首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hepatocellular carcinoma (HCC) is one the the most fatal cancers worldwide. The poor prognosis of HCC is mainly due to the developement of distance metastasis. To investigate the mechanism of metastasis in HCC, an orthotopic HCC metastasis animal model was established. Two sets of primary liver tumor cell lines and corresponding lung metastasis cell lines were generated. In vitro functional analysis demonstrated that the metastatic cell line had higher invasion and migration ability when compared with the primary liver tumor cell line. These cell lines were subjected to microRNA (miRNAs) microarray analysis to identify differentially expressed miRNAs which were associated with the developement of metastasis in vivo. Fifteen human miRNAs, including miR-106b, were differentially expressed in 2 metastatic cell lines compared with the primary tumor cell lines. The clinical significance of miR-106b in 99 HCC clinical samples was studied. The results demonstrated that miR-106b was over-expressed in HCC tumor tissue compared with adjacent non-tumor tissue (p = 0.0005), and overexpression of miR-106b was signficantly correlated with higher tumor grade (p = 0.018). Further functional studies demonstrated that miR-106b could promote cell migration and stress fiber formation by over-expressing RhoGTPases, RhoA and RhoC. In vivo functional studies also showed that over-expression of miR-106b promoted HCC metastasis. These effects were related to the activation of the epithelial-mesenchymal transition (EMT) process. Our results suggested that miR-106b expression contributed to HCC metastasis by activating the EMT process promoting cell migration in vitro and metastasis in vivo.  相似文献   

2.
3.
The SARI (suppressor of AP-1, regulated by IFN) gene, which is also called BATF2, is associated with the risk of several kinds of cancer, and loss of SARI expression is frequently detected in aggressive and metastatic cancer. However, the functional role of SARI in lung adenocarcinoma remains unknown. We have shown that loss of SARI expression initiates epithelial-mesenchymal transition (EMT), which is visualized by repression of E-cadherin and up-regulation of vimentin in lung adenocarcinoma cell lines and in clinical lung adenocarcinoma specimens. Using a human lung xenograft-mouse model, we observed that knocking down endogenous SARI in human carcinoma cells leads to the development of multiple lymph node metastases. Moreover, we showed that SARI functions as a critical protein in regulating EMT by modulating the (GSK)-3β-β-catenin signaling pathway. These results demonstrate the mechanism of SARI function in EMT and suggest that assessment of SARI may serve as a prognostic biomarker and potential therapeutic target for lung adenocarcinoma metastasis.  相似文献   

4.
Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC.  相似文献   

5.
Epithelial-mesenchymal transition (EMT) is a critical event that occurs in embryonic development, tissue repair control, organ fibrosis, and carcinoma invasion and metastasis. Although significant progress has been made in understanding the molecular regulation of EMT, little is known about how chromatin is modified in EMT. Chromatin modifications through histone acetylation and methylation determine the precise control of gene expression. Recently, histone demethylases were found to play important roles in gene expression through demethylating mono-, di-, or trimethylated lysines. KDM6B (also known as JMJD3) is a histone demethylase that might activate gene expression by removing repressive histone H3 lysine 27 trimethylation marks from chromatin. Here we report that KDM6B played a permissive role in TGF-β-induced EMT in mammary epithelial cells by stimulating SNAI1 expression. KDM6B was induced by TGF-β, and the knockdown of KDM6B inhibited EMT induced by TGF-β. Conversely, overexpression of KDM6B induced the expression of mesenchymal genes and promoted EMT. Chromatin immunoprecipitation (ChIP) assays revealed that KDM6B promoted SNAI1 expression by removing histone H3 lysine trimethylation marks. Consistently, our analysis of the Oncomine database found that KDM6B expression was significantly increased in invasive breast carcinoma compared with normal breast tissues. The knockdown of KDM6B significantly inhibited breast cancer cell invasion. Collectively, our study uncovers a novel epigenetic mechanism regulating EMT and tumor cell invasion, and has important implication in targeting cancer metastasis.  相似文献   

