼痛的产生和发展中,杏仁核以及多个涉及情绪、认知、注意的脑区发挥了重要作用.  相似文献   

9.
The anterior cingulate cortex (ACC) is frequently reported to have functionally distinct sub-regions that play key roles in different intrinsic networks. However, the contribution of the ACC, which is connected to several cortical areas and the limbic system, to autism is not clearly understood, although it may be involved in dysfunctions across several distinct but related functional domains. By comparing resting-state fMRI data from persons with autism and healthy controls, we sought to identify the abnormalities in the functional connectivity (FC) of ACC sub-regions in autism. The analyses found autism-related reductions in FC between the left caudal ACC and the right rolandic operculum, insula, postcentral gyrus, superior temporal gyrus, and the middle temporal gyrus. The FC (z-scores) between the left caudal ACC and the right insula was negatively correlated with the Stereotyped Behaviors and Restricted Interests scores of the autism group. These findings suggest that the caudal ACC is recruited selectively in the pathomechanism of autism.  相似文献   

10.
Grigg O  Grady CL 《PloS one》2010,5(10):e13311
Recent evidence points to two potentially fundamental aspects of the default network (DN), which have been relatively understudied. One is the temporal nature of the functional interactions among nodes of the network in the resting-state, usually assumed to be static. The second is possible influences of previous brain states on the spatial patterns (i.e., the brain regions involved) of functional connectivity (FC) in the DN at rest. The goal of the current study was to investigate modulations in both the spatial and temporal domains. We compared the resting-state FC of the DN in two runs that were separated by a 45 minute interval containing cognitive task execution. We used partial least squares (PLS), which allowed us to identify FC spatiotemporal patterns in the two runs and to determine differences between them. Our results revealed two primary modes of FC, assessed using a posterior cingulate seed--a robust correlation among DN regions that is stable both spatially and temporally, and a second pattern that is reduced in spatial extent and more variable temporally after cognitive tasks, showing switching between connectivity with certain DN regions and connectivity with other areas, including some task-related regions. Therefore, the DN seems to exhibit two simultaneous FC dynamics at rest. The first is spatially invariant and insensitive to previous brain states, suggesting that the DN maintains some temporally stable functional connections. The second dynamic is more variable and is seen more strongly when the resting-state follows a period of task execution, suggesting an after-effect of the cognitive activity engaged during task that carries over into resting-state periods.  相似文献   

11.
We review here a new approach to mapping the human cerebral cortex into distinct subdivisions. Unlike cytoarchitecture or traditional functional imaging, it does not rely on specific anatomical markers or functional hypotheses. Instead, we propose that the unique activity time course (ATC) of each cortical subdivision, elicited during natural conditions, acts as a temporal fingerprint that can be used to segregate cortical subdivisions, map their spatial extent, and reveal their functional and potentially anatomical connectivity. We argue that since the modular organisation of the brain and its connectivity evolved and developed in natural conditions, these are optimal for revealing its organisation. We review the concepts, methodology and first results of this approach, relying on data obtained with functional magnetic resonance imaging (fMRI) when volunteers viewed traditional stimuli or a James Bond movie. Independent component analysis (ICA) was used to identify voxels belonging to distinct functional subdivisions, based on their differential spatio-temporal fingerprints. Many more regions could be segregated during natural viewing, demonstrating that the complexity of natural stimuli leads to more differential responses in more functional modules. We demonstrate that, in a single experiment, a multitude of distinct regions can be identified across the whole brain, even within the visual cortex, including areas V1, V4 and V5. This differentiation is based entirely on the differential ATCs of different areas during natural viewing. Distinct areas can therefore be identified without any a priori hypothesis about their function or spatial location. The areas we identified corresponded anatomically across subjects, and their ATCs showed highly area-specific inter-subject correlations. Furthermore, natural conditions led to a significant de-correlation of interregional ATCs compared to rest, indicating an increase in regional specificity during natural conditions. In contrast, the correlation between ATCs of distant regions of known substantial anatomical connections increased and reflected their known anatomical connectivity pattern. We demonstrate this using the example of the language network involving Broca's and Wernicke's area and homologous areas in the two hemispheres. In conclusion, this new approach to brain mapping may not only serve to identify novel functional subdivisions, but to reveal their connectivity as well.  相似文献   

12.
The recovery of motor functions is accompanied by brain reorganization, and identifying the inter-hemispheric interaction post stroke will conduce to more targeted treatments. However, the alterations of bi-hemispheric coordination pattern between homologous areas in the whole brain for chronic stroke patients were still unclear. The present study focuses on the functional connectivity (FC) of mirror regions of the whole brain to investigate the inter-hemispheric interaction using a new fMRI method named voxel-mirrored homotopic connectivity (VMHC). Thirty left subcortical chronic stroke patients with pure motor deficits and 37 well-matched healthy controls (HCs) underwent resting-state fMRI scans. We employed a VMHC analysis to determine the brain areas showed significant differences between groups in FC between homologous regions, and we explored the relationships between the mean VMHC of each survived area and clinical tests within patient group using Pearson correlation. In addition, the brain areas showed significant correlations between the mean VMHC and clinical tests were defined as the seed regions for whole brain FC analysis. Relative to HCs, patients group displayed lower VMHC in the precentral gyrus, postcentral gyrus, inferior frontal gyrus, middle temporal gyrus, calcarine gyrus, thalamus, cerebellum anterior lobe, and cerebellum posterior lobe (CPL). Moreover, the VMHC of CPL was positively correlated with the Fugl–Meyer Score of hand (FMA-H), while a negative correlation between illness duration and the VMHC of this region was also detected. Furthermore, we found that when compared with HCs, the right CPL exhibited reduced FC with the left precentral gyrus, inferior frontal gyrus, inferior parietal lobule, middle temporal gyrus, thalamus and hippocampus. Our results suggest that the functional coordination across hemispheres is impaired in chronic stroke patients, and increased VMHC of the CPL is significantly associated with higher FMA-H scores. These findings may be helpful in understanding the mechanism of hand deficit after stroke, and the CPL may serve as a target region for hand rehabilitation following stroke.  相似文献   

13.
Translation of resting-state functional connectivity (FC) magnetic resonance imaging (rs-fMRI) applications from human to rodents has experienced growing interest, and bears a great potential in pre-clinical imaging as it enables assessing non-invasively the topological organization of complex FC networks (FCNs) in rodent models under normal and various pathophysiological conditions. However, to date, little is known about the organizational architecture of FCNs in rodents in a mentally healthy state, although an understanding of the same is of paramount importance before investigating networks under compromised states. In this study, we characterized the properties of resting-state FCN in an extensive number of Sprague-Dawley rats (n = 40) under medetomidine sedation by evaluating its modular organization and centrality of brain regions and tested for reproducibility. Fully-connected large-scale complex networks of positively and negatively weighted connections were constructed based on Pearson partial correlation analysis between the time courses of 36 brain regions encompassing almost the entire brain. Applying recently proposed complex network analysis measures, we show that the rat FCN exhibits a modular architecture, comprising six modules with a high between subject reproducibility. In addition, we identified network hubs with strong connections to diverse brain regions. Overall our results obtained under a straight medetomidine protocol show for the first time that the community structure of the rat brain is preserved under pharmacologically induced sedation with a network modularity contrasting from the one reported for deep anesthesia but closely resembles the organization described for the rat in conscious state.  相似文献   

14.
The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI) signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI) technique. We first identified eight brain networks and two regions of interest (ROIs) representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI) with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN) revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions.  相似文献   

15.
Majority of type 2 diabetes mellitus (T2DM) patients are highly susceptible to several forms of cognitive impairments, particularly dementia. However, the underlying neural mechanism of these cognitive impairments remains unclear. We aimed to investigate the correlation between whole brain resting state functional connections (RSFCs) and the cognitive status in 95 patients with T2DM. We constructed an elastic net model to estimate the Montreal Cognitive Assessment (MoCA) scores, which served as an index of the cognitive status of the patients, and to select the RSFCs for further prediction. Subsequently, we utilized a machine learning technique to evaluate the discriminative ability of the connectivity pattern associated with the selected RSFCs. The estimated and chronological MoCA scores were significantly correlated with R = 0.81 and the mean absolute error (MAE) = 1.20. Additionally, cognitive impairments of patients with T2DM can be identified using the RSFC pattern with classification accuracy of 90.54% and the area under the receiver operating characteristic (ROC) curve (AUC) of 0.9737. This connectivity pattern not only included the connections between regions within the default mode network (DMN), but also the functional connectivity between the task-positive networks and the DMN, as well as those within the task-positive networks. The results suggest that an RSFC pattern could be regarded as a potential biomarker to identify the cognitive status of patients with T2DM.  相似文献   

16.
Slow (<0.1 Hz) oscillatory activity in the human brain, as measured by functional magnetic imaging, has been used to identify neural networks and their dysfunction in specific brain diseases. Its intrinsic properties may also be useful to investigate brain functions. We investigated the two functional maps: variance and first order autocorrelation coefficient (r(1)). These two maps had distinct spatial distributions and the values were significantly different among the subdivisions of the precuneus and posterior cingulate cortex that were identified in functional connectivity (FC) studies. The results reinforce the functional segregation of these subdivisions and indicate that the intrinsic properties of the slow brain activity have physiological relevance. Further, we propose a sample size (degree of freedom) correction when assessing the statistical significance of FC strength with r(1) values, which enables a better understanding of the network changes related to various brain diseases.  相似文献   