6.
Formation of the cardiac valves is an essential component of cardiovascular development. Consistent with the role of the bone morphogenetic protein (BMP) signaling pathway in cardiac valve formation, embryos that are deficient for the BMP regulator BMPER (BMP-binding endothelial regulator) display the cardiac valve anomaly mitral valve prolapse. However, how BMPER deficiency leads to this defect is unknown. Based on its expression pattern in the developing cardiac cushions, we hypothesized that BMPER regulates BMP2-mediated signaling, leading to fine-tuned epithelial-mesenchymal transition (EMT) and extracellular matrix deposition. In the BMPER-/- embryo, EMT is dysregulated in the atrioventricular and outflow tract cushions compared with their wild-type counterparts, as indicated by a significant increase of Sox9-positive cells during cushion formation. However, proliferation is not impaired in the developing BMPER-/- valves. In vitro data show that BMPER directly binds BMP2. In cultured endothelial cells, BMPER blocks BMP2-induced Smad activation in a dose-dependent manner. In addition, BMP2 increases the Sox9 protein level, and this increase is inhibited by co-treatment with BMPER. Consistently, in the BMPER-/- embryos, semi-quantitative analysis of Smad activation shows that the canonical BMP pathway is significantly more active in the atrioventricular cushions during EMT. These results indicate that BMPER negatively regulates BMP-induced Smad and Sox9 activity during valve development. Together, these results identify BMPER as a regulator of BMP2-induced cardiac valve development and will contribute to our understanding of valvular defects.  相似文献   

7.
8.
肿瘤转移是一个多步骤、多因素参与的复杂过程,是目前临床上绝大多数肿瘤患者的致死因素.上皮-间质转化(epithelial-mesenchymal transition, EMT)过程已被证实可促使肿瘤细胞发生转移.近年来许多研究表明,间质-上皮转化(mesenchymal-epithelial transition, MET)即EMT的逆过程,与肿瘤也密切相关,特别是肿瘤转移即形成继发性的肿瘤转移灶.深入研究肿瘤MET有望为肿瘤转移的预防和诊治提供新思路.  相似文献   

9.
血小板反应蛋白4 (thrombospondin 4, THBS4)属于THBS家族成员,是细胞外基质分泌的蛋白质,参与调控细胞增殖、黏附及血管生成等多种生理过程。近来研究表明,机体在炎症刺激下加速产生THBS4并诱导巨噬细胞粘附与积累。我们的前期研究证实,THBS4在肝癌(hepatocellular carcinoma, HCC)中发挥促癌作用,但THBS4对肝癌免疫微环境的影响尚不明确。本文旨在分析THBS4通过诱导肿瘤相关巨噬细胞M2型极化,促进肝癌细胞转移的作用。通过肝癌条件培养基(HCC conditioned medium, HCM)模拟肿瘤微环境,发现在HCM作用下巨噬细胞中THBS4表达呈时间依赖性升高(P<0.05);下调THBS4促使M1型巨噬细胞标志物IL-1β、CD86的表达升高(P<0.01),而M2型标志物IL-10和CD206表达降低(P<0.01)。进一步通过Transwell共培养实验检测THBS4诱导的M2型巨噬细胞对肝癌转移的影响。将下调THBS4的M2型巨噬细胞(M2-TAMs)与HepG2肝癌细胞进行共培养。结果显示,下调T...  相似文献   