17.
Language comprehension is a complex task that involves a wide network of brain regions. We used topological measures to qualify and quantify the functional connectivity of the networks used under various comprehension conditions. To that aim we developed a technique to represent functional networks based on EEG recordings, taking advantage of their excellent time resolution in order to capture the fast processes that occur during language comprehension. Networks were created by searching for a specific causal relation between areas, the negative feedback loop, which is ubiquitous in many systems. This method is a simple way to construct directed graphs using event-related activity, which can then be analyzed topologically. Brain activity was recorded while subjects read expressions of various types and indicated whether they found them meaningful. Slightly different functional networks were obtained for event-related activity evoked by each expression type. The differences reflect the special contribution of specific regions in each condition and the balance of hemispheric activity involved in comprehending different types of expressions and are consistent with the literature in the field. Our results indicate that representing event-related brain activity as a network using a simple temporal relation, such as the negative feedback loop, to indicate directional connectivity is a viable option for investigation which also derives new information about aspects not reflected in the classical methods for investigating brain activity.  相似文献   

18.

Background

Pain is an unpleasant sensory and emotional experience followed by anxiety, depression, and frustration. Functional Near-Infrared Spectroscopy (fNIRS) as an optical technique identifies the brain functional networks by investigating connectivity between functionally linked of different anatomical regions in response to pain stimulation.

Methods

In this research, fNIRS was performed in order to study the difference in effective functional connectivity of the brain prefrontal cortex between the two modes of pain and rest based on the dynamic causal modeling (DCM) method. Effective functional connectivity changes in the prefrontal cortex between pain and rest states were calculated using DCM approach to investigate (1) areas known for pain sensation and (2) to analyze inter-network functional connectivity strength (FCS) by selecting several brain functional networks based on the analysis findings. All analyses were performed using toolboxes SPM-fNIRS and SPM8, Matlab software.

Results

Regional hemodynamics changes caused deoxyhemoglobin concentration to decrease in the prefrontal cortex of both hemispheres, particularly on the right side. We found a simultaneous increase in the concentration of oxyhemoglobin in the prefrontal cortex of the left hemisphere in comparison to the right hemisphere, that there was a trend toward reduction in oxyhemoglobin concentration. The results indicate that during the cold pain stimulation, the connectivities between prefrontal cortex regions were significantly changed. Specifically, a significantly consistent increase in the RPFC to MPFC connectivity was found while a significant consistent decrease was observed in the both MPFC to LPFC and LPFC to MPFC connectivities.

Conclusion

This study contributes to the pain research field to identify the directionality and causality of neuronal connections in the prefrontal cortex by applying DCM to fNIRS data. The results suggest that the proposed method infers directional interactions between hidden neuronal states in the brain under neuronal dynamic conditions based on optical density changes measurement.  相似文献   

19.
Functional connectivity MRI (fcMRI) is an fMRI method that examines the connectivity of different brain areas based on the correlation of BOLD signal fluctuations over time. Temporal Lobe Epilepsy (TLE) is the most common type of adult epilepsy and involves multiple brain networks. The default mode network (DMN) is involved in conscious, resting state cognition and is thought to be affected in TLE where seizures cause impairment of consciousness. The DMN in epilepsy was examined using seed based fcMRI. The anterior and posterior hubs of the DMN were used as seeds in this analysis. The results show a disconnection between the anterior and posterior hubs of the DMN in TLE during the basal state. In addition, increased DMN connectivity to other brain regions in left TLE along with decreased connectivity in right TLE is revealed. The analysis demonstrates how seed-based fcMRI can be used to probe cerebral networks in brain disorders such as TLE.  相似文献   

20.
利用功能磁共振成像技术,将空间ICA和时间相关方法相结合来研究不同活动状态下人脑视觉皮层V5区的功能连通性。首先利用空间ICA处理组块视觉运动刺激的数据,定位V5区;然后分别计算静息和连续视觉运动刺激两种稳态下V5区与其它脑区低频振荡的时间相关,检测出该区的功能连通网络。实验结果表明,静息时V5区的功能连通网络更广泛,且与已知的解剖连通一致;当被试接受连续视觉运动刺激时,与V5区连通的脑区网络局限在视觉皮层,此时的网络特定于处理视觉运动这一任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号