10.
微小RNA-125b(miR-125b)在许多恶性肿瘤的增殖、分化和凋亡等过程中具有很重要的作用,但miR-125b是否涉及肝癌的上皮 间质转换过程(EMT)还有待进一步研究。本研究通过构建过表达miR-125b的肝癌稳转细胞株,初步检测miR-125b对于肝癌的EMT过程和相关的TGF-β信号通路的影响,以及对于肝癌细胞凋亡的影响。以慢病毒载体pHRS-1cla EGFP 构建过表达miR-125b的载体质粒(pHRS-1cla-miR125b-CMV-EGFP),并对上述载体进行NheⅠ、XbaⅠ双酶切和测序鉴定,鉴定正确后,在293T细胞中进行慢病毒包装,浓缩病毒后,对MHCC97-H进行慢病毒感染并采用流式分选GFP阳性的细胞。实时定量PCR检测表明肝癌细胞稳转株MHCC97-H-PHRS-miR-125b-EGFP的miR-125b表达量是空载体转染组的6倍。Western印迹检测发现,与空载体对照组相比,MHCC97-H-PHRS-miR-125b-EGFP细胞中间质细胞标志α-SMA表达显著下调,上皮细胞标志E-cadherin表达显著上调,同样的,用Western印迹检测也发现MHCC97-H-PHRS-miR-125b-EGFP细胞中TGF-β信号通路关键下游分子Smad2和Smad4的表达显著下调,细胞凋亡检测结果表明,与对照组相比,过表达miR-125b的稳转株凋亡率增加到19.66%,加入TGF-β1后,过表达miR-125b的稳转株凋亡率进一步增加到74.7%。同样的,在体内治疗实验中,我们采用商品化的体内核酸转染试剂,在皮下肿瘤组织中过表达miR-125b mimics,结果表明miR-125b的过表达与肿瘤组织的凋亡成正相关性(r=0.83463,P < 0.01),且免疫组化结果也表明,miR-125b过表达后,E-cadherin表达显著上调,α-SMA及Smad2和Smad4的表达显著下调。上述结果表明,我们成功构建了过表达miR-125b的肝癌细胞稳转株,并成功建立了肿瘤组织中过表达miR-125b mimics的动物模型,在体内外均观察到过表达miR-125b后对肝癌细胞EMT过程的抑制作用和对细胞凋亡的促进作用。相关研究结果加深了我们对miR-125b在肝癌中抑制肝癌发展作用机制的理解,及其作为潜在的治疗肝癌的新靶点的重要性。  相似文献   

11.

Background and Aims

The prognosis of hepatocellular carcinoma (HCC) is hampered by frequent tumour recurrence and metastases. Epithelial-Mesenchymal Transition (EMT) is now recognized as a key process in tumour invasion, metastasis and the generation of cancer initiating cells. The morphological identification of EMT in tumour samples from the expression of novel mesenchymal markers could provide relevant prognostic information and aid in understanding the metastatic process.

Methods

The expression of Smooth Muscle Actins was studied using immunofluorescence and immunohistochemistry assays in cultured liver cells during an induced EMT process and in liver specimens from adult and paediatric HCC series.

Results

We report here that in HCC cell lines treated with TGF-β and in HCC specimens, the expression of αSMA, a known mesenchymal marker of EMT, could never be detected. In addition, our in vitro studies identified the enteric form of SMA, γSMA, as being a marker of EMT. Moreover, this SMA isoform was expressed in 46% of 58 tumours from 42 adult HCC patients and in 90% of 16 tumours from 12 paediatric HCC patients. Interestingly, this expression was significantly correlated with poor tumour differentiation and progenitor cell features characterized by the expression of EpCAM and K19.

Conclusion

Taken together, our results support the conclusion that γSMA expression in HCC is strongly correlated with the EMT process, HCC aggressiveness and the identification of cancer stem cells. This correlation suggests that γSMA represents a novel and powerful marker to predict HCC progression.  相似文献   

12.
13.
Overexpressed CEACAM6 in tumor tissues plays important roles in invasion, metastasis and anoikis resistance in a variety of human cancers. We recently reported that CEACAM6 expression is upregulated in Gastric cancer (GC) tissues and promoted GC metastasis. Here, we report that CEACAM6 promotes peritoneal metastases in vivo and is negatively correlated with E-cadherin expression in GC tissues. Overexpressed CEACAM6 induced epithelial-mesenchymal transition (EMT) in GC, as measured by increases in the EMT markers N-cadherin, Vimentin and Slug while E-cadherin expression was decreased in CEACAM6-overexpressing GC cells; opposing results were observed in CEACAM6-silenced cells. Furthermore, E-cadherin expression was negatively correlated with depth of tumor invasion, lymph node metastasis and TNM stage in GC tissues. Additionally, CEACAM6 elevated matrix metalloproteinase-9 (MMP-9) activity in GC, and anti-MMP-9 antibody could reverse the increasing invasion and migration induced by CEACAM6. CEACAM6 also increased the levels of phosphorylated AKT, which is involved in the progression of a variety of human tumors. We further observed that LY294002, a PI3K inhibitor, could reverse CEACAM6-induced EMT via mesenchymal-epithelial transition. These findings suggest that CEACAM6 enhances invasion and metastasis in GC by promoting EMT via the PI3K/AKT signaling pathway.  相似文献   

14.
15.
外泌体是由细胞分泌的直径为30~150 nm的小囊泡,含有丰富的mRNA、microRNA和长链非编码RNA(lncRNA)。目前,大多数外泌体研究都集中在mRNA和microRNA,而对lncRNA的生物学功能并不十分清楚。研究表明,肿瘤细胞外泌体 lncRNA H19在肿瘤细胞的增殖、迁移和侵袭中发挥了重要作用。本研究将筛选到的lncRNA H19高表达的肝癌细胞HCCLM3,分别收集其高表达lncRNA H19的外泌体和其下调lncRNA H19表达后的外泌体。然后,将收集到的外泌体分别添加到lncRNA H19低表达的肝癌细胞Hep3B和HepG2孵育液中。孵育24 h后,检测其对肿瘤细胞的增殖、迁移和侵袭能力的影响。结果显示,肝癌细胞HCCLM3可分泌大量的外泌体,且能被其他肿瘤细胞大量摄取;与下调lncRNA H19表达的外泌体相比,lncRNA H19高表达的外泌体能显著增强Hep3B和HepG2细胞的增殖、迁移和侵袭能力。而这一作用可通过激活PI3K/AKT/mTOR通路实现。上述结果表明,lncRNA H19高表达的肝癌细胞以外泌体方式,增强邻近肝癌细胞的增殖、迁移和侵袭能力,促进肝癌的发生与发展。  相似文献   

16.
17.
18.
Glioma pathogenesis related-2 (GLIPR-2) belongs to pathogenesis related-1 (PR-1) family whose function remains unknown. In our previous studies, GLIPR-2 was found to be a novel potent stimulator of epithelial-to-mesenchymal transition (EMT) in renal fibrosis which has been classified as type 2 EMT. However, whether GLIPR-2 could induce type 3 EMT in carcinogenesis needs further investigation. In this study, we showed that GLIPR-2 was expressed in hepatocellular carcinoma (HCC) tissues, hypoxia could upregulate the expression of GLIPR-2 in HepG2 and PLC/PRF/5 cells in vitro, overexpression of this protein promoted migration and invasion via EMT, knockdown of GLIPR-2 attenuated migration and invasion of HepG2 and PLC/PRF/5 cells in hypoxia. Moreover, extracellular signal-regulated kinases 1 and 2 (ERK1/2) are positively regulated by GLIPR-2. Taken together, we provide evidence for a hypoxia/GLIPR-2/EMT/migration and invasion axis in HCC cells and it provides novel insights into the mechanism of migration and invasion of hepatocellular carcinoma cells in hypoxia condition.  相似文献   

19.
20.
Little is known about the oncogenic role or biological function of copine Ⅷ (CPNE8) in gastric cancer (GC). Based on TCGA database, we screened for CPNE8 and analyzed the expression of CPNE8 in GC. The correlations between CPNE8 and clinical features were analyzed using TCGA and GEO databases. The prognostic value of CPNE8 was assessed using Cox analysis and Kaplan-Meier curves. The results showed that increased expression of CPNE8 was positively correlated with metastasis and can be considered an independent prognostic risk factor for poor survival. We found that CPNE8 can promote cell proliferation, migration, and invasiveness in GC using in vitro and in vivo experiments. Our study demonstrated that CPNE8 promotes tumor progression via regulation of focal adhesion, and these effects can be rescued by focal adhesion kinase (FAK) inhibitor GSK2256098 or knockdown of FAK. In addition, CPNE8 was correlated significantly with the infiltration of cancer-associated fibroblasts and immune cells, as demonstrated by various algorithms, and high CPNE8 expression predicted poor efficacy of immune checkpoint therapy. Our findings suggest that CPNE8 modulates focal adhesion and tumor microenvironment to promote GC progression and invasiveness and could serve as a novel prognostic biomarker in GC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号